[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN103163553B - Earthquake hydrocarbon detection method and device based on multiple pore medium model - Google Patents

Earthquake hydrocarbon detection method and device based on multiple pore medium model Download PDF

Info

Publication number
CN103163553B
CN103163553B CN201310042296.9A CN201310042296A CN103163553B CN 103163553 B CN103163553 B CN 103163553B CN 201310042296 A CN201310042296 A CN 201310042296A CN 103163553 B CN103163553 B CN 103163553B
Authority
CN
China
Prior art keywords
mrow
msub
phi
munderover
msubsup
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310042296.9A
Other languages
Chinese (zh)
Other versions
CN103163553A (en
Inventor
晏信飞
邹才能
曹宏
巴晶
杨志芳
卢明辉
唐刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Petrochina Co Ltd
Original Assignee
Petrochina Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Petrochina Co Ltd filed Critical Petrochina Co Ltd
Priority to CN201310042296.9A priority Critical patent/CN103163553B/en
Publication of CN103163553A publication Critical patent/CN103163553A/en
Application granted granted Critical
Publication of CN103163553B publication Critical patent/CN103163553B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Geophysics And Detection Of Objects (AREA)

Abstract

The invention relates to the technical field of geophysical technology, in particular to a method and a device for detecting seismic hydrocarbons based on a multi-pore medium model. The method comprises the following steps: obtaining a data set relating to subsurface reservoir rock and deriving reservoir information therefrom, the reservoir information comprising: reservoir environment and physical properties, petrophysical properties, and micro-pore structure information; obtaining model parameters required by a multi-pore medium model according to reservoir information, and establishing a rock physical template of the fluid saturated rock; carrying out amplitude preservation processing on the seismic data, extracting an angle gather, and carrying out synchronous inversion on the angle gather before stacking to obtain elastic parameters before stacking; projecting the prestack elastic parameters onto the rock physical template to form a plurality of projection data points, and calculating the porosity and/or saturation of the measured medium; the hydrocarbon detection is carried out by judging the oil-gas distribution of the underground reservoir according to the porosity and/or the saturation of the detected medium, the oil-gas distribution of an unconventional reservoir can be directly predicted, and the multi-solution property of the hydrocarbon detection is effectively reduced.

Description

Earthquake hydrocarbon detection method and device based on multiple pore medium model
Technical Field
The invention relates to the technical field of geophysical technology, in particular to a method and a device for detecting seismic hydrocarbons based on a multi-pore medium model.
Background
In the past decades, seismic exploration technology changes over the sky and the earth, and meanwhile, seismic interpretation also goes through a plurality of development stages of construction interpretation, stratum lithology interpretation, seismic interpretation development, rock physics analysis and the like and develops towards seismic quantitative interpretation. However, the goal of seismic exploration has been oil and gas, a constant pursuit that continues to push hydrocarbon detection theory and technology forward.
Hydrocarbon detection techniques refer to methods for finding hydrocarbon reservoirs using seismic reflection or refraction characteristics. In seismic reflection exploration, the seismic signals returned from the subsurface include not only structural information reflecting subsurface interfaces, but also amplitude information reflecting formation lithology and fluids. In the past seismic interpretation, people are limited to structural interpretation, and with the great enhancement of modern true amplitude acquisition and processing, seismic amplitude becomes a main basis for identifying potential hydrocarbon reservoirs.
In the early 80 s of the 20 th century, it was first proposed to identify "bright spot" type gas reservoirs by using Amplitude variations with incident angle, and his work marked the emergence of the technique of Amplitude variations with Offset (AVO). The AVO technology enables the seismic amplitude interpretation to be gradually changed from post-stack to pre-stack, and hydrocarbon detection can be directly carried out and the oil-gas distribution of a reservoir can be predicted. Subsequently, a few scholars put different approximate expressions to the zoepritz (Zoeppritz) equation reflecting the interfacial energy distribution. Corresponding AVO attributes can be extracted by these formulas, and the combination of these attributes derives a series of fluid-dependent detection factors, like P × G, LMR parameters, K- μ fluid factors, etc. In addition, the hydrocarbon detection capability is further improved by a prestack elastic parameter inversion technology represented by elastic impedance inversion and prestack synchronous inversion.
Another essence of the propagation of seismic waves in rock is the absorption and attenuation of energy, resulting in a change in the waveform. Generally, the oil and gas reservoirs have lower quality factors, and the attenuation of seismic reflection energy can be obvious, so some seismic attenuation technologies are developed to detect the oil and gas properties of the reservoirs.
In recent years, rapid development of seismic petrophysical techniques has promoted the gradual progress of quantitative interpretation of hydrocarbon detection from the previous qualitative description, particularly seismic quantitative prediction techniques represented by petrophysical templates. The concept of petrophysical templates is first defined by Φ degar and Avseth was first proposed in 2003 and then various forms of quantitative interpretation templates were developed, including AI-VP/VSTemplates, PGT templates, etc. The rock physical template technology closely links geology and earthquake, is a very important tool, and greatly reduces risks in seismic exploration and long-range evaluation.
With the continuous increase of the demand of social and economic development on oil and gas resources and the gradual depletion of conventional oil and gas resources, people aim at more unconventional oil and gas resources with rich resources and huge exploration potential, such as compact sandstone gas, shale gas, compact oil, shale oil and the like. Due to the characteristics of low pore permeability, strong heterogeneity, complex oil-gas-water relationship and the like, the seismic response of the unconventional oil-gas reservoirs is weak, the concealment is very strong, and the existing hydrocarbon detection technology has certain defects.
Hydrocarbon detection technologies guided by seismic attributes, such as AVO technology, prestack elastic parameter inversion, seismic attenuation and the like, can only qualitatively identify hydrocarbon-containing anomalies, and because the elastic parameter difference between unconventional oil and gas reservoirs and surrounding rocks is small, the technologies are difficult to effectively distinguish and have obvious ambiguity. For the rock physical template technology, the core lies in a rock physical model, but at present, no perfect rock physical theoretical model is formed for unconventional reservoirs with low pore permeability, and a greater risk exists if a medium-high pore sand shale model is used for carrying out quantitative earthquake prediction.
Disclosure of Invention
The embodiment of the invention provides a method and a device for detecting seismic hydrocarbons based on a multi-pore medium model, which are used for solving the problem of development and research of unconventional oil and gas reservoirs in the prior art.
The embodiment of the invention provides a seismic hydrocarbon detection method based on a multiple pore medium model, wherein the method comprises the following steps:
obtaining a data set relating to subsurface reservoir rock, and deriving reservoir information from the data set, the reservoir information comprising: reservoir environment and physical properties, petrophysical properties, and micro-pore structure information;
obtaining model parameters required by a multiple pore medium model according to the reservoir information, and establishing a rock physical template of the fluid saturated rock based on the multiple pore medium model;
carrying out amplitude preservation processing on the seismic data, extracting an angle gather, and carrying out synchronous inversion on the angle gather before stacking to obtain elastic parameters before stacking;
projecting the prestack elastic parameters onto the rock physical template to form a plurality of projection data points, and calculating the porosity and/or saturation of the measured medium;
and judging the oil and gas distribution of the underground reservoir according to the porosity and/or the saturation of the measured medium so as to detect the hydrocarbons.
The seismic hydrocarbon detection method based on the multiple pore medium model, wherein the data set comprises: geological reports, rock debris records, core data, well logs.
The seismic hydrocarbon detection method based on the multiple pore medium model is characterized in that the rock physical template is a combination of any two physical quantities in the elastic parameters; the elasticity parameters comprise at least the following physical quantities: velocity V of longitudinal wavePTransverse wave velocity VSLongitudinal wave impedance ZPTransverse wave impedance ZSElastic impedance EI, converted wave elastic impedance PSEI, velocity ratio V of longitudinal wave and transverse waveP/VSPoisson's ratio v, bulk modulus K, shear modulus μ, young's modulus E, longitudinal wave modulus P, and lame constant λ.
The seismic hydrocarbon detection method based on the multiple pore medium model, wherein the calculating the porosity and/or saturation of the detected medium comprises: and searching the template grid point closest to each projection data point to further obtain the porosity and/or saturation of the corresponding measured medium.
The seismic hydrocarbon detection method based on the multiple pore medium model comprises the following steps of: temperature, loading pressure, pore pressure, horizons, lithology, mineral composition, mineral content, porosity range, saturation range, pore fluid type.
The seismic hydrocarbon detection method based on the multiple pore medium model is characterized in that the petrophysical properties comprise: ultrasonic measured longitudinal wave velocity VPTransverse wave velocity VSAnd the corresponding relation between the rock porosity and the rock saturation.
The seismic hydrocarbon detection method based on the multiple pore medium model, wherein the establishing of the petrophysical template of the fluid saturated rock based on the multiple pore medium model comprises: setting scale values of porosity and saturation according to the porosity range and the saturation range, calculating any two physical quantities in the elastic parameters of the fluid saturated rock corresponding to the scale values of the porosity and the saturation by using the multiple pore medium model, drawing an intersection graph of any two physical quantities in the elastic parameters, and marking the scale values of the porosity and the saturation to form the rock physical template.
The method for detecting seismic hydrocarbons based on the multiple pore medium model, wherein the calculating, by using the multiple pore medium model, the elastic parameter of the fluid saturated rock corresponding to each group of scale values of porosity and saturation specifically includes:
obtaining three pore structure parameters and three saturation parameters; the three pore structure parameters are respectively: aspect ratio α, scale factor x, and connectivity coefficient ξ; the three saturation parameters are respectively: total water saturation SwWater saturation S of interconnected porescwAnd water saturation S of isolated poreiw(ii) a The relationship between the three saturation parameters is: sw=Scwξ+Siw(1-ξ);
According to the formula: phi is aisoThe porosity of the solid matrix, phi, was calculated (1-xi)isoWherein φ is the total porosity of the rock; the solid matrix comprises: isolated pores and mineral particles;
then according to the formula:
<math> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mover> <mi>K</mi> <mo>^</mo> </mover> <mi>max</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>&phi;</mi> <mi>iso</mi> </msub> <mo>)</mo> </mrow> <msub> <mi>K</mi> <mi>min</mi> </msub> <mo>+</mo> <msub> <mi>&phi;</mi> <mi>iso</mi> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>S</mi> <mi>iw</mi> </msub> <mo>)</mo> </mrow> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>x</mi> <mi>i</mi> </msub> <msub> <mi>K</mi> <mi>hc</mi> </msub> <msubsup> <mi>P</mi> <mi>i</mi> <mo>&prime;</mo> </msubsup> <mo>+</mo> <msub> <mi>&phi;</mi> <mi>iso</mi> </msub> <msub> <mi>S</mi> <mi>iw</mi> </msub> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>x</mi> <mi>i</mi> </msub> <msub> <mi>K</mi> <mi>w</mi> </msub> <msubsup> <mi>P</mi> <mi>i</mi> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msubsup> </mrow> <mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>&phi;</mi> <mi>iso</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>&phi;</mi> <mi>iso</mi> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>S</mi> <mi>iw</mi> </msub> <mo>)</mo> </mrow> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>x</mi> <mi>i</mi> </msub> <msubsup> <mi>P</mi> <mi>i</mi> <mo>&prime;</mo> </msubsup> <mo>+</mo> <msub> <mi>&phi;</mi> <mi>iso</mi> </msub> <msub> <mi>S</mi> <mi>iw</mi> </msub> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>x</mi> <mi>i</mi> </msub> <msubsup> <mi>P</mi> <mi>i</mi> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msubsup> </mrow> </mfrac> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mi>&mu;</mi> <mo>^</mo> </mover> <mi>mat</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>&phi;</mi> <mi>iso</mi> </msub> <mo>)</mo> </mrow> <msub> <mi>&mu;</mi> <mi>min</mi> </msub> </mrow> <mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>&phi;</mi> <mi>iso</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>&phi;</mi> <mi>iso</mi> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>S</mi> <mi>iw</mi> </msub> <mo>)</mo> </mrow> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>x</mi> <mi>i</mi> </msub> <msubsup> <mi>Q</mi> <mi>i</mi> <mo>&prime;</mo> </msubsup> <mo>+</mo> <msub> <mi>&phi;</mi> <mi>iso</mi> </msub> <msub> <mi>S</mi> <mi>iw</mi> </msub> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>x</mi> <mi>i</mi> </msub> <msubsup> <mi>Q</mi> <mi>i</mi> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msubsup> </mrow> </mfrac> </mtd> </mtr> </mtable> </mfenced> </math>
calculating the elastic modulus of the solid matrix, wherein: kminAnd muminRespectively the mean bulk modulus and the mean shear modulus of the mineral particles, KhcAnd KwBulk modulus for hydrocarbons and water, respectively, P and Q are geometric factors related to pore morphology;
according to the formula: phi is aconCalculating the porosity phi of the dry skeletoncon(ii) a The dry skeleton comprises: isolated holes, intercommunicating pores and mineral particles;
then according to the formula:
<math> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mover> <mi>K</mi> <mo>^</mo> </mover> <mi>dry</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>&phi;</mi> <mo>)</mo> </mrow> <msub> <mi>K</mi> <mi>min</mi> </msub> <mo>+</mo> <msub> <mi>&phi;</mi> <mi>iso</mi> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>S</mi> <mi>iw</mi> </msub> <mo>)</mo> </mrow> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>x</mi> <mi>i</mi> </msub> <msub> <mi>K</mi> <mi>hc</mi> </msub> <msubsup> <mi>P</mi> <mi>i</mi> <mo>&prime;</mo> </msubsup> <mo>+</mo> <msub> <mi>&phi;</mi> <mi>iso</mi> </msub> <msub> <mi>S</mi> <mi>iw</mi> </msub> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>x</mi> <mi>i</mi> </msub> <msub> <mi>K</mi> <mi>w</mi> </msub> <msubsup> <mi>P</mi> <mi>i</mi> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msubsup> </mrow> <mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>&phi;</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>&phi;</mi> <mi>iso</mi> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>S</mi> <mi>iw</mi> </msub> <mo>)</mo> </mrow> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>x</mi> <mi>i</mi> </msub> <msubsup> <mi>P</mi> <mi>i</mi> <mo>&prime;</mo> </msubsup> <mo>+</mo> <msub> <mi>&phi;</mi> <mi>iso</mi> </msub> <msub> <mi>S</mi> <mi>iw</mi> </msub> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>x</mi> <mi>i</mi> </msub> <msubsup> <mi>P</mi> <mi>i</mi> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msubsup> <mo>+</mo> <msub> <mi>&phi;</mi> <mi>con</mi> </msub> <munderover> <mi>&Sigma;</mi> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>x</mi> <mi>k</mi> </msub> <msub> <mover> <mi>P</mi> <mo>~</mo> </mover> <mi>k</mi> </msub> </mrow> </mfrac> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mi>&mu;</mi> <mo>^</mo> </mover> <mi>dry</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>&phi;</mi> <mi>iso</mi> </msub> <mo>)</mo> </mrow> <msub> <mi>&mu;</mi> <mi>min</mi> </msub> </mrow> <mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>&phi;</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>&phi;</mi> <mi>iso</mi> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>S</mi> <mi>iw</mi> </msub> <mo>)</mo> </mrow> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>x</mi> <mi>i</mi> </msub> <msubsup> <mi>Q</mi> <mi>i</mi> <mo>&prime;</mo> </msubsup> <mo>+</mo> <msub> <mi>&phi;</mi> <mi>iso</mi> </msub> <msub> <mi>S</mi> <mi>iw</mi> </msub> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>x</mi> <mi>i</mi> </msub> <msubsup> <mi>Q</mi> <mi>i</mi> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msubsup> <mo>+</mo> <msub> <mi>&phi;</mi> <mi>con</mi> </msub> <munderover> <mi>&Sigma;</mi> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>x</mi> <mi>k</mi> </msub> <msub> <mover> <mi>Q</mi> <mo>~</mo> </mover> <mi>k</mi> </msub> </mrow> </mfrac> </mtd> </mtr> </mtable> </mfenced> </math>
calculating the elastic modulus of the dry skeleton; wherein,
calculating the overall elastic modulus of the fluid saturated rock according to the elastic modulus of the solid matrix and the elastic modulus of the dry skeleton:
<math> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mi>K</mi> <mi>sat</mi> </msub> <mo>=</mo> <msub> <mover> <mi>K</mi> <mo>^</mo> </mover> <mi>dry</mi> </msub> <mo>+</mo> <mfrac> <msup> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mover> <mi>K</mi> <mo>^</mo> </mover> <mi>dry</mi> </msub> <mo>/</mo> <msub> <mover> <mi>K</mi> <mo>^</mo> </mover> <mi>mat</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mrow> <msub> <mi>&phi;</mi> <mi>con</mi> </msub> <mo>/</mo> <msubsup> <mi>K</mi> <mi>fl</mi> <mo>*</mo> </msubsup> <mo>+</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>&phi;</mi> <mi>com</mi> </msub> <mo>)</mo> </mrow> <mo>/</mo> <msub> <mover> <mi>K</mi> <mo>^</mo> </mover> <mi>mat</mi> </msub> <mo>-</mo> <msub> <mover> <mi>K</mi> <mo>^</mo> </mover> <mi>dry</mi> </msub> <mo>/</mo> <msubsup> <mover> <mi>K</mi> <mo>^</mo> </mover> <mi>mat</mi> <mn>2</mn> </msubsup> </mrow> </mfrac> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&mu;</mi> <mi>sat</mi> </msub> <mo>=</mo> <msub> <mover> <mi>&mu;</mi> <mo>^</mo> </mover> <mi>dry</mi> </msub> </mtd> </mtr> </mtable> </mfenced> </math>
wherein,
1 K fl * = 1 - S cw K hc + S cw K w
then according to the formula: rhosat=(1-φ)ρmin+φ(1-Swhc+φSwρwCalculating the density ρ of the fluid saturated rocksatWherein: rhominIs the average density, p, of the mineral particleshcAnd ρwThe densities of hydrocarbons and water, respectively.
The other physical quantity of the fluid saturated rock passes through the modulus of elasticity K of the solid matrixsatModulus of elasticity of dry skeletonsatAnd density ρ of the fluid saturated rocksatThese three parameters are obtained.
The seismic hydrocarbon detection method based on the multiple pore medium model is characterized in that the model parameters comprise: mineral particle parameters, fluid parameters, porosity parameters, pore structure parameters, saturation parameters; wherein the mineral particle parameters include: mean bulk modulus KminAverage shear modulus μminAverage density ρmin(ii) a The fluid parameters include: bulk modulus K of hydrocarbonshcDensity of hydrocarbons ρhcWater volume modulus KwWater density ρw
The seismic hydrocarbon detection method based on the multiple pore medium model is characterized in that the mineral particle parameters are obtained by calculation according to a Hill model.
The seismic hydrocarbon detection method based on the multi-pore medium model is characterized in that the fluid parameters are obtained by calculation according to a Flag program.
The seismic hydrocarbon detection method based on the multiple pore medium model is characterized in that the aspect ratio alpha and the scale factor x in the pore structure parameters are obtained according to a pore structure characterization technology; the communication coefficient xi is based on the longitudinal wave velocity VPThe relation with the saturation is estimated.
The embodiment of the invention also provides a seismic hydrocarbon detection device based on the multi-pore medium model, wherein the device comprises:
a data acquisition unit for acquiring a data set relating to subsurface reservoir rock and deriving reservoir information from the data set, the reservoir information comprising: reservoir environment and physical properties, petrophysical properties, and micro-pore structure information;
the template establishing unit is used for obtaining model parameters required by the multiple pore medium model according to the reservoir information and establishing a rock physical template of the fluid saturated rock based on the multiple pore medium model;
the data processing unit is used for extracting an angle gather after amplitude preservation processing is carried out on the seismic data, and obtaining prestack elastic parameters through prestack synchronous inversion of the angle gather;
the projection unit is used for projecting the prestack elastic parameters onto the rock physical template to form a plurality of projection data points and calculating the porosity and/or the saturation of the measured medium;
and the judging unit is used for judging the oil and gas distribution of the underground reservoir according to the porosity and/or the saturation of the measured medium so as to detect the hydrocarbons.
The seismic hydrocarbon detection device based on the multiple pore medium model is characterized in that the projection unit is specifically configured to search for a template grid point nearest to each projection data point, and further obtain the porosity and/or saturation of the corresponding detected medium.
The seismic hydrocarbon detection device based on the multiple pore medium models is characterized in that the template establishing unit is specifically configured to set scale values of porosity and saturation according to a porosity range and a saturation range, calculate any two physical quantities in the elastic parameters of the fluid saturated rock corresponding to the scale values of porosity and saturation in each group by using the multiple pore medium models, draw an intersection graph of any two physical quantities in the elastic parameters, and mark the scale values of porosity and saturation to form the petrophysical template.
The above seismic hydrocarbon detection device based on the multiple pore medium model, wherein the template establishing unit further includes: the calculation unit is used for obtaining three pore structure parameters and three saturation parameters; the three pore structure parameters are respectively: aspect ratio α, scale factor x, and connectivity coefficient ξ; the three saturation parameters are respectively: total water saturation SwWater saturation S of interconnected porescwAnd water saturation S of isolated poreiw(ii) a The relationship between the three saturation parameters is: sw=Scwξ+Siw(1-ξ);
The calculation unit is according to the formula: phi is aisoThe porosity of the solid matrix, phi, was calculated (1-xi)isoWherein φ is the total porosity of the rock; the solid matrix comprises: isolated pores and mineral particles;
the calculating unit is further according to the formula:
<math> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mover> <mi>K</mi> <mo>^</mo> </mover> <mi>max</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>&phi;</mi> <mi>iso</mi> </msub> <mo>)</mo> </mrow> <msub> <mi>K</mi> <mi>min</mi> </msub> <mo>+</mo> <msub> <mi>&phi;</mi> <mi>iso</mi> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>S</mi> <mi>iw</mi> </msub> <mo>)</mo> </mrow> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>x</mi> <mi>i</mi> </msub> <msub> <mi>K</mi> <mi>hc</mi> </msub> <msubsup> <mi>P</mi> <mi>i</mi> <mo>&prime;</mo> </msubsup> <mo>+</mo> <msub> <mi>&phi;</mi> <mi>iso</mi> </msub> <msub> <mi>S</mi> <mi>iw</mi> </msub> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>x</mi> <mi>i</mi> </msub> <msub> <mi>K</mi> <mi>w</mi> </msub> <msubsup> <mi>P</mi> <mi>i</mi> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msubsup> </mrow> <mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>&phi;</mi> <mi>iso</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>&phi;</mi> <mi>iso</mi> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>S</mi> <mi>iw</mi> </msub> <mo>)</mo> </mrow> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>x</mi> <mi>i</mi> </msub> <msubsup> <mi>P</mi> <mi>i</mi> <mo>&prime;</mo> </msubsup> <mo>+</mo> <msub> <mi>&phi;</mi> <mi>iso</mi> </msub> <msub> <mi>S</mi> <mi>iw</mi> </msub> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>x</mi> <mi>i</mi> </msub> <msubsup> <mi>P</mi> <mi>i</mi> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msubsup> </mrow> </mfrac> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mi>&mu;</mi> <mo>^</mo> </mover> <mi>mat</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>&phi;</mi> <mi>iso</mi> </msub> <mo>)</mo> </mrow> <msub> <mi>&mu;</mi> <mi>min</mi> </msub> </mrow> <mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>&phi;</mi> <mi>iso</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>&phi;</mi> <mi>iso</mi> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>S</mi> <mi>iw</mi> </msub> <mo>)</mo> </mrow> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>x</mi> <mi>i</mi> </msub> <msubsup> <mi>Q</mi> <mi>i</mi> <mo>&prime;</mo> </msubsup> <mo>+</mo> <msub> <mi>&phi;</mi> <mi>iso</mi> </msub> <msub> <mi>S</mi> <mi>iw</mi> </msub> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>x</mi> <mi>i</mi> </msub> <msubsup> <mi>Q</mi> <mi>i</mi> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msubsup> </mrow> </mfrac> </mtd> </mtr> </mtable> </mfenced> </math>
calculating the elastic modulus of the solid matrix, wherein: kminAnd muminRespectively the mean bulk modulus and the mean shear modulus of the mineral particles, KhcAnd KwBulk modulus for hydrocarbons and water, respectively, P and Q are geometric factors related to pore morphology;
the calculation unit further calculates, according to a formula: phi is aconCalculating the porosity phi of the dry skeletoncon(ii) a The dry skeleton comprises: isolated holes, intercommunicating pores and mineral particles;
the calculation unit is according to the formula:
<math> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mover> <mi>K</mi> <mo>^</mo> </mover> <mi>dry</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>&phi;</mi> <mo>)</mo> </mrow> <msub> <mi>K</mi> <mi>min</mi> </msub> <mo>+</mo> <msub> <mi>&phi;</mi> <mi>iso</mi> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>S</mi> <mi>iw</mi> </msub> <mo>)</mo> </mrow> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>x</mi> <mi>i</mi> </msub> <msub> <mi>K</mi> <mi>hc</mi> </msub> <msubsup> <mi>P</mi> <mi>i</mi> <mo>&prime;</mo> </msubsup> <mo>+</mo> <msub> <mi>&phi;</mi> <mi>iso</mi> </msub> <msub> <mi>S</mi> <mi>iw</mi> </msub> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>x</mi> <mi>i</mi> </msub> <msub> <mi>K</mi> <mi>w</mi> </msub> <msubsup> <mi>P</mi> <mi>i</mi> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msubsup> </mrow> <mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>&phi;</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>&phi;</mi> <mi>iso</mi> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>S</mi> <mi>iw</mi> </msub> <mo>)</mo> </mrow> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>x</mi> <mi>i</mi> </msub> <msubsup> <mi>P</mi> <mi>i</mi> <mo>&prime;</mo> </msubsup> <mo>+</mo> <msub> <mi>&phi;</mi> <mi>iso</mi> </msub> <msub> <mi>S</mi> <mi>iw</mi> </msub> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>x</mi> <mi>i</mi> </msub> <msubsup> <mi>P</mi> <mi>i</mi> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msubsup> <mo>+</mo> <msub> <mi>&phi;</mi> <mi>con</mi> </msub> <munderover> <mi>&Sigma;</mi> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>x</mi> <mi>k</mi> </msub> <msub> <mover> <mi>P</mi> <mo>~</mo> </mover> <mi>k</mi> </msub> </mrow> </mfrac> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mi>&mu;</mi> <mo>^</mo> </mover> <mi>dry</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>&phi;</mi> <mi>iso</mi> </msub> <mo>)</mo> </mrow> <msub> <mi>&mu;</mi> <mi>min</mi> </msub> </mrow> <mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>&phi;</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>&phi;</mi> <mi>iso</mi> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>S</mi> <mi>iw</mi> </msub> <mo>)</mo> </mrow> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>x</mi> <mi>i</mi> </msub> <msubsup> <mi>Q</mi> <mi>i</mi> <mo>&prime;</mo> </msubsup> <mo>+</mo> <msub> <mi>&phi;</mi> <mi>iso</mi> </msub> <msub> <mi>S</mi> <mi>iw</mi> </msub> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>x</mi> <mi>i</mi> </msub> <msubsup> <mi>Q</mi> <mi>i</mi> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msubsup> <mo>+</mo> <msub> <mi>&phi;</mi> <mi>con</mi> </msub> <munderover> <mi>&Sigma;</mi> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>x</mi> <mi>k</mi> </msub> <msub> <mover> <mi>Q</mi> <mo>~</mo> </mover> <mi>k</mi> </msub> </mrow> </mfrac> </mtd> </mtr> </mtable> </mfenced> </math>
calculating the elastic modulus of the dry skeleton;
the calculation unit further calculates the overall elastic modulus of the fluid saturated rock according to the elastic modulus of the solid matrix and the elastic modulus of the dry skeleton:
<math> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mi>K</mi> <mi>sat</mi> </msub> <mo>=</mo> <msub> <mover> <mi>K</mi> <mo>^</mo> </mover> <mi>dry</mi> </msub> <mo>+</mo> <mfrac> <msup> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mover> <mi>K</mi> <mo>^</mo> </mover> <mi>dry</mi> </msub> <mo>/</mo> <msub> <mover> <mi>K</mi> <mo>^</mo> </mover> <mi>mat</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mrow> <msub> <mi>&phi;</mi> <mi>con</mi> </msub> <mo>/</mo> <msubsup> <mi>K</mi> <mi>fl</mi> <mo>*</mo> </msubsup> <mo>+</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>&phi;</mi> <mi>com</mi> </msub> <mo>)</mo> </mrow> <mo>/</mo> <msub> <mover> <mi>K</mi> <mo>^</mo> </mover> <mi>mat</mi> </msub> <mo>-</mo> <msub> <mover> <mi>K</mi> <mo>^</mo> </mover> <mi>dry</mi> </msub> <mo>/</mo> <msubsup> <mover> <mi>K</mi> <mo>^</mo> </mover> <mi>mat</mi> <mn>2</mn> </msubsup> </mrow> </mfrac> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&mu;</mi> <mi>sat</mi> </msub> <mo>=</mo> <msub> <mover> <mi>&mu;</mi> <mo>^</mo> </mover> <mi>dry</mi> </msub> </mtd> </mtr> </mtable> </mfenced> </math>
wherein,
1 K fl * = 1 - S cw K hc + S cw K w
the calculating unit is further according to the formula: rhosat=(1-φ)ρmin+φ(1-Swhc+φSwρwCalculating the density ρ of the fluid saturated rocksatWherein: rhominIs the average density, p, of the mineral particleshcAnd ρwThe densities of hydrocarbons and water, respectively.
The other physical quantity of the fluid saturated rock passes through the modulus of elasticity K of the solid matrixsatModulus of elasticity of dry skeletonsatAnd density ρ of the fluid saturated rocksatThese three parameters are obtained.
Compared with the prior art, the invention has the following beneficial effects: the proposed multi-pore medium model embodies the influence of a complex pore structure and the inhomogeneous distribution of the microfluid on the elastic characteristics of the rock, and is more suitable for describing unconventional reservoirs, particularly tight reservoirs, so that the inversion result based on the model is more reliable. The multi-pore medium model is combined with a rock physical template technology, the pre-stack seismic attribute is converted into porosity and saturation parameters which can invert the oil-gas-containing property of the reservoir by adopting a template mapping method, the oil-gas distribution of the unconventional reservoir is directly predicted, and the multi-solution property of hydrocarbon detection is effectively reduced. The template mapping method has high calculation efficiency and is more suitable for industrial application.
Drawings
The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this application, illustrate embodiment(s) of the invention and together with the description serve to explain the principles of the invention. In the drawings:
FIG. 1 is a flow chart of a method for seismic hydrocarbon detection based on a multiple pore media model according to an embodiment of the present invention;
FIG. 2 is a schematic structural diagram of a seismic hydrocarbon detection device based on a multiple pore medium model according to an embodiment of the present invention;
fig. 3 is a schematic view of a nano CT scan of a micro-pore structure of tight sandstone according to an embodiment of the present invention;
FIG. 4 is a schematic representation of the analysis of microscopic pore structure parameters based on experimental data provided in accordance with an embodiment of the present invention;
FIG. 5 shows a Z-ray model based on a multi-pore medium model according to an embodiment of the present inventionP-VP/VSA template;
FIG. 6 shows the longitudinal wave impedance Z obtained by pre-stack synchronous inversion of a diagonal gather according to an embodiment of the present inventionPAnd velocity ratio V of longitudinal and transverse wavesP/VSA schematic cross-sectional view of;
FIG. 7 shows a pre-stack elastic parameter at Z according to an embodiment of the present inventionP-VP/VSProjection on the template;
FIG. 8 is a schematic cross-sectional view of seismic hydrocarbon testing provided by an embodiment of the invention.
Detailed Description
In order to make the objects, technical solutions and advantages of the present invention more apparent, embodiments of the present invention are described in further detail below with reference to the accompanying drawings. The exemplary embodiments and descriptions of the present invention are provided to explain the present invention, but not to limit the present invention.
Fig. 1 is a flowchart of a method for detecting seismic hydrocarbons based on a multiple pore medium model according to an embodiment of the present invention, where the method specifically includes:
step 101, obtaining a data set related to underground reservoir rock, and obtaining reservoir information from the data set, wherein the reservoir information comprises: reservoir environment and physical properties, petrophysical properties, and micro-pore structure information; preferably, the data set includes: geological reports, cuttings records, core data, well logs, and the like. Where the data set is available from existing data relating to existing subsurface reservoir rock, the present invention extracts relevant reservoir information in the data set and uses it to create a petrophysical template of fluid saturated rock.
102, obtaining model parameters required by a multiple pore medium model according to the reservoir information, and establishing a rock physical template of the fluid saturated rock based on the multiple pore medium model; specifically, the step is to establish a petrophysical template of the rock according to the model parameters, wherein the model parameters required by the multiple pore medium model can be calculated or estimated from reservoir information.
103, extracting an angle gather after amplitude preservation processing is carried out on the seismic data, and carrying out synchronous inversion on the angle gather before stacking to obtain elastic parameters before stacking; specifically, the known seismic data obtained can be subjected to amplitude preservation processing by adopting a method in the prior art, so as to obtain an angle gather, and the angle gather is subjected to the prior pre-stack inversion technology to obtain the pre-stack elastic parameters.
Step 104, projecting the prestack elastic parameters to the rock physical template to form a plurality of projection data points, and calculating the porosity and/or saturation of the measured medium;
and 105, judging the oil-gas distribution of the underground reservoir according to the porosity and/or the saturation of the measured medium so as to detect the hydrocarbons. Specifically, when the underground reservoir oil gas distribution is judged, the porosity or the saturation of a measured medium can be observed, so that the underground reservoir oil gas distribution is obtained; preferably, in order to reduce the multi-solution simply judged by the porosity or the saturation of the measured medium, the judgment can be carried out by multiplying the porosity by the saturation to obtain the gas content, so that the obtained reservoir oil gas distribution result is more accurate.
The multi-pore medium model provided by the embodiment of the invention reflects the influence of a complex pore structure and the inhomogeneous distribution of micro-fluid on the elastic characteristics of rock, and is more suitable for describing unconventional reservoirs, particularly tight reservoirs, so that the inversion result based on the model is more reliable. The multi-pore medium model is combined with a rock physical template technology, the prestack seismic attribute is converted into porosity and saturation parameters which can reflect the oil-gas-containing property of a reservoir by adopting a template mapping method, the oil-gas distribution of an unconventional reservoir is directly predicted, and the multi-solution property of hydrocarbon detection is effectively reduced. The template mapping method has high calculation efficiency and is more suitable for industrial application.
In the method for detecting seismic hydrocarbons based on the multiple pore medium model provided by the embodiment of the invention, preferably, the model parameters required by the multiple pore medium model include: mineral particle parameters, fluid parameters, porosity parameters, pore structure parameters, saturation parameters; wherein the mineral particle parameters include: mean bulk modulus KminAverage shear modulus μminAverage density ρmin(ii) a The fluid parameters include: bulk modulus K of hydrocarbonshcDensity of hydrocarbons ρhcWater volume modulus KwWater density ρw. The parameters can be obtained by calculation or estimation; specifically, according to different types of media, a calculation method is adopted for parameters obtained through convenient calculation, and an estimation method is adopted for parameters which are difficult to obtain through calculation, and the specific calculation or estimation method can adopt the prior art in the field.
Preferably, the mineral particle parameters are calculated according to a Hill model; in another preferred embodiment, the fluid parameters are calculated according to a Flag program. Specifically, the Hill model and Flag program (UH & CSM, Fluid/DHI association) are common prior art in the field and will not be described herein.
According to the seismic hydrocarbon detection method based on the multiple pore medium model, provided by the embodiment of the invention, preferably, the rock physical template is a combination of any two physical quantities in the elastic parameters; the elasticity parameters comprise at least the following physical quantities: velocity V of longitudinal wavePTransverse wave velocity VSLongitudinal wave impedance ZPTransverse wave impedance ZSElastic impedance EI, converted wave elastic impedance PSEI, velocity ratio V of longitudinal wave and transverse waveP/VSPoisson's ratio v, bulk modulus K, shear modulus μ, young's modulus E, longitudinal wave modulus P, and lame constant λ. In particular, it is generally considered that fluid saturated rocks are isotropic, and only any two physical quantities in the elastic parameters are independent, such as the longitudinal wave velocity VPVelocity V of transverse waveSOr the bulk modulus K and the shear modulus μ, and the other physical quantities in the elastic parameter can be converted by any other two physical quantities in the elastic parameter.
In the method for detecting seismic hydrocarbons based on the multiple pore medium model according to the embodiment of the present invention, preferably, the establishing a rock physical template of the fluid saturated rock based on the multiple pore medium model includes: setting scale values of porosity and saturation according to the porosity range and the saturation range, calculating any two physical quantities in the elastic parameters of the fluid saturated rock corresponding to the scale values of the porosity and the saturation by using the multiple pore medium model, drawing an intersection graph of any two physical quantities in the elastic parameters, and marking the scale values of the porosity and the saturation to form the rock physical template.
In the method for detecting seismic hydrocarbons based on the multiple pore medium model provided by the embodiment of the present invention, preferably, the calculating the porosity and/or saturation of the detected medium includes: and searching the template grid point closest to each projection data point to further obtain the porosity and/or saturation of the corresponding measured medium. Specifically, the obtained values of the plurality of pre-stack elastic parameters are subjected to one-to-one projection alignment according to the contents of horizontal and vertical coordinates and scales on the rock physical template, so as to form a plurality of projection data points, and the scale values of the porosity and the saturation of the closest template grid point corresponding to the projection data points are the values of each porosity and saturation of the measured medium.
In the seismic hydrocarbon detection method based on the multiple pore medium model provided by the embodiment of the invention, the reservoir environment and physical properties preferably include: temperature, loading pressure, pore pressure, horizons, lithology, mineral composition, mineral content, porosity range, saturation range, pore fluid type.
In the seismic hydrocarbon detection method based on the multiple pore medium model provided by the embodiment of the invention, preferably, the rock physical properties include: ultrasonic measured longitudinal wave velocity VPTransverse wave velocity VSAnd the corresponding relation between the rock porosity and the rock saturation. I.e. the longitudinal wave velocity V of the physical quantity in the elastic parameterPTransverse wave velocity VSAnd the corresponding relation between the rock porosity and the rock saturation.
In the method for detecting seismic hydrocarbons based on the multiple pore medium model according to the embodiment of the present invention, preferably, the calculating, by using the multiple pore medium model, the elastic parameter of the fluid saturated rock corresponding to each group of scale values of porosity and saturation specifically includes:
obtaining three pore structure parameters and three saturation parameters; preferably, it is assumed that: 1. the rock pore space consists of isolated holes and communicating holes; 2. later-migrating hydrocarbons preferentially fill the interconnected pores. The three pore structure parameters obtained according to the above assumptions are: aspect ratio α, scale factor x, and connectivity coefficient ξ; the three saturation parameters are respectively: total water saturation SwWater saturation S of interconnected porescwAndwater saturation of isolated pore Siw
The relationship between three of the saturation parameters is then: sw=Scwξ+Siw(1-ξ);
According to the formula: phi is aisoThe porosity of the solid matrix, phi, was calculated (1-xi)isoWherein φ is the total porosity of the rock; the solid matrix comprises: isolated pores and mineral particles;
then according to the formula:
<math> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mover> <mi>K</mi> <mo>^</mo> </mover> <mi>max</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>&phi;</mi> <mi>iso</mi> </msub> <mo>)</mo> </mrow> <msub> <mi>K</mi> <mi>min</mi> </msub> <mo>+</mo> <msub> <mi>&phi;</mi> <mi>iso</mi> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>S</mi> <mi>iw</mi> </msub> <mo>)</mo> </mrow> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>x</mi> <mi>i</mi> </msub> <msub> <mi>K</mi> <mi>hc</mi> </msub> <msubsup> <mi>P</mi> <mi>i</mi> <mo>&prime;</mo> </msubsup> <mo>+</mo> <msub> <mi>&phi;</mi> <mi>iso</mi> </msub> <msub> <mi>S</mi> <mi>iw</mi> </msub> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>x</mi> <mi>i</mi> </msub> <msub> <mi>K</mi> <mi>w</mi> </msub> <msubsup> <mi>P</mi> <mi>i</mi> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msubsup> </mrow> <mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>&phi;</mi> <mi>iso</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>&phi;</mi> <mi>iso</mi> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>S</mi> <mi>iw</mi> </msub> <mo>)</mo> </mrow> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>x</mi> <mi>i</mi> </msub> <msubsup> <mi>P</mi> <mi>i</mi> <mo>&prime;</mo> </msubsup> <mo>+</mo> <msub> <mi>&phi;</mi> <mi>iso</mi> </msub> <msub> <mi>S</mi> <mi>iw</mi> </msub> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>x</mi> <mi>i</mi> </msub> <msubsup> <mi>P</mi> <mi>i</mi> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msubsup> </mrow> </mfrac> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mi>&mu;</mi> <mo>^</mo> </mover> <mi>mat</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>&phi;</mi> <mi>iso</mi> </msub> <mo>)</mo> </mrow> <msub> <mi>&mu;</mi> <mi>min</mi> </msub> </mrow> <mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>&phi;</mi> <mi>iso</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>&phi;</mi> <mi>iso</mi> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>S</mi> <mi>iw</mi> </msub> <mo>)</mo> </mrow> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>x</mi> <mi>i</mi> </msub> <msubsup> <mi>Q</mi> <mi>i</mi> <mo>&prime;</mo> </msubsup> <mo>+</mo> <msub> <mi>&phi;</mi> <mi>iso</mi> </msub> <msub> <mi>S</mi> <mi>iw</mi> </msub> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>x</mi> <mi>i</mi> </msub> <msubsup> <mi>Q</mi> <mi>i</mi> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msubsup> </mrow> </mfrac> </mtd> </mtr> </mtable> </mfenced> </math>
calculating the elastic modulus of the solid matrix, wherein: kminAnd muminRespectively the mean bulk modulus and the mean shear modulus of the mineral particles, KhcAnd KwBodies of hydrocarbons and water respectivelyBulk modulus, P and Q are geometric factors related to pore morphology; the values of P and Q are related to the pore morphology, which can be obtained by the prior art and are not calculated here.
According to the formula: phi is aconCalculating the porosity phi of the dry skeletoncon(ii) a The dry skeleton comprises: isolated holes, intercommunicating pores and mineral particles;
then according to the formula:
<math> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mover> <mi>K</mi> <mo>^</mo> </mover> <mi>dry</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>&phi;</mi> <mo>)</mo> </mrow> <msub> <mi>K</mi> <mi>min</mi> </msub> <mo>+</mo> <msub> <mi>&phi;</mi> <mi>iso</mi> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>S</mi> <mi>iw</mi> </msub> <mo>)</mo> </mrow> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>x</mi> <mi>i</mi> </msub> <msub> <mi>K</mi> <mi>hc</mi> </msub> <msubsup> <mi>P</mi> <mi>i</mi> <mo>&prime;</mo> </msubsup> <mo>+</mo> <msub> <mi>&phi;</mi> <mi>iso</mi> </msub> <msub> <mi>S</mi> <mi>iw</mi> </msub> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>x</mi> <mi>i</mi> </msub> <msub> <mi>K</mi> <mi>w</mi> </msub> <msubsup> <mi>P</mi> <mi>i</mi> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msubsup> </mrow> <mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>&phi;</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>&phi;</mi> <mi>iso</mi> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>S</mi> <mi>iw</mi> </msub> <mo>)</mo> </mrow> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>x</mi> <mi>i</mi> </msub> <msubsup> <mi>P</mi> <mi>i</mi> <mo>&prime;</mo> </msubsup> <mo>+</mo> <msub> <mi>&phi;</mi> <mi>iso</mi> </msub> <msub> <mi>S</mi> <mi>iw</mi> </msub> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>x</mi> <mi>i</mi> </msub> <msubsup> <mi>P</mi> <mi>i</mi> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msubsup> <mo>+</mo> <msub> <mi>&phi;</mi> <mi>con</mi> </msub> <munderover> <mi>&Sigma;</mi> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>x</mi> <mi>k</mi> </msub> <msub> <mover> <mi>P</mi> <mo>~</mo> </mover> <mi>k</mi> </msub> </mrow> </mfrac> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mi>&mu;</mi> <mo>^</mo> </mover> <mi>dry</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>&phi;</mi> <mi>iso</mi> </msub> <mo>)</mo> </mrow> <msub> <mi>&mu;</mi> <mi>min</mi> </msub> </mrow> <mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>&phi;</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>&phi;</mi> <mi>iso</mi> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>S</mi> <mi>iw</mi> </msub> <mo>)</mo> </mrow> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>x</mi> <mi>i</mi> </msub> <msubsup> <mi>Q</mi> <mi>i</mi> <mo>&prime;</mo> </msubsup> <mo>+</mo> <msub> <mi>&phi;</mi> <mi>iso</mi> </msub> <msub> <mi>S</mi> <mi>iw</mi> </msub> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>x</mi> <mi>i</mi> </msub> <msubsup> <mi>Q</mi> <mi>i</mi> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msubsup> <mo>+</mo> <msub> <mi>&phi;</mi> <mi>con</mi> </msub> <munderover> <mi>&Sigma;</mi> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>x</mi> <mi>k</mi> </msub> <msub> <mover> <mi>Q</mi> <mo>~</mo> </mover> <mi>k</mi> </msub> </mrow> </mfrac> </mtd> </mtr> </mtable> </mfenced> </math>
calculating the elastic modulus of the dry skeleton; wherein,
calculating the overall elastic modulus of the fluid saturated rock from the elastic modulus of the solid matrix and the elastic modulus of the dry skeleton using the Gassmann equation:
<math> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mi>K</mi> <mi>sat</mi> </msub> <mo>=</mo> <msub> <mover> <mi>K</mi> <mo>^</mo> </mover> <mi>dry</mi> </msub> <mo>+</mo> <mfrac> <msup> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mover> <mi>K</mi> <mo>^</mo> </mover> <mi>dry</mi> </msub> <mo>/</mo> <msub> <mover> <mi>K</mi> <mo>^</mo> </mover> <mi>mat</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mrow> <msub> <mi>&phi;</mi> <mi>con</mi> </msub> <mo>/</mo> <msubsup> <mi>K</mi> <mi>fl</mi> <mo>*</mo> </msubsup> <mo>+</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>&phi;</mi> <mi>com</mi> </msub> <mo>)</mo> </mrow> <mo>/</mo> <msub> <mover> <mi>K</mi> <mo>^</mo> </mover> <mi>mat</mi> </msub> <mo>-</mo> <msub> <mover> <mi>K</mi> <mo>^</mo> </mover> <mi>dry</mi> </msub> <mo>/</mo> <msubsup> <mover> <mi>K</mi> <mo>^</mo> </mover> <mi>mat</mi> <mn>2</mn> </msubsup> </mrow> </mfrac> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&mu;</mi> <mi>sat</mi> </msub> <mo>=</mo> <msub> <mover> <mi>&mu;</mi> <mo>^</mo> </mover> <mi>dry</mi> </msub> </mtd> </mtr> </mtable> </mfenced> </math>
wherein,
1 K fl * = 1 - S cw K hc + S cw K w
then according to the formula: rhosat=(1-φ)ρmin+φ(1-Swhc+φSwρwCalculating a density of the fluid saturated rock, wherein: rhominIs the average density, p, of the mineral particleshcAnd ρwThe densities of hydrocarbons and water, respectively.
The other physical quantity of the fluid saturated rock passes through the modulus of elasticity K of the solid matrixsatModulus of elasticity of dry skeletonsatAnd density ρ of the fluid saturated rocksatThese three parameters are obtained, for example <math> <mrow> <msub> <mi>V</mi> <mi>P</mi> </msub> <mo>/</mo> <msub> <mi>V</mi> <mi>s</mi> </msub> <mo>=</mo> <msqrt> <msub> <mi>K</mi> <mi>sat</mi> </msub> <mo>/</mo> <msub> <mi>&mu;</mi> <mi>sat</mi> </msub> <mo>+</mo> <mn>4</mn> <mo>/</mo> <mn>3</mn> </msqrt> <mo>.</mo> </mrow> </math>
In the seismic hydrocarbon detection method based on the multiple pore medium model provided by the embodiment of the invention, preferably, the aspect ratio alpha and the scale factor x in the pore structure parameters are obtained according to a pore structure characterization technology, namely, a nano-level fine phenomenon is observed accurately; the connectivity coefficient xi is based on the longitudinal wave velocity VPThe relation between the saturation and the estimated value is estimated, and the specific estimation method can adopt the method in the prior art.
The rock physical template for establishing the fluid saturated rock by adopting the multi-pore medium model provided by the embodiment of the invention reflects the influence of a complex pore structure and the uneven distribution of the micro fluid on the elastic characteristics of the rock, and is more suitable for describing an unconventional reservoir, particularly a compact reservoir, so that the inversion result based on the model is more reliable. The multi-pore medium model is combined with a rock physical template technology, the pre-stack seismic attribute is converted into porosity and saturation parameters which can invert the oil-gas-containing property of the reservoir by adopting a template mapping method, the oil-gas distribution of the unconventional reservoir is directly predicted, and the multi-solution property of hydrocarbon detection is effectively reduced. The template mapping method has high calculation efficiency and is more suitable for industrial application.
The embodiment of the invention also provides a seismic hydrocarbon detection device based on a multiple pore medium model, wherein as shown in fig. 2, the device comprises:
a data obtaining unit 201, configured to obtain a data set related to a subsurface reservoir rock, and obtain reservoir information from the data set, where the reservoir information includes: reservoir environment and physical properties, petrophysical properties, and micro-pore structure information; where the data set is available from existing data relating to existing subsurface reservoir rock, the present invention extracts relevant reservoir information in the data set and uses it to create a petrophysical template of fluid saturated rock.
The template establishing unit 202 is used for obtaining model parameters required by a multiple pore medium model according to the reservoir information and establishing a rock physical template of the fluid saturated rock based on the multiple pore medium model; specifically, the step is to establish a petrophysical template of the rock according to the model parameters, wherein the model parameters required by the multiple pore medium model can be calculated or estimated from reservoir information.
The data processing unit 203 is used for extracting an angle gather after amplitude preservation processing is carried out on the seismic data, and obtaining prestack elastic parameters through prestack synchronous inversion of the angle gather; specifically, the known seismic data obtained can be subjected to amplitude preservation processing by adopting a method in the prior art, so as to obtain an angle gather, and the angle gather is subjected to the prior pre-stack inversion technology to obtain the pre-stack elastic parameters.
The projection unit 204 is configured to project the prestack elastic parameters onto the rock physical template to form a plurality of projection data points, and calculate the porosity and/or saturation of the measured medium;
and the judging unit 205 is used for judging the oil and gas distribution of the underground reservoir according to the porosity and/or the saturation of the measured medium so as to detect the hydrocarbons. Specifically, when the underground reservoir oil gas distribution is judged, the porosity or the saturation of a measured medium can be observed, so that the underground reservoir oil gas distribution is obtained; preferably, in order to reduce the multi-solution simply judged by the porosity or the saturation of the measured medium, the judgment can be carried out by multiplying the porosity by the saturation to obtain the gas content, so that the obtained reservoir oil gas distribution result is more accurate.
In the seismic hydrocarbon detection device based on the multiple pore medium model provided by the invention, in a preferred embodiment, model parameters required by the multiple pore medium model comprise: mineral particle parameters, fluid parameters, porosity parameters, pore structure parameters, saturation parameters; wherein the mineral particle parameters include: mean bulk modulus KminAverage shear modulus μminAverage density ρmin(ii) a The fluid parameters include: bulk modulus K of hydrocarbonshcDensity of hydrocarbons ρhcWater volume modulus KwWater density ρw. The parameters can be obtained by calculation or estimation; specifically, according to different types of media, a calculation method is adopted for parameters obtained through convenient calculation, and an estimation method is adopted for parameters which are difficult to obtain through calculation, and the specific calculation or estimation method can adopt the prior art in the field.
In a preferred embodiment, the mineral particle parameters are calculated according to a Hill model; in another preferred embodiment, the fluid parameters are calculated according to a Flag program. Specifically, the Hill model and Flag program are commonly used in the art, and are not described herein.
In the seismic hydrocarbon detection device based on the multiple pore medium model, in a preferred embodiment, the rock physical template is a combination of any two physical quantities in the elastic parameters; the elasticity parameters comprise at least the following physical quantities: velocity V of longitudinal wavePTransverse wave velocity VSLongitudinal wave impedance ZPTransverse wave impedance ZSElastic impedance EI, converted wave elastic impedance PSEI, velocity ratio V of longitudinal wave and transverse waveP/VSPoisson's ratio v, bulk modulus K, shear modulus μ, young's modulus E, longitudinal wave modulus P, and lame constant λ. In particular, it is generally considered that fluid saturated rocks are isotropic, and only any two physical quantities in the elastic parameters are independent, such as the longitudinal wave velocity VPVelocity V of transverse waveSOr the bulk modulus K and the shear modulus μ, and the other physical quantities in the elastic parameter can be converted by any other two physical quantities in the elastic parameter.
In the seismic hydrocarbon detection device based on the multiple pore medium model provided by the embodiment of the invention, preferably, the projection unit is specifically configured to search a template grid point nearest to each projection data point, so as to obtain the porosity and/or saturation of the corresponding detected medium. Specifically, the obtained values of the plurality of pre-stack elastic parameters are subjected to one-to-one projection alignment according to the contents of horizontal and vertical coordinates and scales on the rock physical template, so as to form a plurality of projection data points, and the scale values of the porosity and the saturation of the closest template grid point corresponding to the projection data points are the values of each porosity and saturation of the measured medium.
In the seismic hydrocarbon detection device based on the multiple pore medium model provided by the embodiment of the invention, preferably, the template establishing unit is specifically configured to set scale values of porosity and saturation according to a porosity range and a saturation range, calculate any two physical quantities in elastic parameters of the fluid saturated rock corresponding to each set of scale values of porosity and saturation by using the multiple pore medium model, draw an intersection graph of any two physical quantities in the elastic parameters, and mark the scale values of porosity and saturation to form the rock physical template.
In a preferred embodiment of the seismic hydrocarbon detection device based on the multiple pore medium model of the present invention, the reservoir environment and physical properties include: temperature, loading pressure, pore pressure, horizons, lithology, mineral composition, mineral content, porosity range, saturation range, pore fluid type.
In the seismic hydrocarbon detection device based on the multiple pore medium model, in a preferred embodiment, the petrophysical properties include: ultrasonic measured longitudinal wave velocity VPTransverse wave velocity VSAnd the corresponding relation between the rock porosity and the rock saturation. I.e. the longitudinal wave velocity V of the physical quantity in the elastic parameterPTransverse wave velocity VSAnd the corresponding relation between the rock porosity and the rock saturation.
In the earthquake hydrocarbon detection device based on the multiple pore medium model provided by the embodiment of the present invention, preferably, the template establishing unit further includes: the calculation unit is used for obtaining three pore structure parameters and three saturation parameters; the three pore structure parameters are respectively: aspect ratio α, scale factor x, and connectivity coefficient ξ; the three saturation parameters are respectively: total water saturation SwWater saturation S of interconnected porescwAnd water saturation S of isolated poreiw(ii) a The relationship between the three saturation parameters is: sw=Scwξ+Siw(1-ξ);
Preferably, the calculating unit is configured to: phi is aisoThe porosity of the solid matrix, phi, was calculated (1-xi)isoWherein φ is the total porosity of the rock; the solid matrix comprises: isolated pores and mineral particles;
the calculating unit is further according to the formula:
<math> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mover> <mi>K</mi> <mo>^</mo> </mover> <mi>max</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>&phi;</mi> <mi>iso</mi> </msub> <mo>)</mo> </mrow> <msub> <mi>K</mi> <mi>min</mi> </msub> <mo>+</mo> <msub> <mi>&phi;</mi> <mi>iso</mi> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>S</mi> <mi>iw</mi> </msub> <mo>)</mo> </mrow> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>x</mi> <mi>i</mi> </msub> <msub> <mi>K</mi> <mi>hc</mi> </msub> <msubsup> <mi>P</mi> <mi>i</mi> <mo>&prime;</mo> </msubsup> <mo>+</mo> <msub> <mi>&phi;</mi> <mi>iso</mi> </msub> <msub> <mi>S</mi> <mi>iw</mi> </msub> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>x</mi> <mi>i</mi> </msub> <msub> <mi>K</mi> <mi>w</mi> </msub> <msubsup> <mi>P</mi> <mi>i</mi> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msubsup> </mrow> <mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>&phi;</mi> <mi>iso</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>&phi;</mi> <mi>iso</mi> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>S</mi> <mi>iw</mi> </msub> <mo>)</mo> </mrow> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>x</mi> <mi>i</mi> </msub> <msubsup> <mi>P</mi> <mi>i</mi> <mo>&prime;</mo> </msubsup> <mo>+</mo> <msub> <mi>&phi;</mi> <mi>iso</mi> </msub> <msub> <mi>S</mi> <mi>iw</mi> </msub> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>x</mi> <mi>i</mi> </msub> <msubsup> <mi>P</mi> <mi>i</mi> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msubsup> </mrow> </mfrac> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mi>&mu;</mi> <mo>^</mo> </mover> <mi>mat</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>&phi;</mi> <mi>iso</mi> </msub> <mo>)</mo> </mrow> <msub> <mi>&mu;</mi> <mi>min</mi> </msub> </mrow> <mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>&phi;</mi> <mi>iso</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>&phi;</mi> <mi>iso</mi> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>S</mi> <mi>iw</mi> </msub> <mo>)</mo> </mrow> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>x</mi> <mi>i</mi> </msub> <msubsup> <mi>Q</mi> <mi>i</mi> <mo>&prime;</mo> </msubsup> <mo>+</mo> <msub> <mi>&phi;</mi> <mi>iso</mi> </msub> <msub> <mi>S</mi> <mi>iw</mi> </msub> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>x</mi> <mi>i</mi> </msub> <msubsup> <mi>Q</mi> <mi>i</mi> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msubsup> </mrow> </mfrac> </mtd> </mtr> </mtable> </mfenced> </math>
calculating the elastic modulus of the solid matrix, wherein: kminAnd muminRespectively the mean bulk modulus and the mean shear modulus of the mineral particles, KhcAnd KwBulk modulus for hydrocarbons and water, respectively, P and Q are geometric factors related to pore morphology; the values of P and Q are related to the pore morphology, which can be obtained by the prior art and are not calculated here.
The calculation unit further calculates, according to a formula: phi is aconCalculating the porosity phi of the dry skeletoncon(ii) a The dry skeleton comprises: isolated holes, intercommunicating pores and mineral particles;
the calculation unit is according to the formula:
<math> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mover> <mi>K</mi> <mo>^</mo> </mover> <mi>dry</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>&phi;</mi> <mo>)</mo> </mrow> <msub> <mi>K</mi> <mi>min</mi> </msub> <mo>+</mo> <msub> <mi>&phi;</mi> <mi>iso</mi> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>S</mi> <mi>iw</mi> </msub> <mo>)</mo> </mrow> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>x</mi> <mi>i</mi> </msub> <msub> <mi>K</mi> <mi>hc</mi> </msub> <msubsup> <mi>P</mi> <mi>i</mi> <mo>&prime;</mo> </msubsup> <mo>+</mo> <msub> <mi>&phi;</mi> <mi>iso</mi> </msub> <msub> <mi>S</mi> <mi>iw</mi> </msub> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>x</mi> <mi>i</mi> </msub> <msub> <mi>K</mi> <mi>w</mi> </msub> <msubsup> <mi>P</mi> <mi>i</mi> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msubsup> </mrow> <mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>&phi;</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>&phi;</mi> <mi>iso</mi> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>S</mi> <mi>iw</mi> </msub> <mo>)</mo> </mrow> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>x</mi> <mi>i</mi> </msub> <msubsup> <mi>P</mi> <mi>i</mi> <mo>&prime;</mo> </msubsup> <mo>+</mo> <msub> <mi>&phi;</mi> <mi>iso</mi> </msub> <msub> <mi>S</mi> <mi>iw</mi> </msub> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>x</mi> <mi>i</mi> </msub> <msubsup> <mi>P</mi> <mi>i</mi> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msubsup> <mo>+</mo> <msub> <mi>&phi;</mi> <mi>con</mi> </msub> <munderover> <mi>&Sigma;</mi> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>x</mi> <mi>k</mi> </msub> <msub> <mover> <mi>P</mi> <mo>~</mo> </mover> <mi>k</mi> </msub> </mrow> </mfrac> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mi>&mu;</mi> <mo>^</mo> </mover> <mi>dry</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>&phi;</mi> <mi>iso</mi> </msub> <mo>)</mo> </mrow> <msub> <mi>&mu;</mi> <mi>min</mi> </msub> </mrow> <mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>&phi;</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>&phi;</mi> <mi>iso</mi> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>S</mi> <mi>iw</mi> </msub> <mo>)</mo> </mrow> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>x</mi> <mi>i</mi> </msub> <msubsup> <mi>Q</mi> <mi>i</mi> <mo>&prime;</mo> </msubsup> <mo>+</mo> <msub> <mi>&phi;</mi> <mi>iso</mi> </msub> <msub> <mi>S</mi> <mi>iw</mi> </msub> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>x</mi> <mi>i</mi> </msub> <msubsup> <mi>Q</mi> <mi>i</mi> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msubsup> <mo>+</mo> <msub> <mi>&phi;</mi> <mi>con</mi> </msub> <munderover> <mi>&Sigma;</mi> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>x</mi> <mi>k</mi> </msub> <msub> <mover> <mi>Q</mi> <mo>~</mo> </mover> <mi>k</mi> </msub> </mrow> </mfrac> </mtd> </mtr> </mtable> </mfenced> </math>
calculating the elastic modulus of the dry skeleton;
the calculation unit further calculates the overall elastic modulus of the fluid saturated rock using the Gassmann equation according to the elastic modulus of the solid matrix and the elastic modulus of the dry skeleton:
<math> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mi>K</mi> <mi>sat</mi> </msub> <mo>=</mo> <msub> <mover> <mi>K</mi> <mo>^</mo> </mover> <mi>dry</mi> </msub> <mo>+</mo> <mfrac> <msup> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mover> <mi>K</mi> <mo>^</mo> </mover> <mi>dry</mi> </msub> <mo>/</mo> <msub> <mover> <mi>K</mi> <mo>^</mo> </mover> <mi>mat</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mrow> <msub> <mi>&phi;</mi> <mi>con</mi> </msub> <mo>/</mo> <msubsup> <mi>K</mi> <mi>fl</mi> <mo>*</mo> </msubsup> <mo>+</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>&phi;</mi> <mi>com</mi> </msub> <mo>)</mo> </mrow> <mo>/</mo> <msub> <mover> <mi>K</mi> <mo>^</mo> </mover> <mi>mat</mi> </msub> <mo>-</mo> <msub> <mover> <mi>K</mi> <mo>^</mo> </mover> <mi>dry</mi> </msub> <mo>/</mo> <msubsup> <mover> <mi>K</mi> <mo>^</mo> </mover> <mi>mat</mi> <mn>2</mn> </msubsup> </mrow> </mfrac> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&mu;</mi> <mi>sat</mi> </msub> <mo>=</mo> <msub> <mover> <mi>&mu;</mi> <mo>^</mo> </mover> <mi>dry</mi> </msub> </mtd> </mtr> </mtable> </mfenced> </math>
wherein,
1 K fl * = 1 - S cw K hc + S cw K w
the calculating unit is further according to the formula: rhosat=(1-φ)ρmin+φ(1-Swhc+φSwρwCalculating a density of the fluid saturated rock, wherein: rhominIs the average density, p, of the mineral particleshcAnd ρwThe densities of hydrocarbons and water, respectively.
The other physical quantity of the fluid saturated rock passes through the modulus of elasticity K of the solid matrixsatModulus of elasticity of dry skeletonsatAnd density ρ of the fluid saturated rocksatThese three parameters are obtained, for example <math> <mrow> <msub> <mi>V</mi> <mi>P</mi> </msub> <mo>/</mo> <msub> <mi>V</mi> <mi>s</mi> </msub> <mo>=</mo> <msqrt> <msub> <mi>K</mi> <mi>sat</mi> </msub> <mo>/</mo> <msub> <mi>&mu;</mi> <mi>sat</mi> </msub> <mo>+</mo> <mn>4</mn> <mo>/</mo> <mn>3</mn> </msqrt> <mo>.</mo> </mrow> </math>
In the seismic hydrocarbon detection device based on the multiple pore medium model, in a preferred embodiment, the aspect ratio alpha and the scale factor x in the pore structure parameters are obtained according to a pore structure characterization technology, namely, a fine phenomenon accurate to a nanometer level is observed; the communication coefficient xi is based on the longitudinal wave velocity VPThe relation between the saturation and the estimated value is estimated, and the specific estimation method can adopt the method in the prior art.
The implementation process of the seismic hydrocarbon detection method based on the multi-pore medium model is described below by taking a basin tight sandstone gas reservoir as an example.
As shown in fig. 3, a schematic view of a nano CT scan of a micro-pore structure of a tight sandstone sample is provided in the embodiment of the present invention. The dark part is the skeleton of mineral particles and the light part represents microscopic pores. In this example, the micro-pore structure of tight sandstone is very complex, containing pores of different dimensions, morphology and connectivity. From the microscopic pore structure image, morphological characteristics of each pore can be analyzed, and then corresponding pore structure parameters, such as aspect ratio alpha, scale factor x and connectivity coefficient xi, can be obtained.
As shown in fig. 4, the pore structure parameters were analyzed from experimental data for an embodiment of the present invention. The abscissa is the water saturation in%; the longitudinal wave coordinate is the longitudinal wave speed, and the unit is km/s. The diamond points are experimental measurement data of sample II-01 (porosity phi 12.1%, and permeability kappa 0.054mD), the dotted line is the patch saturation model prediction result, and the other four lines respectively represent the predicted structures of the multiple pore medium model when the connectivity coefficient xi is 0, 0.4, 0.8, and 1. Sample II-01 has very low permeability, indicating very poor pore connectivity, as well as being well confirmed by empirical measurements, substantially near the curve with a connectivity coefficient of 0.
FIG. 5 shows a longitudinal wave impedance Z established based on a multiple pore medium model according to an embodiment of the present inventionPVelocity ratio V to longitudinal and transverse wavesP/VSZ betweenP-VP/VSAnd (5) template. The abscissa is the longitudinal wave impedance in g/cm3Km/s; the ordinate is the velocity ratio of the longitudinal wave to the transverse wave. The porosity range given by the template is 2% -14%, the saturation range is 0% -100%, and the circle points in the graph correspond to certain rock porosity and rock saturation.
As shown in fig. 6, the prestack elastic parameters obtained by prestack synchronous inversion for the diagonal gathers provided by the embodiment of the present invention: actual longitudinal wave impedanceAnd the actual longitudinal-to-transverse wave velocity ratio VP1/VS1Is shown schematically in cross-section. The abscissa is the seismic track number and the ordinate is the travel time, sheetAnd (6) bit millimeter. Establishing an initial model by using logging data, and then carrying out pre-stack synchronous inversion on pre-stack angle channel sets according to AVO inversion theory to obtain actual longitudinal wave impedance in pre-stack elastic parametersAnd the actual longitudinal-to-transverse wave velocity ratio VP1/VS1Where it can be seen from fig. 6, two wells are included, the Y1 well and the Y2 well.
FIG. 7 shows the pre-stack elastic parameters of the actual longitudinal wave impedance of the embodiment of the present inventionAnd the actual longitudinal-to-transverse wave velocity ratio VP1/VS1At ZP-VP/VSProjection onto a template. The abscissa is the longitudinal wave impedance in g/cm3Km/s; the ordinate is the velocity ratio of the longitudinal and transverse waves, and the gray particles in the graph are the projected data points. The longitudinal wave and transverse wave velocity ratio part is mainly sandstone and is basically covered by the scale marks of the template, and the porosity and the saturation of reservoir rock can be clearly reflected through the scale marks on the rock physical template. On the basis, the porosity and the saturation can be further inverted by utilizing a template mapping method.
FIG. 8 is a schematic diagram of a seismic hydrocarbon testing profile calculated according to a template mapping method, according to an embodiment of the present invention. The top is the porosity profile, the middle is the saturation profile, and the bottom is the porosity x saturation profile. The abscissa is the seismic trace number and the ordinate is the unit millimeter when traveling. The inverted ambient pressure gas saturation is basically 0, the reservoir gas saturation analysis cannot be interfered, so that the gas reservoir is represented by gas containing abnormity in the saturation profile, and the highest saturation can reach 90%. The profile of the product of porosity and saturation can further reflect the gas content of the reservoir. From these hydrocarbon detection profiles, two gas favorable zones, zone I and zone II, respectively, were identified, with significant gas anomalies detected in the 1040 to 1060ms range near the Y1 well. The Y1 well was a high producing well with a yield of 11.43 ten thousand square per day, which confirmed the correctness of the hydrocarbon testing results.
The above-mentioned embodiments are intended to illustrate the objects, technical solutions and advantages of the present invention in further detail, and it should be understood that the above-mentioned embodiments are merely exemplary embodiments of the present invention, and are not intended to limit the scope of the present invention, and any modifications, equivalent substitutions, improvements and the like made within the spirit and principle of the present invention should be included in the scope of the present invention.

Claims (16)

1. A seismic hydrocarbon detection method based on a multiple pore medium model is characterized by comprising the following steps:
obtaining a data set relating to subsurface reservoir rock, and deriving reservoir information from the data set, the reservoir information comprising: reservoir environment and physical properties, petrophysical properties, and micro-pore structure information;
obtaining model parameters required by a multiple pore medium model according to the reservoir information, and establishing a rock physical template of the fluid saturated rock based on the multiple pore medium model;
carrying out amplitude preservation processing on the seismic data, extracting an angle gather, and carrying out synchronous inversion on the angle gather before stacking to obtain elastic parameters before stacking;
projecting the prestack elastic parameters onto the rock physical template to form a plurality of projection data points, and calculating the porosity and/or saturation of the measured medium;
and judging the oil and gas distribution of the underground reservoir according to the porosity and/or the saturation of the measured medium so as to detect the hydrocarbons.
2. The method for seismic hydrocarbon detection based on a multivoid media model of claim 1, wherein the data set comprises: geological reports, rock debris records, core data, well logs.
3. The method for detecting seismic hydrocarbons based on the multiple pore medium model according to claim 1, wherein the petrophysical template is a combination of any two physical quantities in elastic parameters; the elasticity parameters comprise at least the following physical quantities: velocity V of longitudinal wavePTransverse wave velocity VSLongitudinal wave impedance ZPTransverse wave impedance ZSElastic impedance EI, converted wave elastic impedance PSEI, velocity ratio V of longitudinal wave and transverse waveP/VSPoisson's ratio ν, bulk modulus K, shear modulus μ, young's modulus E, longitudinal wave modulus P, and lammei constant λ.
4. The method for detecting seismic hydrocarbons based on the multiple pore media model of claim 1, wherein the calculating the porosity and/or saturation of the measured media comprises: and searching the template grid point closest to each projection data point to further obtain the porosity and/or saturation of the corresponding measured medium.
5. The method for seismic hydrocarbon detection based on the multiple pore media model of claim 3, wherein the reservoir environment and physical properties comprise: temperature, loading pressure, pore pressure, horizons, lithology, mineral composition, mineral content, porosity range, saturation range, pore fluid type.
6. The method for seismic hydrocarbon detection based on the multiple pore media model of claim 1, wherein the petrophysical properties comprise: ultrasonic measured longitudinal wave velocity VPTransverse wave velocity VSAnd the corresponding relation between the rock porosity and the rock saturation.
7. The method for detecting seismic hydrocarbons based on the multiple pore medium model as claimed in claim 5, wherein the establishing of the petrophysical template of the fluid saturated rock based on the multiple pore medium model comprises: setting scale values of porosity and saturation according to the porosity range and the saturation range, calculating any two physical quantities in the elastic parameters of the fluid saturated rock corresponding to the scale values of the porosity and the saturation by using the multiple pore medium model, drawing an intersection graph of any two physical quantities in the elastic parameters, and marking the scale values of the porosity and the saturation to form the rock physical template.
8. The method for detecting seismic hydrocarbons based on the multiple pore media model according to claim 7, wherein the calculating the elastic parameter of the fluid saturated rock corresponding to each set of scale values of porosity and saturation by using the multiple pore media model specifically comprises:
obtaining three pore structure parameters and three saturation parameters; the three pore structure parameters are respectively: aspect ratio α, scale factor x, and connectivity coefficient ξ; the three saturation parameters are respectively: total water saturation SwWater saturation S of interconnected porescwAnd water saturation S of isolated poreiw(ii) a The relationship between the three saturation parameters is: sw=Scwξ+Siw(1-ξ);
According toFormula (II): phi is aisoThe porosity of the solid matrix, phi, was calculated (1-xi)isoWherein φ is the total porosity of the rock; the solid matrix comprises: isolated pores and mineral particles;
then according to the formula:
<math> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mover> <mi>K</mi> <mo>^</mo> </mover> <mrow> <mi>m</mi> <mi>a</mi> <mi>t</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>&phi;</mi> <mrow> <mi>i</mi> <mi>s</mi> <mi>o</mi> </mrow> </msub> <mo>)</mo> <msub> <mi>K</mi> <mi>min</mi> </msub> <mo>+</mo> <msub> <mi>&phi;</mi> <mrow> <mi>i</mi> <mi>s</mi> <mi>o</mi> </mrow> </msub> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>S</mi> <mrow> <mi>i</mi> <mi>w</mi> </mrow> </msub> <mo>)</mo> <munderover> <mo>&Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>x</mi> <mi>i</mi> </msub> <msub> <mi>K</mi> <mrow> <mi>h</mi> <mi>c</mi> </mrow> </msub> <msubsup> <mi>P</mi> <mi>i</mi> <mo>&prime;</mo> </msubsup> <mo>+</mo> <msub> <mi>&phi;</mi> <mrow> <mi>i</mi> <mi>s</mi> <mi>o</mi> </mrow> </msub> <msub> <mi>S</mi> <mrow> <mi>i</mi> <mi>w</mi> </mrow> </msub> <munderover> <mo>&Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>x</mi> <mi>i</mi> </msub> <msub> <mi>K</mi> <mi>w</mi> </msub> <msubsup> <mi>P</mi> <mi>i</mi> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msubsup> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>&phi;</mi> <mrow> <mi>i</mi> <mi>s</mi> <mi>o</mi> </mrow> </msub> <mo>)</mo> <mo>+</mo> <msub> <mi>&phi;</mi> <mrow> <mi>i</mi> <mi>s</mi> <mi>o</mi> </mrow> </msub> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>S</mi> <mrow> <mi>i</mi> <mi>w</mi> </mrow> </msub> <mo>)</mo> <munderover> <mo>&Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>x</mi> <mi>i</mi> </msub> <msubsup> <mi>P</mi> <mi>i</mi> <mo>&prime;</mo> </msubsup> <mo>+</mo> <msub> <mi>&phi;</mi> <mrow> <mi>i</mi> <mi>s</mi> <mi>o</mi> </mrow> </msub> <msub> <mi>S</mi> <mrow> <mi>i</mi> <mi>w</mi> </mrow> </msub> <munderover> <mo>&Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>x</mi> <mi>i</mi> </msub> <msubsup> <mi>P</mi> <mi>i</mi> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msubsup> </mrow> </mfrac> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mi>&mu;</mi> <mo>^</mo> </mover> <mrow> <mi>m</mi> <mi>a</mi> <mi>t</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>&phi;</mi> <mrow> <mi>i</mi> <mi>s</mi> <mi>o</mi> </mrow> </msub> <mo>)</mo> <msub> <mi>&mu;</mi> <mi>min</mi> </msub> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>&phi;</mi> <mrow> <mi>i</mi> <mi>s</mi> <mi>o</mi> </mrow> </msub> <mo>)</mo> <mo>+</mo> <msub> <mi>&phi;</mi> <mrow> <mi>i</mi> <mi>s</mi> <mi>o</mi> </mrow> </msub> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>S</mi> <mrow> <mi>i</mi> <mi>w</mi> </mrow> </msub> <mo>)</mo> <munderover> <mo>&Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>x</mi> <mi>i</mi> </msub> <msubsup> <mi>Q</mi> <mi>i</mi> <mo>&prime;</mo> </msubsup> <mo>+</mo> <msub> <mi>&phi;</mi> <mrow> <mi>i</mi> <mi>s</mi> <mi>o</mi> </mrow> </msub> <msub> <mi>S</mi> <mrow> <mi>i</mi> <mi>w</mi> </mrow> </msub> <munderover> <mo>&Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>x</mi> <mi>i</mi> </msub> <msubsup> <mi>Q</mi> <mi>i</mi> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msubsup> </mrow> </mfrac> </mtd> </mtr> </mtable> </mfenced> </math>
calculating the elastic modulus of the solid matrix, wherein: kminAnd muminRespectively the mean bulk modulus and the mean shear modulus of the mineral particles, KhcAnd KwBulk modulus for hydrocarbons and water, respectively, P and Q are geometric factors related to pore morphology;
according to the formula: phi is aconCalculating the porosity phi of the dry skeletoncon(ii) a The dry skeleton comprises: isolated holes, intercommunicating pores and mineral particles;
then according to the formula:
<math> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mover> <mi>K</mi> <mo>^</mo> </mover> <mrow> <mi>d</mi> <mi>r</mi> <mi>y</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>&phi;</mi> <mo>)</mo> <msub> <mi>K</mi> <mi>min</mi> </msub> <mo>+</mo> <msub> <mi>&phi;</mi> <mrow> <mi>i</mi> <mi>s</mi> <mi>o</mi> </mrow> </msub> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>S</mi> <mrow> <mi>i</mi> <mi>w</mi> </mrow> </msub> <mo>)</mo> <munderover> <mo>&Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>x</mi> <mi>i</mi> </msub> <msub> <mi>K</mi> <mrow> <mi>h</mi> <mi>c</mi> </mrow> </msub> <msubsup> <mi>P</mi> <mi>i</mi> <mo>&prime;</mo> </msubsup> <mo>+</mo> <msub> <mi>&phi;</mi> <mrow> <mi>i</mi> <mi>s</mi> <mi>o</mi> </mrow> </msub> <msub> <mi>S</mi> <mrow> <mi>i</mi> <mi>w</mi> </mrow> </msub> <munderover> <mo>&Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>x</mi> <mi>i</mi> </msub> <msub> <mi>K</mi> <mi>w</mi> </msub> <msubsup> <mi>P</mi> <mi>i</mi> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msubsup> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>&phi;</mi> <mo>)</mo> <mo>+</mo> <msub> <mi>&phi;</mi> <mrow> <mi>i</mi> <mi>s</mi> <mi>o</mi> </mrow> </msub> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>S</mi> <mrow> <mi>i</mi> <mi>w</mi> </mrow> </msub> <mo>)</mo> <munderover> <mo>&Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>x</mi> <mi>i</mi> </msub> <msubsup> <mi>P</mi> <mi>i</mi> <mo>&prime;</mo> </msubsup> <mo>+</mo> <msub> <mi>&phi;</mi> <mrow> <mi>i</mi> <mi>s</mi> <mi>o</mi> </mrow> </msub> <msub> <mi>S</mi> <mrow> <mi>i</mi> <mi>w</mi> </mrow> </msub> <munderover> <mo>&Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>x</mi> <mi>i</mi> </msub> <msubsup> <mi>P</mi> <mi>i</mi> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msubsup> <mo>+</mo> <msub> <mi>&phi;</mi> <mrow> <mi>c</mi> <mi>o</mi> <mi>n</mi> </mrow> </msub> <munderover> <mo>&Sigma;</mo> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>x</mi> <mi>k</mi> </msub> <msub> <mover> <mi>P</mi> <mo>~</mo> </mover> <mi>k</mi> </msub> </mrow> </mfrac> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mi>&mu;</mi> <mo>^</mo> </mover> <mrow> <mi>d</mi> <mi>r</mi> <mi>y</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>&phi;</mi> <mrow> <mi>i</mi> <mi>s</mi> <mi>o</mi> </mrow> </msub> <mo>)</mo> <msub> <mi>&mu;</mi> <mi>min</mi> </msub> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>&phi;</mi> <mo>)</mo> <mo>+</mo> <msub> <mi>&phi;</mi> <mrow> <mi>i</mi> <mi>s</mi> <mi>o</mi> </mrow> </msub> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>S</mi> <mrow> <mi>i</mi> <mi>w</mi> </mrow> </msub> <mo>)</mo> <munderover> <mo>&Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>x</mi> <mi>i</mi> </msub> <msubsup> <mi>Q</mi> <mi>i</mi> <mo>&prime;</mo> </msubsup> <mo>+</mo> <msub> <mi>&phi;</mi> <mrow> <mi>i</mi> <mi>s</mi> <mi>o</mi> </mrow> </msub> <msub> <mi>S</mi> <mrow> <mi>i</mi> <mi>w</mi> </mrow> </msub> <munderover> <mo>&Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>x</mi> <mi>i</mi> </msub> <msubsup> <mi>Q</mi> <mi>i</mi> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msubsup> <mo>+</mo> <msub> <mi>&phi;</mi> <mrow> <mi>c</mi> <mi>o</mi> <mi>n</mi> </mrow> </msub> <munderover> <mo>&Sigma;</mo> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>x</mi> <mi>k</mi> </msub> <msub> <mover> <mi>Q</mi> <mo>~</mo> </mover> <mi>k</mi> </msub> </mrow> </mfrac> </mtd> </mtr> </mtable> </mfenced> </math>
calculating the elastic modulus of the dry skeleton; wherein,
calculating the overall elastic modulus of the fluid saturated rock according to the elastic modulus of the solid matrix and the elastic modulus of the dry skeleton:
<math> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <msub> <mi>K</mi> <mrow> <mi>s</mi> <mi>a</mi> <mi>t</mi> </mrow> </msub> <mo>=</mo> <msub> <mover> <mi>K</mi> <mo>^</mo> </mover> <mrow> <mi>d</mi> <mi>r</mi> <mi>y</mi> </mrow> </msub> <mo>+</mo> <mfrac> <msup> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mover> <mi>K</mi> <mo>^</mo> </mover> <mrow> <mi>d</mi> <mi>r</mi> <mi>y</mi> </mrow> </msub> <mo>/</mo> <msub> <mover> <mi>K</mi> <mo>^</mo> </mover> <mrow> <mi>m</mi> <mi>a</mi> <mi>t</mi> </mrow> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mrow> <msub> <mi>&phi;</mi> <mrow> <mi>c</mi> <mi>o</mi> <mi>n</mi> </mrow> </msub> <mo>/</mo> <msubsup> <mi>K</mi> <mrow> <mi>f</mi> <mi>l</mi> </mrow> <mo>*</mo> </msubsup> <mo>+</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>&phi;</mi> <mrow> <mi>c</mi> <mi>o</mi> <mi>n</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>/</mo> <msub> <mover> <mi>K</mi> <mo>^</mo> </mover> <mrow> <mi>m</mi> <mi>a</mi> <mi>t</mi> </mrow> </msub> <mo>-</mo> <msub> <mover> <mi>K</mi> <mo>^</mo> </mover> <mrow> <mi>d</mi> <mi>r</mi> <mi>y</mi> </mrow> </msub> <mo>/</mo> <msubsup> <mover> <mi>K</mi> <mo>^</mo> </mover> <mrow> <mi>m</mi> <mi>a</mi> <mi>t</mi> </mrow> <mn>2</mn> </msubsup> </mrow> </mfrac> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&mu;</mi> <mrow> <mi>s</mi> <mi>a</mi> <mi>t</mi> </mrow> </msub> <mo>=</mo> <msub> <mover> <mi>&mu;</mi> <mo>^</mo> </mover> <mrow> <mi>d</mi> <mi>r</mi> <mi>y</mi> </mrow> </msub> </mtd> </mtr> </mtable> </mfenced> </math>
wherein,
1 K f l * = 1 - S c w K h c + S c w K w
then according to the formula: rhosat=(1-φ)ρmin+φ(1-Swhc+φSwρwCalculating the density ρ of the fluid saturated rocksatWherein: rhominIs the average density, p, of the mineral particleshcAnd ρwThe densities of hydrocarbons and water, respectively.
The other physical quantity of the fluid saturated rock passes through the modulus of elasticity K of the solid matrixsatModulus of elasticity of dry skeletonsatAnd density ρ of the fluid saturated rocksatThese three parameters are obtained.
9. The method of claim 8, wherein the model parameters comprise: mineral particle parameters, fluid parameters, porosity parameters, pore structure parameters, saturation parameters; wherein the mineral particle parameters include: mean bulk modulus KminAverage shear modulus μminAverage density ρmin(ii) a The fluid parameters include: bulk modulus K of hydrocarbonshcDensity of hydrocarbons ρhcWater volume modulus KwWater density ρw
10. The method as claimed in claim 9, wherein the mineral particle parameters are calculated according to a Hill model.
11. The method for detecting seismic hydrocarbons based on the multi-pore medium model as claimed in claim 9, wherein the fluid parameters are calculated according to Flag program.
12. The method for detecting seismic hydrocarbons based on the multiple pore media model of claim 9, wherein the aspect ratio α and the scaling factor x in the pore structure parameter are obtained according to a pore structure characterization technique; the communication coefficient xi is based on the longitudinal wave velocity VPThe relation with the saturation is estimated.
13. A seismic hydrocarbon testing device based on a multiple pore media model, the device comprising:
a data acquisition unit for acquiring a data set relating to subsurface reservoir rock and deriving reservoir information from the data set, the reservoir information comprising: reservoir environment and physical properties, petrophysical properties, and micro-pore structure information;
the template establishing unit is used for obtaining model parameters required by the multiple pore medium model according to the reservoir information and establishing a rock physical template of the fluid saturated rock based on the multiple pore medium model;
the data processing unit is used for extracting an angle gather after amplitude preservation processing is carried out on the seismic data, and obtaining prestack elastic parameters through prestack synchronous inversion of the angle gather;
the projection unit is used for projecting the prestack elastic parameters onto the rock physical template to form a plurality of projection data points and calculating the porosity and/or the saturation of the measured medium;
and the judging unit is used for judging the oil and gas distribution of the underground reservoir according to the porosity and/or the saturation of the measured medium so as to detect the hydrocarbons.
14. The seismic hydrocarbon detection device based on the multiple pore media model of claim 13, wherein the projection unit is specifically configured to find a nearest template grid point of each of the projected data points, thereby obtaining a porosity and/or a saturation of the corresponding measured media.
15. The seismic hydrocarbon detection device based on the multiple pore medium model according to claim 13, wherein the template establishing unit is specifically configured to set scale values of porosity and saturation according to a porosity range and a saturation range, calculate any two physical quantities in the elastic parameters of the fluid saturated rock corresponding to each set of scale values of porosity and saturation by using the multiple pore medium model, draw an intersection graph of any two physical quantities in the elastic parameters, and mark the scale values of porosity and saturation to form the petrophysical template.
16. The multiple pore media model-based seismic hydrocarbon detection device of claim 15, wherein the template establishing unit further comprises: the calculation unit is used for obtaining three pore structure parameters and three saturation parameters; the three pore structure parameters are respectively: aspect ratio α, scale factor x, and connectivity coefficient ξ; the three saturation parameters are respectively: total water saturation SwWater saturation S of interconnected porescwAnd water saturation S of isolated poreiw(ii) a The relationship between the three saturation parameters is: sw=Scwξ+Siw(1-ξ);
The calculation unit is according to the formula: phi is aisoThe porosity of the solid matrix, phi, was calculated (1-xi)isoWherein φ is the total porosity of the rock; the solid matrix comprises: isolated pores and mineral particles;
the calculating unit is further according to the formula:
<math> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mover> <mi>K</mi> <mo>^</mo> </mover> <mrow> <mi>m</mi> <mi>a</mi> <mi>t</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>&phi;</mi> <mrow> <mi>i</mi> <mi>s</mi> <mi>o</mi> </mrow> </msub> <mo>)</mo> <msub> <mi>K</mi> <mi>min</mi> </msub> <mo>+</mo> <msub> <mi>&phi;</mi> <mrow> <mi>i</mi> <mi>s</mi> <mi>o</mi> </mrow> </msub> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>S</mi> <mrow> <mi>i</mi> <mi>w</mi> </mrow> </msub> <mo>)</mo> <munderover> <mo>&Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>x</mi> <mi>i</mi> </msub> <msub> <mi>K</mi> <mrow> <mi>h</mi> <mi>c</mi> </mrow> </msub> <msubsup> <mi>P</mi> <mi>i</mi> <mo>&prime;</mo> </msubsup> <mo>+</mo> <msub> <mi>&phi;</mi> <mrow> <mi>i</mi> <mi>s</mi> <mi>o</mi> </mrow> </msub> <msub> <mi>S</mi> <mrow> <mi>i</mi> <mi>w</mi> </mrow> </msub> <munderover> <mo>&Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>x</mi> <mi>i</mi> </msub> <msub> <mi>K</mi> <mi>w</mi> </msub> <msubsup> <mi>P</mi> <mi>i</mi> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msubsup> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>&phi;</mi> <mrow> <mi>i</mi> <mi>s</mi> <mi>o</mi> </mrow> </msub> <mo>)</mo> <mo>+</mo> <msub> <mi>&phi;</mi> <mrow> <mi>i</mi> <mi>s</mi> <mi>o</mi> </mrow> </msub> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>S</mi> <mrow> <mi>i</mi> <mi>w</mi> </mrow> </msub> <mo>)</mo> <munderover> <mo>&Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>x</mi> <mi>i</mi> </msub> <msubsup> <mi>P</mi> <mi>i</mi> <mo>&prime;</mo> </msubsup> <mo>+</mo> <msub> <mi>&phi;</mi> <mrow> <mi>i</mi> <mi>s</mi> <mi>o</mi> </mrow> </msub> <msub> <mi>S</mi> <mrow> <mi>i</mi> <mi>w</mi> </mrow> </msub> <munderover> <mo>&Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>x</mi> <mi>i</mi> </msub> <msubsup> <mi>P</mi> <mi>i</mi> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msubsup> </mrow> </mfrac> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mi>&mu;</mi> <mo>^</mo> </mover> <mrow> <mi>m</mi> <mi>a</mi> <mi>t</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>&phi;</mi> <mrow> <mi>i</mi> <mi>s</mi> <mi>o</mi> </mrow> </msub> <mo>)</mo> <msub> <mi>&mu;</mi> <mi>min</mi> </msub> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>&phi;</mi> <mrow> <mi>i</mi> <mi>s</mi> <mi>o</mi> </mrow> </msub> <mo>)</mo> <mo>+</mo> <msub> <mi>&phi;</mi> <mrow> <mi>i</mi> <mi>s</mi> <mi>o</mi> </mrow> </msub> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>S</mi> <mrow> <mi>i</mi> <mi>w</mi> </mrow> </msub> <mo>)</mo> <munderover> <mo>&Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>x</mi> <mi>i</mi> </msub> <msubsup> <mi>Q</mi> <mi>i</mi> <mo>&prime;</mo> </msubsup> <mo>+</mo> <msub> <mi>&phi;</mi> <mrow> <mi>i</mi> <mi>s</mi> <mi>o</mi> </mrow> </msub> <msub> <mi>S</mi> <mrow> <mi>i</mi> <mi>w</mi> </mrow> </msub> <munderover> <mo>&Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>x</mi> <mi>i</mi> </msub> <msubsup> <mi>Q</mi> <mi>i</mi> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msubsup> </mrow> </mfrac> </mtd> </mtr> </mtable> </mfenced> </math>
calculating the elastic modulus of the solid matrix, wherein: kminAnd muminRespectively the mean bulk modulus and the mean shear modulus of the mineral particles, KhcAnd KwBulk modulus for hydrocarbons and water, respectively, P and Q are geometric factors related to pore morphology;
the calculation unit further calculates, according to a formula: phi is aconCalculating the porosity phi of the dry skeletoncon(ii) a The dry skeleton comprises: isolated holes, intercommunicating pores and mineral particles;
the calculation unit is according to the formula:
<math> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mover> <mi>K</mi> <mo>^</mo> </mover> <mrow> <mi>d</mi> <mi>r</mi> <mi>y</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>&phi;</mi> <mo>)</mo> <msub> <mi>K</mi> <mi>min</mi> </msub> <mo>+</mo> <msub> <mi>&phi;</mi> <mrow> <mi>i</mi> <mi>s</mi> <mi>o</mi> </mrow> </msub> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>S</mi> <mrow> <mi>i</mi> <mi>w</mi> </mrow> </msub> <mo>)</mo> <munderover> <mo>&Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>x</mi> <mi>i</mi> </msub> <msub> <mi>K</mi> <mrow> <mi>h</mi> <mi>c</mi> </mrow> </msub> <msubsup> <mi>P</mi> <mi>i</mi> <mo>&prime;</mo> </msubsup> <mo>+</mo> <msub> <mi>&phi;</mi> <mrow> <mi>i</mi> <mi>s</mi> <mi>o</mi> </mrow> </msub> <msub> <mi>S</mi> <mrow> <mi>i</mi> <mi>w</mi> </mrow> </msub> <munderover> <mo>&Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>x</mi> <mi>i</mi> </msub> <msub> <mi>K</mi> <mi>w</mi> </msub> <msubsup> <mi>P</mi> <mi>i</mi> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msubsup> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>&phi;</mi> <mo>)</mo> <mo>+</mo> <msub> <mi>&phi;</mi> <mrow> <mi>i</mi> <mi>s</mi> <mi>o</mi> </mrow> </msub> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>S</mi> <mrow> <mi>i</mi> <mi>w</mi> </mrow> </msub> <mo>)</mo> <munderover> <mo>&Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>x</mi> <mi>i</mi> </msub> <msubsup> <mi>P</mi> <mi>i</mi> <mo>&prime;</mo> </msubsup> <mo>+</mo> <msub> <mi>&phi;</mi> <mrow> <mi>i</mi> <mi>s</mi> <mi>o</mi> </mrow> </msub> <msub> <mi>S</mi> <mrow> <mi>i</mi> <mi>w</mi> </mrow> </msub> <munderover> <mo>&Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>x</mi> <mi>i</mi> </msub> <msubsup> <mi>P</mi> <mi>i</mi> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msubsup> <mo>+</mo> <msub> <mi>&phi;</mi> <mrow> <mi>c</mi> <mi>o</mi> <mi>n</mi> </mrow> </msub> <munderover> <mo>&Sigma;</mo> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>x</mi> <mi>k</mi> </msub> <msub> <mover> <mi>P</mi> <mo>~</mo> </mover> <mi>k</mi> </msub> </mrow> </mfrac> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mi>&mu;</mi> <mo>^</mo> </mover> <mrow> <mi>d</mi> <mi>r</mi> <mi>y</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>&phi;</mi> <mrow> <mi>i</mi> <mi>s</mi> <mi>o</mi> </mrow> </msub> <mo>)</mo> <msub> <mi>&mu;</mi> <mi>min</mi> </msub> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>&phi;</mi> <mo>)</mo> <mo>+</mo> <msub> <mi>&phi;</mi> <mrow> <mi>i</mi> <mi>s</mi> <mi>o</mi> </mrow> </msub> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>S</mi> <mrow> <mi>i</mi> <mi>w</mi> </mrow> </msub> <mo>)</mo> <munderover> <mo>&Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>x</mi> <mi>i</mi> </msub> <msubsup> <mi>Q</mi> <mi>i</mi> <mo>&prime;</mo> </msubsup> <mo>+</mo> <msub> <mi>&phi;</mi> <mrow> <mi>i</mi> <mi>s</mi> <mi>o</mi> </mrow> </msub> <msub> <mi>S</mi> <mrow> <mi>i</mi> <mi>w</mi> </mrow> </msub> <munderover> <mo>&Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>x</mi> <mi>i</mi> </msub> <msubsup> <mi>Q</mi> <mi>i</mi> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msubsup> <mo>+</mo> <msub> <mi>&phi;</mi> <mrow> <mi>c</mi> <mi>o</mi> <mi>n</mi> </mrow> </msub> <munderover> <mo>&Sigma;</mo> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>x</mi> <mi>k</mi> </msub> <msub> <mover> <mi>Q</mi> <mo>~</mo> </mover> <mi>k</mi> </msub> </mrow> </mfrac> </mtd> </mtr> </mtable> </mfenced> </math>
calculating the elastic modulus of the dry skeleton;
the calculation unit further calculates the overall elastic modulus of the fluid saturated rock according to the elastic modulus of the solid matrix and the elastic modulus of the dry skeleton:
<math> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <msub> <mi>K</mi> <mrow> <mi>s</mi> <mi>a</mi> <mi>t</mi> </mrow> </msub> <mo>=</mo> <msub> <mover> <mi>K</mi> <mo>^</mo> </mover> <mrow> <mi>d</mi> <mi>r</mi> <mi>y</mi> </mrow> </msub> <mo>+</mo> <mfrac> <msup> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mover> <mi>K</mi> <mo>^</mo> </mover> <mrow> <mi>d</mi> <mi>r</mi> <mi>y</mi> </mrow> </msub> <mo>/</mo> <msub> <mover> <mi>K</mi> <mo>^</mo> </mover> <mrow> <mi>m</mi> <mi>a</mi> <mi>t</mi> </mrow> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mrow> <msub> <mi>&phi;</mi> <mrow> <mi>c</mi> <mi>o</mi> <mi>n</mi> </mrow> </msub> <mo>/</mo> <msubsup> <mi>K</mi> <mrow> <mi>f</mi> <mi>l</mi> </mrow> <mo>*</mo> </msubsup> <mo>+</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>&phi;</mi> <mrow> <mi>c</mi> <mi>o</mi> <mi>n</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>/</mo> <msub> <mover> <mi>K</mi> <mo>^</mo> </mover> <mrow> <mi>m</mi> <mi>a</mi> <mi>t</mi> </mrow> </msub> <mo>-</mo> <msub> <mover> <mi>K</mi> <mo>^</mo> </mover> <mrow> <mi>d</mi> <mi>r</mi> <mi>y</mi> </mrow> </msub> <mo>/</mo> <msubsup> <mover> <mi>K</mi> <mo>^</mo> </mover> <mrow> <mi>m</mi> <mi>a</mi> <mi>t</mi> </mrow> <mn>2</mn> </msubsup> </mrow> </mfrac> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&mu;</mi> <mrow> <mi>s</mi> <mi>a</mi> <mi>t</mi> </mrow> </msub> <mo>=</mo> <msub> <mover> <mi>&mu;</mi> <mo>^</mo> </mover> <mrow> <mi>d</mi> <mi>r</mi> <mi>y</mi> </mrow> </msub> </mtd> </mtr> </mtable> </mfenced> </math>
wherein,
1 K f l * = 1 - S c w K h c + S c w K w
the calculating unit is further according to the formula: rhosat=(1-φ)ρmin+φ(1-Swhc+φSwρwCalculating the density ρ of the fluid saturated rocksatWherein: rhominIs the average density, p, of the mineral particleshcAnd ρwThe densities of hydrocarbons and water, respectively.
The other physical quantity of the fluid saturated rock passes through the modulus of elasticity K of the solid matrixsatModulus of elasticity of dry skeletonsatAnd density ρ of the fluid saturated rocksatThese three parameters are obtained.
CN201310042296.9A 2013-02-01 2013-02-01 Earthquake hydrocarbon detection method and device based on multiple pore medium model Active CN103163553B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310042296.9A CN103163553B (en) 2013-02-01 2013-02-01 Earthquake hydrocarbon detection method and device based on multiple pore medium model

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310042296.9A CN103163553B (en) 2013-02-01 2013-02-01 Earthquake hydrocarbon detection method and device based on multiple pore medium model

Publications (2)

Publication Number Publication Date
CN103163553A CN103163553A (en) 2013-06-19
CN103163553B true CN103163553B (en) 2015-09-09

Family

ID=48586792

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310042296.9A Active CN103163553B (en) 2013-02-01 2013-02-01 Earthquake hydrocarbon detection method and device based on multiple pore medium model

Country Status (1)

Country Link
CN (1) CN103163553B (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106032751B (en) * 2015-03-10 2019-02-19 中国石油化工股份有限公司 A kind of wellbore trace rock phase scaling method
CN106886045A (en) * 2015-12-15 2017-06-23 师素珍 A kind of method that deformation coal forecast of distribution is carried out based on prestack Simultaneous Retrieving
CN106054248B (en) * 2016-07-15 2017-07-18 河海大学 One kind is based on large-area compact seismic reservoir rock physics inversion method
CN106646604B (en) * 2016-09-29 2018-06-08 中国石油大学(北京) Shale spatial acquisition methods and device based on Prestack seismic data
CN108876898B (en) * 2018-04-28 2022-06-03 清能艾科(深圳)能源技术有限公司 Method, device and machine equipment for realizing crude oil saturation prediction
CN110658555A (en) * 2018-06-29 2020-01-07 中国石油化工股份有限公司 Reservoir fluid factor construction method and reservoir fluid identification method
CN109115987B (en) * 2018-07-20 2021-01-29 中国石油天然气股份有限公司 Rock physical model-based fluid factor evaluation method and device
CN109116422B (en) * 2018-10-31 2021-02-26 中国石油化工股份有限公司 Method for calculating multi-lithology effective force coefficient based on longitudinal wave velocity
CN112285801B (en) * 2019-07-24 2023-02-28 中国石油天然气股份有限公司 Method, device and system for predicting permeability of carbonate reservoir
CN112485827A (en) * 2019-09-12 2021-03-12 中国石油天然气股份有限公司 Rock physical modeling method and device for fractured pore type reservoir
CN114428372B (en) * 2020-09-09 2023-06-27 中国石油化工股份有限公司 Self-adaptive rock physical modeling method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101414013A (en) * 2007-10-17 2009-04-22 中国石油天然气股份有限公司 Method for determining underground fluid by using seismic data
CN102288996A (en) * 2011-07-15 2011-12-21 中国石油天然气集团公司 Method for quantitatively predicting gas containing probability by AFI (prestack inversion)
CN102445708A (en) * 2010-10-14 2012-05-09 中国石油大学(北京) Rich argillaceous sand stone three-dimension equivalent speed prediction model
CN102508296A (en) * 2011-11-14 2012-06-20 中国石油天然气股份有限公司 Unsaturated double-pore medium seismic wave frequency dispersion attenuation analysis method and device
CN102590863A (en) * 2012-01-29 2012-07-18 中国石油天然气股份有限公司 Method and device for determining reflection coefficient dispersion, reflection energy and identifying gas layer
CN102854531A (en) * 2012-09-11 2013-01-02 中国石油天然气股份有限公司 Multi-scale rock physical plate method and device for reservoir hydrocarbon detection

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101414013A (en) * 2007-10-17 2009-04-22 中国石油天然气股份有限公司 Method for determining underground fluid by using seismic data
CN102445708A (en) * 2010-10-14 2012-05-09 中国石油大学(北京) Rich argillaceous sand stone three-dimension equivalent speed prediction model
CN102288996A (en) * 2011-07-15 2011-12-21 中国石油天然气集团公司 Method for quantitatively predicting gas containing probability by AFI (prestack inversion)
CN102508296A (en) * 2011-11-14 2012-06-20 中国石油天然气股份有限公司 Unsaturated double-pore medium seismic wave frequency dispersion attenuation analysis method and device
CN102590863A (en) * 2012-01-29 2012-07-18 中国石油天然气股份有限公司 Method and device for determining reflection coefficient dispersion, reflection energy and identifying gas layer
CN102854531A (en) * 2012-09-11 2013-01-02 中国石油天然气股份有限公司 Multi-scale rock physical plate method and device for reservoir hydrocarbon detection

Also Published As

Publication number Publication date
CN103163553A (en) 2013-06-19

Similar Documents

Publication Publication Date Title
CN103163553B (en) Earthquake hydrocarbon detection method and device based on multiple pore medium model
US10983232B2 (en) Seismic rock physics inversion method based on large area tight reservoir
Arts et al. Seismic monitoring at the Sleipner underground CO2 storage site (North Sea)
Shipton et al. Structural heterogeneity and permeability in faulted eolian sandstone: Implications for subsurface modeling of faults
Dou et al. Rock-physics-based carbonate pore type characterization and reservoir permeability heterogeneity evaluation, Upper San Andres reservoir, Permian Basin, west Texas
Johnston Methods and applications in reservoir geophysics
Bodziak et al. The role of seismic attributes in understanding the hydraulically fracturable limits and reservoir performance in shale reservoirs: An example from the Eagle Ford Shale, south Texas
WO2007071196A1 (en) A method for directly exploring a peroleum and a nutural gas and a coal bed gas
CN103643949B (en) A kind of reservoir contains quantitative forecast method and the device of oil gas
Gupta et al. Petrophysical characterization of the Woodford shale
CN105182424A (en) Method and device for quantitatively predicting reservoir porosity based on patch saturation model
CN104834003A (en) Phased compression coefficient earthquake prediction method for unconventional tight reservoir
Barajas-Olalde et al. Joint impedance and facies inversion of time-lapse seismic data for improving monitoring of CO2 incidentally stored from CO2 EOR
CN110658555A (en) Reservoir fluid factor construction method and reservoir fluid identification method
CN112305602B (en) Carbonate reservoir prediction method based on prestack multi-attribute and ancient landform fusion technology
Corbett Petroleum geoengineering: integration of static and dynamic models
Jasim et al. Specifying quality of a tight oil reservoir through 3-d reservoir modeling
Shahin et al. Optimal dynamic rock-fluid physics template validated by petroelastic reservoir modeling
Inamori et al. Detection of methane hydrate‐bearing zones from seismic data
Khalid et al. Effect of kerogen and TOC on seismic characterization of lower cretaceous shale gas plays in lower Indus Basin, Pakistan
CN103257362B (en) Carbonatite efficient well forecasting method based on pressure noise density difference inversion
Dou Rock physics-based carbonate reservoir pore type evaluation by combining geological, petrophysical and seismic data
Ba et al. Effects of pore geometry and saturation on the behavior of multiscale waves in tight sandstone layers
Wang et al. Fluids discrimination by ray-path elastic impedance inversion: A successful case from Sulige tight gas field
Rauch Extracting high fidelity geological information from 3D seismic and well data

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant