[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN103146717A - 杀虫基因及其用途 - Google Patents

杀虫基因及其用途 Download PDF

Info

Publication number
CN103146717A
CN103146717A CN2013100589011A CN201310058901A CN103146717A CN 103146717 A CN103146717 A CN 103146717A CN 2013100589011 A CN2013100589011 A CN 2013100589011A CN 201310058901 A CN201310058901 A CN 201310058901A CN 103146717 A CN103146717 A CN 103146717A
Authority
CN
China
Prior art keywords
insect
gene
plant
killing
pic2
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2013100589011A
Other languages
English (en)
Inventor
丁德荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BIOTECHNOLOGY CENTER OF BEIJING DABEINONG TECHNOLOGY GROUP Co Ltd
Beijing Dabeinong Biotechnology Co Ltd
Original Assignee
BIOTECHNOLOGY CENTER OF BEIJING DABEINONG TECHNOLOGY GROUP Co Ltd
Beijing Dabeinong Technology Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BIOTECHNOLOGY CENTER OF BEIJING DABEINONG TECHNOLOGY GROUP Co Ltd, Beijing Dabeinong Technology Group Co Ltd filed Critical BIOTECHNOLOGY CENTER OF BEIJING DABEINONG TECHNOLOGY GROUP Co Ltd
Priority to CN2013100589011A priority Critical patent/CN103146717A/zh
Publication of CN103146717A publication Critical patent/CN103146717A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

本发明涉及一种杀虫基因及其用途,所述杀虫基因的核苷酸序列包括:(a)具有SEQ ID NO:1所示的核苷酸序列;或(b)与(a)的核苷酸序列同类编码,且不为SEQ ID NO:2;或(c)在严格条件下与(a)或(b)限定的核苷酸序列杂交且编码具有杀虫活性的蛋白质的核苷酸序列。本发明杀虫基因特别适合在单子叶植物中表达,尤其是玉米和水稻,不仅显著提高了PIC2-01杀虫蛋白的表达量和稳定性,而且还显著增强了PIC2-01杀虫蛋白对昆虫害虫的毒力,尤其是鳞翅目昆虫害虫。

Description

杀虫基因及其用途
技术领域
本发明涉及一种杀虫基因及其用途,特别是涉及一种改造的PIC2-01杀虫基因及其用途。
背景技术
植物虫害是导致农作物损失的主要因素,给农民造成重大的经济损失,甚至影响到当地人口的生存状况。为了防治植物虫害,人们通常使用广谱化学杀虫剂和生物杀虫制剂,但二者在实际应用中都具有局限性:化学杀虫剂会带来环境污染的问题,并导致抗药性昆虫的出现;而生物杀虫制剂在环境中容易降解,在生产上需要重复施用,大大增加了生产成本。
为了解决化学杀虫剂和生物杀虫制剂在实际应用中的局限性,科学家们经过研究发现将编码杀虫蛋白的抗虫基因转入植物中,可获得一些抗虫转基因植物以防治植物虫害。PIC2杀虫蛋白是众多杀虫蛋白中的一种,是不溶性伴孢结晶蛋白。
PIC2蛋白被昆虫摄入进入中肠,毒蛋白原毒素被溶解在昆虫中肠的碱性环境下。蛋白N-和C-末端被碱性蛋白酶消化,将原毒素转变成活性片段;活性片段和昆虫中肠上皮细胞膜上表面上受体结合,插入肠膜,导致细胞膜出现穿孔病灶,破坏细胞膜内外的渗透压变化及pH平衡等,扰乱昆虫的消化过程,最终导致其死亡。
玉米和水稻是世界上分布广泛的粮食作物,每年因植物虫害造成的粮食损失巨大,例如小菜蛾、玉米螟、棉铃虫、东方黏虫或二化螟等。已证明PIC2蛋白可以抵挡多种鳞翅目昆虫害虫(如玉米螟、棉铃虫等)的侵害,且目前鲜有依据植物的偏好密码子对PIC2杀虫蛋白的氨基酸和/或核苷酸序列进行改造的研究,尤其是针对单子叶植物(如玉米)以提高其在植物中的表达水平和效果。
发明内容
本发明的目的是提供一种杀虫基因及其用途,其是依据玉米的偏好密码子而进行的优化改造,使得PIC2-01杀虫蛋白在植物中(尤其为玉米和水稻)具有较高的表达量和毒力。
为实现上述目的,本发明提供了一种杀虫基因,其核苷酸序列包括:
(a)具有SEQ ID NO:1所示的核苷酸序列;或
(b)与(a)的核苷酸序列同类编码,且不为SEQ ID NO:2;或
(c)在严格条件下与(a)或(b)限定的核苷酸序列杂交且编码具有杀虫活性的蛋白质的核苷酸序列。
所述严格条件可为在6×SSC(柠檬酸钠)、0.5%SDS(十二烷基硫酸钠)溶液中,在65℃下杂交,然后用2×SSC、0.1%SDS和1×SSC、0.1%SDS各洗膜1次。
为实现上述目的,本发明还提供了一种表达盒,包含在有效连接的调控序列调控下的所述杀虫基因。
为实现上述目的,本发明还提供了一种包含所述杀虫基因或所述表达盒的重组载体。
为实现上述目的,本发明还提供了一种包含所述杀虫基因或所述表达盒的转基因宿主生物,包括植物细胞、动物细胞、细菌、酵母、杆状病毒、线虫或藻类。
进一步地,所述植物为玉米、大豆、棉花、水稻或小麦。
为实现上述目的,本发明还提供了一种产生杀虫蛋白质的方法,包括:
获得所述转基因宿主生物的细胞;
在允许产生杀虫蛋白质的条件下培养所述转基因宿主生物的细胞;
回收所述杀虫蛋白质。
为实现上述目的,本发明还提供了一种用于增加昆虫靶范围的方法,包括:将所述杀虫基因编码的杀虫蛋白质或所述表达盒编码的杀虫蛋白质在植物中与至少一种不同于所述杀虫基因编码的杀虫蛋白质或所述表达盒编码的杀虫蛋白质的第二种杀虫核苷酸一起表达。
进一步地,所述第二种杀虫核苷酸可以编码Cry类杀虫蛋白质、Vip类杀虫蛋白质、蛋白酶抑制剂、凝集素、α-淀粉酶或过氧化物酶。
可选择地所述第二种杀虫核苷酸为抑制目标昆虫害虫中重要基因的dsRNA。
在本发明中,PIC2-01杀虫蛋白在一种转基因植物中的表达可以伴随着一个或多个Cry类杀虫蛋白质和/或Vip类杀虫蛋白质的表达。这种超过一种的杀虫毒素在同一株转基因植物中共同表达可以通过遗传工程使植物包含并表达所需的基因来实现。另外,一种植物(第1亲本)可以通过遗传工程操作表达PIC2-01杀虫蛋白,第二种植物(第2亲本)可以通过遗传工程操作表达Cry类杀虫蛋白质和/或Vip类杀虫蛋白质。通过第1亲本和第2亲本杂交获得表达引入第1亲本和第2亲本的所有基因的后代植物。
RNA干扰(RNA interference,RNAi)是指在进化过程中高度保守的、由双链RNA(double-stranded RNA,dsRNA)诱发的、同源mRNA高效特异性降解的现象。因此可以使用RNAi技术特异性剔除或关闭特定基因的表达。
为实现上述目的,本发明还提供了一种产生抗虫植物的方法,包括:将所述杀虫基因或所述表达盒或所述重组载体导入植物。
优选地,所述植物为玉米、大豆、棉花、水稻或小麦。
为实现上述目的,本发明还提供了一种用于保护植物免受由昆虫害虫引起的损伤的方法,包括:将所述杀虫基因或所述表达盒或所述重组载体导入植物,使导入后的植物产生足够保护其免受昆虫害虫侵害量的杀虫蛋白质。
优选地,所述植物为玉米、大豆、棉花、水稻或小麦。
将所述的杀虫基因或所述的表达盒或所述的重组载体导入植物,在本发明中为将外源DNA导入植物细胞,常规转化方法包括但不限于,农杆菌介导的转化、微量发射轰击、直接将DNA摄入原生质体、电穿孔或晶须硅介导的DNA导入。
为实现上述目的,本发明还提供了一种控制昆虫害虫的方法,包括:使昆虫害虫与抑制量的由所述杀虫基因编码的昆虫抑制性蛋白接触。
优选地,所述昆虫害虫是鳞翅目昆虫害虫。
本发明中所述的植物、植物组织或植物细胞的基因组,是指植物、植物组织或植物细胞内的任何遗传物质,且包括细胞核和质体和线粒体基因组。
本发明中所述的多核苷酸和/或核苷酸形成完整“基因”,在所需宿主细胞中编码蛋白质或多肽。本领域技术人员很容易认识到,可以将本发明的多核苷酸和/或核苷酸置于目的宿主中的调控序列控制下。
本领域技术人员所熟知的,DNA典型的以双链形式存在。在这种排列中,一条链与另一条链互补,反之亦然。由于DNA在植物中复制产生了DNA的其它互补链。这样,本发明包括对序列表中示例的多核苷酸及其互补链的使用。本领域常使用的“编码链”指与反义链结合的链。为了在体内表达蛋白质,典型将DNA的一条链转录为一条mRNA的互补链,它作为模板翻译出蛋白质。mRNA实际上是从DNA的“反义”链转录的。“有义”或“编码”链有一系列密码子(密码子是三个核苷酸,一次读三个可以产生特定氨基酸),其可作为开放阅读框(ORF)阅读来形成目的蛋白质或肽。本发明还包括与示例的DNA有相当功能的RNA和PNA(肽核酸)。
本发明中核酸分子或其片段在严格条件下与本发明杀虫基因杂交。任何常规的核酸杂交或扩增方法都可以用于鉴定本发明杀虫基因的存在。核酸分子或其片段在一定情况下能够与其他核酸分子进行特异性杂交。本发明中,如果两个核酸分子能形成反平行的双链核酸结构,就可以说这两个核酸分子彼此间能够进行特异性杂交。如果两个核酸分子显示出完全的互补性,则称其中一个核酸分子是另一个核酸分子的“互补物”。本发明中,当一个核酸分子的每一个核苷酸都与另一个核酸分子的对应核苷酸互补时,则称这两个核酸分子显示出“完全互补性”。如果两个核酸分子能够以足够的稳定性相互杂交从而使它们在至少常规的“低度严格”条件下退火且彼此结合,则称这两个核酸分子为“最低程度互补”。类似地,如果两个核酸分子能够以足够的稳定性相互杂交从而使它们在常规的“高度严格”条件下退火且彼此结合,则称这两个核酸分子具有“互补性”。从完全互补性中偏离是可以允许的,只要这种偏离不完全阻止两个分子形成双链结构。为了使一个核酸分子能够作为引物或探针,仅需保证其在序列上具有充分的互补性,以使得在所采用的特定溶剂和盐浓度下能形成稳定的双链结构。
本发明中,基本同源的序列是一段核酸分子,该核酸分子在高度严格条件下能够和相匹配的另一段核酸分子的互补链发生特异性杂交。促进DNA杂交的适合的严格条件,例如,大约在45℃条件下用6.0×氯化钠/柠檬酸钠(SSC)处理,然后在50℃条件下用2.0×SSC洗涤,这些条件对本领域技术人员是公知的。例如,在洗涤步骤中的盐浓度可以选自低度严格条件的约2.0×SSC、50℃到高度严格条件的约0.2×SSC、50℃。此外,洗涤步骤中的温度条件可以从低度严格条件的室温约22℃,升高到高度严格条件的约65℃。温度条件和盐浓度可以都发生改变,也可以其中一个保持不变而另一个变量发生改变。优选地,本发明所述严格条件可为在6×SSC、0.5%SDS溶液中,在65℃下与SEQ ID NO:1发生特异性杂交,然后用2×SSC、0.1%SDS和1×SSC、0.1%SDS各洗膜1次。
因此,具有抗虫活性并在严格条件下与本发明序列1杂交的序列包括在本发明中。这些序列与本发明序列至少大约40%-50%同源,大约60%、65%或70%同源,甚至至少大约75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更多同源。即序列同一性的范围分布在至少大约40%-50%、大约60%、65%或70%同源,甚至至少大约75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更大的序列同源性。
本发明中所述的DNA分子或蛋白序列的“片段”或“截短”是指涉及的原始DNA或蛋白序列(核苷酸或氨基酸)的一部分或其人工改造形式(例如适合植物表达的序列),前述序列的长度可存在变化,但长度足以确保(编码)蛋白质为昆虫毒素。
当核酸序列编码的多肽与参照核酸序列编码的多肽有相同的氨基酸序列时,该核酸序列与参照核酸序列是本发明所述的“同类编码”。
本发明中所述调控序列包括但不限于启动子、转运肽、终止子,增强子,前导序列,内含子以及其它可操作地连接到所述杀虫基因的调节序列。
所述启动子为植物中可表达的启动子,所述的“植物中可表达的启动子”是指确保与其连接的编码序列在植物细胞内进行表达的启动子。植物中可表达的启动子可为组成型启动子。指导植物内组成型表达的启动子的示例包括但不限于,来源于花椰菜花叶病毒的35S启动子、ubi启动子、水稻GOS2基因的启动子等。备选地,植物中可表达的启动子可为组织特异的启动子,即该启动子在植物的一些组织内如在绿色组织中指导编码序列的表达水平高于植物的其他组织(可通过常规RNA试验进行测定),如PEP羧化酶启动子。备选地,植物中可表达的启动子可为创伤诱导启动子。创伤诱导启动子或指导创伤诱导的表达模式的启动子是指当植物经受机械或由昆虫啃食引起的创伤时,启动子调控下的编码序列的表达较正常生长条件下有显著提高。创伤诱导启动子的示例包括但不限于,马铃薯和西红柿的蛋白酶抑制基因(pinⅠ和pinⅡ)和玉米蛋白酶抑制基因(MPI)的启动子。
所述转运肽(又称分泌信号序列或导向序列)是指导转基因产物到特定的细胞器或细胞区室,对受体蛋白质来说,所述转运肽可以是异源的,例如,利用编码叶绿体转运肽序列靶向叶绿体,或者利用‘KDEL’保留序列靶向内质网,或者利用大麦植物凝集素基因的CTPP靶向液泡。
所述前导序列包含但不限于,小RNA病毒前导序列,如EMCV前导序列(脑心肌炎病毒5’非编码区);马铃薯Y病毒组前导序列,如MDMV(玉米矮缩花叶病毒)前导序列;人类免疫球蛋白质重链结合蛋白质(BiP);苜蓿花叶病毒的外壳蛋白质mRNA的不翻译前导序列(AMV RNA4);烟草花叶病毒(TMV)前导序列。
所述增强子包含但不限于,花椰菜花叶病毒(CaMV)增强子、玄参花叶病毒(FMV)增强子、康乃馨风化环病毒(CERV)增强子、木薯脉花叶病毒(CsVMV)增强子、紫茉莉花叶病毒(MMV)增强子、夜香树黄化曲叶病毒(CmYLCV)增强子、木尔坦棉花曲叶病毒(CLCuMV)、鸭跖草黄斑驳病毒(CoYMV)和花生褪绿线条花叶病毒(PCLSV)增强子。
对于单子叶植物应用而言,所述内含子包含但不限于,玉米hsp70内含子、玉米泛素内含子、Adh内含子1、蔗糖合酶内含子或水稻Act1内含子。对于双子叶植物应用而言,所述内含子包含但不限于,CAT-1内含子、pKANNIBAL内含子、PIV2内含子和“超级泛素”内含子。
所述终止子可以为在植物中起作用的适合多聚腺苷酸化信号序列,包括但不限于,来源于农杆菌(Agrobacterium tumefaciens)胭脂碱合成酶(NOS)基因的多聚腺苷酸化信号序列、来源于蛋白酶抑制剂Ⅱ(pinⅡ)基因的多聚腺苷酸化信号序列、来源于豌豆ssRUBISCO E9基因的多聚腺苷酸化信号序列和来源于α-微管蛋白(α-tubulin)基因的多聚腺苷酸化信号序列。
本发明中所述“有效连接”表示核酸序列的联结,所述联结使得一条序列可提供对相连序列来说需要的功能。在本发明中所述“有效连接”可以为将启动子与感兴趣的序列相连,使得该感兴趣的序列的转录受到该启动子控制和调控。当感兴趣的序列编码蛋白并且想要获得该蛋白的表达时“有效连接”表示:启动子与所述序列相连,相连的方式使得得到的转录物高效翻译。如果启动子与编码序列的连接是转录物融合并且想要实现编码的蛋白的表达时,制造这样的连接,使得得到的转录物中第一翻译起始密码子是编码序列的起始密码子。备选地,如果启动子与编码序列的连接是翻译融合并且想要实现编码的蛋白的表达时,制造这样的连接,使得5’非翻译序列中含有的第一翻译起始密码子与启动子相连结,并且连接方式使得得到的翻译产物与编码想要的蛋白的翻译开放读码框的关系是符合读码框的。可以“有效连接”的核酸序列包括但不限于:提供基因表达功能的序列(即基因表达元件,例如启动子、5’非翻译区域、内含子、蛋白编码区域、3’非翻译区域、聚腺苷化位点和/或转录终止子)、提供DNA转移和/或整合功能的序列(即T-DNA边界序列、位点特异性重组酶识别位点、整合酶识别位点)、提供选择性功能的序列(即抗生素抗性标记物、生物合成基因)、提供可计分标记物功能的序列、体外或体内协助序列操作的序列(即多接头序列、位点特异性重组序列)和提供复制功能的序列(即细菌的复制起点、自主复制序列、着丝粒序列)。
本发明中所述的“杀虫”是指对农作物害虫是有毒的。更具体地,目标昆虫是害虫,例如,但不限于,大部分鳞翅目害虫,如玉米螟、棉铃虫、东方黏虫、二化螟或大螟等。
本发明中,所述杀虫基因为PIC2-01基因序列,如序列表中SEQ ID NO:1所示。所述杀虫基因为用于植物,特别是玉米转化的DNA序列,除了包含由PIC2-01基因序列编码的蛋白质的编码区外,也可包含其他元件,例如编码转运肽的编码区、编码选择性标记的蛋白质或赋予除草剂抗性的蛋白质的编码区。
本发明中PIC2-01基因序列对危害玉米的大多数鳞翅目害虫具有毒性。本发明中的植物,特别是玉米,在其基因组中含有外源DNA,所述外源DNA包含PIC2-01基因序列,通过表达抑制量的该蛋白而保护其免受害虫的威胁。抑制量是指致死的或亚致死的剂量。同时,植物在形态上应是正常的,且可在常规方法下培养以用于产物的消耗和/或生成。此外,该植物可基本消除对化学或生物杀虫剂的需要(所述化学或生物杀虫剂为针对由PIC2-01基因序列编码的蛋白质所靶向的昆虫的杀虫剂)。
植物材料中杀虫晶体蛋白(ICP)的表达水平可通过本领域内所描述的多种方法进行检测,例如通过应用特异引物对组织内产生的编码杀虫蛋白质的mRNA进行定量,或直接特异性检测产生的杀虫蛋白质的量。
可以应用不同的试验测定植物中ICP的杀虫效果。本发明中目标昆虫主要为鳞翅目害虫,更具体地为亚洲玉米螟或二化螟等。
此外,包含本发明杀虫基因(PIC2-01基因)序列的表达盒在植物中还可以与至少一种编码除草剂抗性基因的蛋白质一起表达,所述除草剂抗性基因包括但不限于,草胺膦抗性基因(如bar基因、pat基因)、苯敌草抗性基因(如pmph基因)、草甘膦抗性基因(如EPSPS基因)、溴苯腈(bromoxynil)抗性基因、磺酰脲抗性基因、对除草剂茅草枯的抗性基因、对氨腈的抗性基因或谷氨酰胺合成酶抑制剂(如PPT)的抗性基因,从而获得既具有高杀虫活性、又具有除草剂抗性的转基因植物。
本发明提供了一种杀虫基因及其用途,具有以下优点:
1、表达量高。本发明杀虫基因PIC2-01为依据玉米的偏好密码子对杀虫蛋白质PIC2-01进行的优化,同时去除了使mRNA不稳定的序列、PolyA加尾信号和内含子剪切类似位点,且提高了GC含量,完全符合玉米基因的特性,使得本发明杀虫基因特别适合在单子叶植物中表达,尤其是玉米和水稻,其表达量高且稳定性好。
2、毒力强。本发明杀虫基因PIC2-01为依据玉米的偏好密码子对杀虫蛋白质PIC2-01进行的优化,同时去除了使mRNA不稳定的序列、PolyA加尾信号和内含子剪切类似位点,且提高了GC含量,使得本发明杀虫基因不仅特别适合在单子叶植物中表达,尤其是玉米和水稻,而且还显著增强了PIC2-01杀虫蛋白对昆虫害虫的毒力,尤其是鳞翅目昆虫害虫。
3、杀虫谱广。本发明杀虫蛋白质PIC2-01蛋白不仅对玉米螟等鳞翅目害虫表现出较高的抗性,而且首次报道了本发明杀虫蛋白质PIC2-01蛋白对二化螟也具有较高的活性,因此在植物上应用前景广阔。
下面通过附图和实施例,对本发明的技术方案做进一步的详细描述。
附图说明
图1为本发明杀虫基因及其用途的含有PIC2-01核苷酸序列的重组克隆载体DBN01Ba-T构建流程图;
图2为本发明杀虫基因及其用途的含有PIC2-01核苷酸序列的重组表达载体DBN100056构建流程图;
图3为本发明杀虫基因及其用途的含有天然序列的重组表达载体DBN100056N构建流程图;
图4为本发明杀虫基因及其用途的转基因玉米植株的PIC2杀虫蛋白质的mRNA相对含量图;
图5为本发明杀虫基因及其用途的转基因玉米植株接种亚洲玉米螟的抗虫效果图;
图6为本发明杀虫基因及其用途的转基因水稻植株的PIC2杀虫蛋白质的mRNA相对含量图;
图7为本发明杀虫基因及其用途的转基因水稻植株接种二化螟的抗虫效果图。
具体实施方式
下面通过具体实施例进一步说明本发明杀虫基因及其用途的技术方案。
第一实施例、PIC2基因的选择、优化改造和合成
1、选择用于优化的PIC2-01基因序列
选择张杰等人于2003年登记的序列号为AAK63251.1的天然Cry1Ba3基因的氨基酸序列为本发明杀虫基因PIC2-01优化的依据,天然Cry1Ba3基因的核苷酸序列如序列表中SEQ ID NO:2所示,天然Cry1Ba3基因的氨基酸序列如序列表中SEQ ID NO:3所示。
2、优化上述PIC2-01氨基酸序列
保持上述PIC2-01氨基酸序列(1228个氨基酸)不改变,对编码相应于上述PIC2-01氨基酸序列(1228个氨基酸)的核苷酸序列(3687个核苷酸)依据玉米偏好性密码子进行优化改造。
密码子优化改造的策略主要包括:依据玉米的偏好密码子、不稳定序列的改造、G+C含量的提高等。天然PIC2基因的G+C含量较低,A+T含量很高,一方面,如果直接将天然基因序列导入植物基因组中可能会被误认为是植物基因调控序列,同时在这些天然基因中会出现A+T富含区域,类似于基因启动子中的TATA盒,这些区域则会导致基因的异常转录;另一方面,在转录的mRNA中聚腺苷酸化信号序列(AAUAAA)、与mRNA剪接相关的小RNA互补序列会导致RNA不稳定。因此,优化后的PIC2-01基因序列除了有较高的G+C含量外,还改变DNA和转录成mRNA中出现的不稳定结构,从而保证蛋白的正常翻译;再一方面,完全应用玉米的偏好密码子改造天然PIC2核苷酸序列,排除酶切位点和一些序列的修饰,玉米的密码子使用偏好性可参考http://www.kazusa.or.jp/codon/cgi-bin/showcodon.cgi?species=381124。
基于以上优化策略,得到PIC2-01核苷酸序列,G+C含量从原来的39%提高到55%,使其更加符合玉米基因的特性。所述PIC2-01核苷酸序列共含有3687个核苷酸,编码1228个氨基酸,其核苷酸序列如序列表中SEQ ID NO:1所示。
3、合成上述PIC2-01核苷酸序列
所述PIC2-01核苷酸序列(如序列表中SEQ ID NO:1所示)由南京金斯瑞生物科技有限公司合成;合成的所述PIC2-01基因序列(SEQ ID NO:1)的5’端还连接有SphI酶切位点,所述PIC2-01基因序列(SEQ ID NO:1)的3’端还连接有SpeI酶切位点。
第二实施例、重组表达载体的构建及重组表达载体转化农杆菌
1、构建含有PIC2-01核苷酸序列的重组克隆载体DBN01Ba-T将合成的PIC2-01核苷酸序列连入克隆载体pGEM-T(Promega,Madison,USA,CAT:A3600)上,操作步骤按Promega公司产品pGEM-T载体说明书进行,得到重组克隆载体DBN01Ba-T,其构建流程如图1所示(其中,Amp表示氨苄青霉素抗性基因;f1表示噬菌体f1的复制起点;LacZ为LacZ起始密码子;SP6为SP6RNA聚合酶启动子;T7为T7RNA聚合酶启动子;PIC2-01为PIC2-01核苷酸序列(SEQ ID NO:1);MCS为多克隆位点)。
然后将重组克隆载体DBN01Ba-T用热激方法转化大肠杆菌T1感受态细胞(Transgen,Beijing,China,CAT:CD501),其热激条件为:50μl大肠杆菌T1感受态细胞、10μl质粒DNA(重组克隆载体DBN01Ba-T),42℃水浴30秒;37℃水浴1小时(100rpm转速下摇床摇动),在表面涂有IPTG(异丙基硫代-β-D-半乳糖苷)和X-gal(5-溴-4-氯-3-吲哚-β-D-半乳糖苷)的氨苄青霉素(100毫克/升)的LB平板(胰蛋白胨10g/L,酵母提取物5g/L,NaCl10g/L,琼脂15g/L,用NaOH调pH至7.5)上生长过夜。挑取白色菌落,在LB液体培养基(胰蛋白胨10g/L,酵母提取物5g/L,NaCl10g/L,氨苄青霉素100mg/L,用NaOH调pH至7.5)中于温度37℃条件下培养过夜。碱法提取其质粒:将菌液在12000rpm转速下离心1min,去上清液,沉淀菌体用100μl冰预冷的溶液I(25mM Tris-HCl,10mM EDTA(乙二胺四乙酸),50mM葡萄糖,pH8.0)悬浮;加入150μl新配制的溶液II(0.2M NaOH,1%SDS(十二烷基硫酸钠)),将管子颠倒4次,混合,置冰上3-5min;加入150μl冰冷的溶液III(4M醋酸钾,2M醋酸),立即充分混匀,冰上放置5-10min;于温度4℃、转速12000rpm条件下离心5min,在上清液中加入2倍体积无水乙醇,混匀后室温放置5min;于温度4℃、转速12000rpm条件下离心5min,弃上清液,沉淀用浓度(V/V)为70%的乙醇洗涤后晾干;加入30μl含RNase(20μg/ml)的TE(10mM Tris-HCl,1mM EDTA,PH8.0)溶解沉淀;于温度37℃下水浴30min,消化RNA;于温度-20℃保存备用。
提取的质粒经StyI和EcoRV酶切鉴定后,对阳性克隆进行测序验证,结果表明重组克隆载体DBN01Ba-T中插入的所述PIC2-01核苷酸序列为序列表中SEQ ID NO:1所示的核苷酸序列,即PIC2-01核苷酸序列正确插入。
2、构建含有PIC2-01核苷酸序列的重组表达载体DBN100056
用限制性内切酶SphI和SpeI分别酶切重组克隆载体DBN01Ba-T和表达载体DBNBC-01(载体骨架:pCAMBIA2301(CAMBIA机构可以提供)),将切下的PIC2-01核苷酸序列片段插到表达载体DBNBC-01的SphI和SpeI位点之间,利用常规的酶切方法构建载体是本领域技术人员所熟知的,构建成重组表达载体DBN100056,其构建流程如图2所示(Kan:卡那霉素基因;RB:右边界;Ubi:玉米Ubiquitin(泛素)基因启动子(SEQ ID NO:4);PIC2-01:PIC2-01核苷酸序列(SEQ ID NO:1);Nos:胭脂碱合成酶基因的终止子(SEQ ID NO:5);PMI:磷酸甘露糖异构酶基因(SEQ ID NO:6);LB:左边界)。
将重组表达载体DBN100056用热激方法转化大肠杆菌T1感受态细胞,其热激条件为:50μl大肠杆菌T1感受态细胞、10μl质粒DNA(重组表达载体DBN100056),42℃水浴30秒;37℃水浴1小时(100rpm转速下摇床摇动);然后在含50mg/L卡那霉素(Kanamycin)的LB固体平板(胰蛋白胨10g/L,酵母提取物5g/L,NaCl10g/L,琼脂15g/L,用NaOH调pH至7.5)上于温度37℃条件下培养12小时,挑取白色菌落,在LB液体培养基(胰蛋白胨10g/L,酵母提取物5g/L,NaCl10g/L,卡那霉素50mg/L,用NaOH调pH至7.5)中于温度37℃条件下培养过夜。碱法提取其质粒。将提取的质粒用限制性内切酶SphI和SpeI酶切后鉴定,并将阳性克隆进行测序鉴定,结果表明重组表达载体DBN100056在SphI和SpeI位点间的核苷酸序列为序列表中SEQ ID NO:1所示核苷酸序列,即PIC2-01核苷酸序列。
3、构建含有天然序列的重组表达载体DBN100056N(正对照)
按照本发明第二实施例中1所述的构建含有PIC2-01核苷酸序列的重组克隆载体DBN01Ba-T的方法,利用天然序列(SEQ ID NO:7)构建含有天然序列的重组克隆载体DBN01BaR-T。对阳性克隆进行测序验证,结果表明重组克隆载体DBN01BaR-T中插入的天然序列为序列表中SEQ ID NO:7所示的核苷酸序列,即天然序列正确插入。
按照本发明第二实施例中2所述的构建含有PIC2-01核苷酸序列的重组表达载体DBN100056的方法,利用天然序列构建含有天然序列的重组表达载体DBN100056N,其构建流程如图3所示(载体骨架:pCAMBIA2301(CAMBIA机构可以提供);Kan:卡那霉素基因;RB:右边界;Ubi:玉米Ubiquitin(泛素)基因启动子(SEQ ID NO:4);mN:天然序列(SEQ ID NO:7);Nos:胭脂碱合成酶基因的终止子(SEQ ID NO:5);PMI:磷酸甘露糖异构酶基因(SEQID NO:6);LB:左边界)。对阳性克隆进行测序验证,结果表明重组表达载体DBN100056N中插入的天然序列为序列表中SEQ ID NO:7所示的核苷酸序列,即天然序列正确插入。
4、重组表达载体转化农杆菌
对己经构建正确的重组表达载体DBN100056和DBN100056N(天然序列)用液氮法转化到农杆菌LBA4404(Invitrgen,Chicago,USA,CAT:18313-015)中,其转化条件为:100μL农杆菌LBA4404、3μL质粒DNA(重组表达载体);置于液氮中10分钟,37℃温水浴10分钟;将转化后的农杆菌LBA4404接种于LB试管中于温度28℃、转速为200rpm条件下培养2小时,涂于含50mg/L的利福平(Rifampicin)和100mg/L的卡那霉素(Kanamycin)的LB平板上直至长出阳性单克隆,挑取单克隆培养并提取其质粒,用限制性内切酶StyI和BglII酶切后进行酶切验证,结果表明重组表达载体DBN100056和DBN100056N(天然序列)结构完全正确。
第三实施例、转入PIC2-01核苷酸序列的玉米植株的获得及验证
1、获得转入PIC2-01基因序列的玉米植株
按照常规采用的农杆菌侵染法,将无菌培养的玉米品种综31(Z31)的幼胚与第二实施例中4所述的农杆菌共培养,以将第二实施例中2和3构建的重组表达载体DBN100056和DBN100056N(天然序列)中的T-DNA(包括玉米Ubiquitin基因的启动子序列、PIC2-01核苷酸序列、天然序列、PMI基因和Nos终止子序列)转入到玉米染色体组中,获得了转入PIC2-01核苷酸序列的玉米植株和转入天然序列的玉米植株(正对照);同时以野生型玉米植株作为负对照。
对于农杆菌介导的玉米转化,简要地,从玉米中分离未成熟的幼胚,用农杆菌悬浮液接触幼胚,其中农杆菌能够将PIC2-01核苷酸序列传递至幼胚之一的至少一个细胞(步骤1:侵染步骤),在此步骤中,幼胚优选地浸入农杆菌悬浮液(OD660=0.4-0.6,侵染培养基(MS盐4.3g/L、MS维他命、干酪素300mg/L、蔗糖68.5g/L、葡萄糖36g/L、乙酰丁香酮(AS)40mg/L、2,4-二氯苯氧乙酸(2,4-D)1mg/L,pH5.3))中以启动接种。幼胚与农杆菌共培养一段时期(3天)(步骤2:共培养步骤)。优选地,幼胚在侵染步骤后在固体培养基(MS盐4.3g/L、MS维他命、干酪素300mg/L、蔗糖20g/L、葡萄糖10g/L、乙酰丁香酮(AS)100mg/L、2,4-二氯苯氧乙酸(2,4-D)1mg/L、琼脂8g/L,pH5.8)上培养。在此共培养阶段后,可以有一个选择性的“恢复”步骤。在“恢复”步骤中,恢复培养基(MS盐4.3g/L、MS维他命、干酪素300mg/L、蔗糖30g/L、2,4-二氯苯氧乙酸(2,4-D)1mg/L、琼脂8g/L,pH5.8)中至少存在一种己知抑制农杆菌生长的抗生素(头孢霉素),不添加植物转化体的选择剂(步骤3:恢复步骤)。优选地,幼胚在有抗生素但没有选择剂的固体培养基上培养,以消除农杆菌并为侵染细胞提供恢复期。接着,接种的幼胚在含选择剂(甘露糖)的培养基上培养并选择生长着的转化愈伤组织(步骤4:选择步骤)。优选地,幼胚在有选择剂的筛选固体培养基(MS盐4.3g/L、MS维他命、干酪素300mg/L、蔗糖5g/L、甘露糖12.5g/L、2,4-二氯苯氧乙酸(2,4-D)1mg/L、琼脂8g/L,pH5.8)上培养,导致转化的细胞选择性生长。然后,愈伤组织再生成植物(步骤5:再生步骤),优选地,在含选择剂的培养基上生长的愈伤组织在固体培养基(MS分化培养基和MS生根培养基)上培养以再生植物。
筛选得到的抗性愈伤组织转移到所述MS分化培养基(MS盐4.3g/L、MS维他命、干酪素300mg/L、蔗糖30g/L、6-苄基腺嘌呤2mg/L、甘露糖5g/L、琼脂8g/L,pH5.8)上,25℃下培养分化。分化出来的小苗转移到所述MS生根培养基(MS盐2.15g/L、MS维他命、干酪素300mg/L、蔗糖30g/L、吲哚-3-乙酸1mg/L、琼脂8g/L,pH5.8)上,25℃下培养至约10cm高,移至温室培养至结实。在温室中,每天于28℃下培养16小时,再于20℃下培养8小时。
2、用TaqMan验证转入PIC2-01核苷酸序列的玉米植株
分别取转入PIC2-01核苷酸序列的玉米植株和转入天然序列的玉米植株的叶片约100mg作为样品,用Qiagen的DNeasy Plant Maxi Kit提取其基因组DNA,通过Taqman探针荧光定量PCR方法检测PIC2基因的拷贝数。同时以野生型玉米植株作为负对照,按照上述方法进行检测分析。实验设3次重复,取平均值。
检测PIC2基因拷贝数的具体方法如下:
步骤11、分别取转入PIC2-01核苷酸序列的玉米植株、转入天然序列的玉米植株和野生型玉米植株的叶片各100mg,分别在研钵中用液氮研成匀浆,每个样品取3个重复;
步骤12、使用Qiagen的DNeasy Plant Mini Kit提取上述样品的基因组DNA,具体方法参考其产品说明书;
步骤13、用NanoDrop2000(Thermo Scientifc)测定上述样品的基因组DNA浓度;
步骤14、调整上述样品的基因组DNA浓度至同一浓度值,所述浓度值的范围为80-100ng/μl;
步骤15、采用Taqman探针荧光定量PCR方法鉴定样品的拷贝数,以经过鉴定已知拷贝数的样品作为标准品,以野生型玉米植株的样品作为对照,每个样品3个重复,取其平均值;荧光定量PCR引物和探针序列分别是:
以下引物和探针用来检测PIC2-01核苷酸序列:
引物1(CF1):TGCGGTGTCTAACCACTCAGC如序列表中SEQ ID NO:8所示;
引物2(CR1):ATGCACAGGGAGTCTTCGATTC如序列表中SEQ ID NO:9所示;
探针1(CP1):CAGATGGACCTCCTGCCAGATGCG如序列表中SEQ IDNO:10所示;
以下引物和探针用来检测天然序列:
引物3(CF2):CCTATGGCCGCTTTCAGTTG如序列表中SEQ ID NO:11所示;
引物4(CR2):TGTGGTGCGCATCGATTC如序列表中SEQ ID NO:12所示;
探针2(CP2):CTCCGCACCTTCCGATTGGGCT如序列表中SEQ ID NO:13所示;
PCR反应体系为:
Figure BDA00002855823700121
所述50×引物/探针混合物包含1mM浓度的每种引物各45μl,100μM浓度的探针50μl和860μl1×TE缓冲液,并且在4℃,贮藏在琥珀试管中。
PCR反应条件为:
Figure BDA00002855823700131
利用SDS2.3软件(Applied Biosystems)分析数据。
实验结果表明,PIC2-01核苷酸序列和天然序列均己整合到所检测的玉米植株的染色体组中,而且转入PIC2-01核苷酸序列的玉米植株和转入天然序列的玉米植株均获得了含有单拷贝PIC2基因的转基因玉米植株。
第四实施例、转基因玉米植株的RT-PCR检测
1、转基因玉米植株的杀虫蛋白质(PIC2蛋白)的mRNA含量检测
分别取0.2g转入PIC2-01核苷酸序列的玉米植株和转入天然序列的玉米植株(正对照)的新鲜叶片(心叶)作为样品,液氮研磨收集100-200mg组织,后加入1ml所述TRIZOL提取液,涡旋使样品充分裂解,室温放置5min;加入0.2ml氯仿(chloroform)剧烈振荡混匀15s,室温放置10min;4℃下,12000rpm的转速下离心10min,取上清液加入0.5ml(或0.5X开始体积)的RNase-Free水,再加入1ml的异丙醇(1:1体积),充分混匀,室温放置10min,沉淀;4℃下,12000rpm的转速下离心10min,取沉淀加入1ml质量分数为75%的乙醇洗涤RNA沉淀;4℃下,8000rpm的转速下离心10min,去上清,RNA稍晾干约10-15min,加入100μl体积的RNase-Free水充分溶解;RNA样品DAaseI酶切,
如:20μl RNA样品(≤5μg,溶于水或者TE Buffer)
Figure BDA00002855823700132
混匀,37℃温浴30min,DNaseI灭活(DNaseI说明书)
加入1/10体积的3M NaOAc(RNase free,pH5.2)及3V的乙醇沉淀RNA;-80℃下,放置2h,2-8℃下,12000rpm的转速下离心10min;加入500μl质量分数为75%的乙醇洗涤,2-8℃下,10000rpm的转速下离心5min;加入质量分数为75%的乙醇再洗一次,离心后,再空甩一次,吸干离心管壁上的乙醇。室温干燥10-15min;加入100μl RNase free水充分溶解,离心去杂质,上清即为制备的总RNA;光密度法测定总RNA的浓度及纯度(OD260/OD280)(GeneQuant);总RNA电泳,检测总RNA是否降解(可放于-80℃保存)。加入2μg总RNA,1μl引物,1μl10mM dNTPs,补水(RNase-free水)至13μl;65℃变性10min后立即冰浴2min,退火;加入4μl5×M-MLV buffer,1μl20mM DTT,1μl RNase Inhibitor和1μl M-MLV(Invitrigen);42℃温浴1-2h后,取出于-20℃保存备用。每份样品取0.1μg用于Real-time PCR(RT-PCR)检测,引物如下:
Figure BDA00002855823700141
计算方法参照Livak et al.“Analysis of Relative Gene Expression Data UsingReal-Time Quantitative PCR and the
Figure BDA00002855823700142
Method”,Method(2001)25(4):402-408。
同时以野生型玉米植株和经Taqman鉴定为非转基因的玉米植株作为对照,按照上述方法进行检测分析。转入PIC2-01核苷酸序列的共3个株系(S1、S2和S3),转入天然序列的共3个株系(S4、S5和S6),经Taqman鉴定为非转基因的(NGM1)共1个株系,野生型的(CK1)共1个株系;从每个株系选5株进行测试,每株重复6次。
转基因玉米植株的PIC2杀虫蛋白质的mRNA含量的实验结果如图4所示。结果表明,转入PIC2-01核苷酸序列的玉米植株中的PIC2杀虫蛋白质的mRNA相对含量为转入天然序列的玉米植株的5倍左右。本领域技术人员熟知的,RT-PCR技术灵敏而且用途广泛,可直接用于检测细胞中基因的转录水平,进而间接地说明该基因的表达水平和蛋白表达量。因此,这一结果表明依据玉米的偏好密码子优化的PIC2-01核苷酸序列显著地增加了PIC2-01蛋白在玉米中表达的稳定性和表达量。
2、转基因玉米植株的抗虫效果检测
将转入PIC2-01核苷酸序列的玉米植株、转入天然序列的玉米植株、野生型玉米植株和经Taqman鉴定为非转基因的玉米植株(V3-V4时期)对亚洲玉米螟进行抗虫效果检测。
分别取转入PIC2-01核苷酸序列的玉米植株、转入天然序列的玉米植株、野生型玉米植株和经Taqman鉴定为非转基因的玉米植株的新鲜叶片,用无菌水冲洗干净并用纱布将叶片上的水吸干,然后将玉米叶片去除叶脉,同时剪成约1cm×2cm的长条状,取1片剪后的长条状叶片放入圆形塑料培养皿底部的滤纸上,所述滤纸用蒸馏水润湿,每个培养皿中放10头人工饲养的亚洲玉米螟(初孵幼虫),虫试培养皿加盖后,在温度26-28℃、相对湿度70%-80%、光周期(光/暗)16:8的条件下放置3天后统计幼虫死亡情况,计算各样品中亚洲玉米螟的平均死亡率。转入PIC2-01核苷酸序列的共3个株系(S1、S2和S3),转入天然序列的共2个株系(S4和S5),经Taqman鉴定为非转基因的(NGM1)共1个株系,野生型的(CK1)共1个株系;从每个株系选5株进行测试,每株重复6次。结果如表1和图5所示。
表1、转基因玉米植株接种亚洲玉米螟的抗虫实验结果
Figure BDA00002855823700151
表1的结果表明:转入PIC2-01核苷酸序列的玉米植株和转入天然序列的玉米植株中都可以选到对亚洲玉米螟具有一定抗性的植株,但转入PIC2-01核苷酸序列的玉米植株的试虫死亡率显著高于转入天然序列的玉米植株。转入PIC2-01核苷酸序列的玉米植株的试虫死亡率在80%左右或以上,而转入天然序列的玉米植株的试虫死亡率在30%左右。图5的结果表明:转入PIC2-01核苷酸序列的玉米植株虽然不会造成初孵幼虫的大量死亡,但是却对幼虫发育进度造成极大的抑制,3天后幼虫基本仍处于初孵状态或介于初孵-阴性对照状态之间,且其叶片损伤率也较小。
由此证明转入PIC2-01核苷酸序列的玉米植株具有较高抗虫能力,即表达PIC2-01蛋白水平高的转入PIC2-01核苷酸序列的玉米植株也具有较高的毒力,因此依据玉米的偏好密码子优化的PIC2-01核苷酸序列显著地增加了PIC2-01蛋白在玉米中表达的毒力。
第五实施例、转入PIC2-01核苷酸序列的水稻植株的获得及验证
1、获得转入PIC2-01核苷酸序列的水稻植株
按照常规采用的农杆菌侵染法,将无菌培养的粳稻品种日本晴的愈伤组织与第二实施例中4所述的农杆菌共培养,以将第二实施例中2和3构建的重组表达载体DBN100056和DBN100056N(天然序列)中的T-DNA(包括玉米Ubiquitin基因的启动子序列、PIC2-01核苷酸序列、天然序列、PMI基因和Nos终止子序列)转入到水稻染色体组中,获得了转入PIC2-01核苷酸序列的水稻植株和转入天然序列的水稻植株(正对照);同时以野生型水稻植株作为负对照。
对于农杆菌介导的水稻转化,简要地,把水稻种子接种在诱导培养基(N6盐、N6维他命、干酪素300mg/L、蔗糖30g/L、2,4-二氯苯氧乙酸(2,4-D)2mg/L、植物凝胶3g/L,pH5.8)上,从水稻成熟胚诱导出愈伤组织(步骤1:愈伤诱导步骤),之后,优选愈伤组织,用农杆菌悬浮液接触愈伤组织,其中农杆菌能够将PIC2-01核苷酸序列、PIC2-01取代核苷酸序列、PIC2-01截短核苷酸序列、PIC2-01添加核苷酸序列和天然序列传递至愈伤组织上的至少一个细胞(步骤2:侵染步骤)。在此步骤中,愈伤组织优选地浸入农杆菌悬浮液(OD660=0.3,侵染培养基(N6盐、N6维他命、干酪素300mg/L、蔗糖30g/L、葡萄糖10g/L、乙酰丁香酮(AS)40mg/L、2,4-二氯苯氧乙酸(2,4-D)2mg/L、pH5.4))中以启动侵染。愈伤组织与农杆菌共培养一段时期(3天)(步骤3:共培养步骤)。优选地,愈伤组织在侵染步骤后在固体培养基(N6盐、N6维他命、干酪素300mg/L、蔗糖30g/L、葡萄糖10g/L、乙酰丁香酮(AS)40mg/L、2,4-二氯苯氧乙酸(2,4-D)2mg/L、植物凝胶3g/L,pH5.8)上培养。在此共培养阶段后,有一个“恢复”步骤。在“恢复”步骤中,恢复培养基(N6盐、N6维他命、干酪素300mg/L、蔗糖30g/L、2,4-二氯苯氧乙酸(2,4-D)2mg/L、植物凝胶3g/L,pH5.8)中至少存在一种己知抑制农杆菌生长的抗生素(头孢霉素),不添加植物转化体的选择剂(步骤4:恢复步骤)。优选地,愈伤组织在有抗生素但没有选择剂的固体培养基上培养,以消除农杆菌并为侵染细胞提供恢复期。接着,接种的愈伤组织在含选择剂(甘露糖)的培养基上培养并选择生长着的转化愈伤组织(步骤5:选择步骤)。优选地,愈伤组织在有选择剂的筛选固体培养基(N6盐、N6维他命、干酪素300mg/L、蔗糖10g/L、甘露糖10g/L、2,4-二氯苯氧乙酸(2,4-D)2mg/L、植物凝胶3g/L,pH5.8)上培养,导致转化的细胞选择性生长。然后,愈伤组织再生成植物(步骤6:再生步骤),优选地,在含选择剂的培养基上生长的愈伤组织在固体培养基(N6分化培养基和MS生根培养基)上培养以再生植物。
筛选得到的抗性愈伤组织转移到所述N6分化培养基(N6盐、N6维他命、干酪素300mg/L、蔗糖20g/L、6-苄氨基腺嘌呤2mg/L、奈乙酸1mg/L、植物凝胶3g/L,pH5.8)上,25℃下培养分化。分化出来的小苗转移到所述MS生根培养基(MS盐、MS维他命、干酪素300mg/L、蔗糖15g/L、植物凝胶3g/L,pH5.8)上,25℃下培养至约10cm高,移至温室培养至结实。在温室中,每天于30℃下培养。
2、用TaqMan验证转入PIC2-01核苷酸序列的水稻植株
分别取转入PIC2-01核苷酸序列的水稻植株和转入天然序列的水稻植株的叶片约100mg作为样品,用Qiagen的DNeasy Plant Maxi Kit提取其基因组DNA,通过Taqman探针荧光定量PCR方法检测PIC2基因的拷贝数。同时以野生型水稻植株作为对照,按照上述方法进行检测分析。实验设3次重复,取平均值。
检测PIC2基因拷贝数的具体方法如下:
步骤31、分别取转入PIC2-01核苷酸序列的水稻植株、转入天然序列的水稻植株和野生型水稻植株的叶片各100mg,分别在研钵中用液氮研成匀浆,每个样品取3个重复;
步骤32、使用Qiagen的DNeasy Plant Mini Kit提取上述样品的基因组DNA,具体方法参考其产品说明书;
步骤33、用NanoDrop2000(Thermo Scientific)测定上述样品的基因组DNA浓度;
步骤34、调整上述样品的基因组DNA浓度至同一浓度值,所述浓度值的范围为80-100ng/μl;
步骤35、采用Taqman探针荧光定量PCR方法鉴定样品的拷贝数,以经过鉴定已知拷贝数的样品作为标准品,以野生型水稻植株的样品作为对照,每个样品3个重复,取其平均值;荧光定量PCR引物和探针序列分别是:
以下引物和探针用来检测PIC2-01核苷酸序列:
引物1(CF1):TGCGGTGTCTAACCACTCAGC如序列表中SEQ ID NO:8所示;
引物2(CR1):ATGCACAGGGAGTCTTCGATTC如序列表中SEQ ID NO:9所示;
探针1(CP1):CAGATGGACCTCCTGCCAGATGCG如序列表中SEQ IDNO:10所示;
以下引物和探针用来检测天然序列:
引物3(CF2):CCTATGGCCGCTTTCAGTTG如序列表中SEQ ID NO:11所示;
引物4(CR2):TGTGGTGCGCATCGATTC如序列表中SEQ ID NO:12所示;
探针2(CP2):CTCCGCACCTTCCGATTGGGCT如序列表中SEQ ID NO:13所示;
PCR反应体系为:
Figure BDA00002855823700171
所述50×引物/探针混合物包含1mM浓度的每种引物各45μl,100μM浓度的探针50μl和860μl1×TE缓冲液,并且在4℃,贮藏在琥珀试管中。
PCR反应条件为:
Figure BDA00002855823700182
利用SDS2.3软件(Applied Biosystems)分析数据。
实验结果表明,PIC2-01核苷酸序列和天然序列均己整合到所检测的水稻植株的染色体组中,而且转入PIC2-01核苷酸序列的水稻植株和转入天然序列的水稻植株均获得了含有单拷贝PIC2基因的转基因水稻植株。
第六实施例、转基因水稻植株的RT-PCR检测
1、转基因水稻植株的杀虫蛋白质(PIC2蛋白)的mRNA含量检测
分别取0.2g转入PIC2-01核苷酸序列的水稻植株和转入天然序列的水稻植株(正对照)的新鲜叶片(心叶)作为样品,液氮研磨收集100-200mg组织,后加入1ml所述TRIZOL提取液,涡旋使样品充分裂解,室温放置5min;加入0.2ml氯仿(chloroform)剧烈振荡混匀15s,室温放置10min;4℃下,12000rpm的转速下离心10min,取上清液加入0.5ml(或0.5X开始体积)的RNase-Free水,再加入1ml的异丙醇(1:1体积),充分混匀,室温放置10min,沉淀;4℃下,12000rpm的转速下离心10min,取沉淀加入1ml质量分数为75%的乙醇洗涤RNA沉淀;4℃下,8000rpm的转速下离心10min,去上清,RNA稍晾干约10-15min,加入100μl体积的RNase-Free水充分溶解;RNA样品DAaseI酶切,
如:20μl RNA样品(≤5μg,溶于水或者TE Buffer)
Figure BDA00002855823700183
混匀,37℃温浴30min,DNaseI灭活(DNaseI说明书)
加入1/10体积的3M NaOAc(RNase free,pH5.2)及3V的乙醇沉淀RNA;-80℃下,放置2h,2-8℃下,12000rpm的转速下离心10min;加入500μl质量分数为75%的乙醇洗涤,2-8℃下,10000rpm的转速下离心5min;加入质量分数为75%的乙醇再洗一次,离心后,再空甩一次,吸干离心管壁上的乙醇。室温干燥10-15min;加入100μl RNase free水充分溶解,离心去杂质,上清即为制备的总RNA;光密度法测定总RNA的浓度及纯度(OD260/OD280)(GeneQuant);总RNA电泳,检测总RNA是否降解(可放于-80℃保存)。加入2μg总RNA,1μl引物,1μl10mM dNTPs,补水(RNase-free水)至13μl;65℃变性10min后立即冰浴2min,退火;加入4μl5×M-MLV buffer,1μl20mM DTT,1μl RNse Inhibitor和1μl M-MLV(Invitrigen);42℃温浴1-2h后,取出于-20℃保存备用。每份样品取0.1μg用于Real-time PCR(RT-PCR)检测,引物如下:
Figure BDA00002855823700191
计算方法参照Livak et al.“Analysis of Relative Gene Expression Data UsingReal-Time Quantitative PCR and the
Figure BDA00002855823700192
Method”,Method(2001)25(4):402-408。
同时以野生型水稻植株和经Taqman鉴定为非转基因的水稻植株作为对照,按照上述方法进行检测分析。转入PIC2-01核苷酸序列的共3个株系(S1、S2和S3),转入天然序列的共3个株系(S4、S5和S6),经Taqman鉴定为非转基因的(NGM2)共1个株系,野生型的(CK2)共1个株系;从每个株系选5株进行测试,每株重复6次。
转基因水稻植株的PIC2杀虫蛋白质的mRNA含量的实验结果如图6所示。结果表明,转入PIC2-01核苷酸序列的水稻植株中的PIC2杀虫蛋白质的mRNA相对含量为转入天然序列的水稻植株的5倍左右。本领域技术人员熟知的,RT-PCR技术灵敏而且用途广泛,可直接用于检测细胞中基因的转录水平,进而间接地说明该基因的表达水平和蛋白表达量和稳定性。因此,这一结果表明依据水稻的偏好密码子优化的PIC2-01核苷酸序列显著地增加了PIC2-01蛋白在水稻中表达的稳定性和表达量。
2、转基因水稻植株的抗虫效果检测
将转入PIC2-01核苷酸序列的水稻植株、转入天然序列的水稻植株、野生型水稻植株和经Taqman鉴定为非转基因的水稻植株对二化螟进行抗虫效果检测。
分别取转入PIC2-01核苷酸序列的水稻植株、转入天然序列的水稻植株、野生型水稻植株和经Taqman鉴定为非转基因的水稻植株的新鲜叶片,用无菌水冲洗干净并用纱布将叶片上的水吸干,然后将水稻叶片去除叶脉,同时剪成约1cm×2cm的长条状,取2片剪后的长条状叶片放入圆形塑料培养皿底部的滤纸上,所述滤纸用蒸馏水润湿,每个培养皿中放10头人工饲养的二化螟(初孵幼虫),虫试培养皿加盖后,在温度26-28℃、相对湿度70%-80%、光周期(光/暗)16:8的条件下放置3天后,根据二化螟幼虫发育进度、死亡率和叶片损伤率三项指标,获得抗性总分:总分=100×死亡率+[100×死亡率90×(初孵虫数/接虫总数)+60×(初孵-阴性对照虫数/接虫总数)+10×(阴性对照虫数/接虫总数)]+100×(1-叶片损伤率)。转入PIC2-01核苷酸序列的共3个株系(S7、S8和S9),转入天然序列的共2个株系(S10和S11),经Taqman鉴定为非转基因的(NGM2)共1个株系,野生型的(CK2)共1个株系;从每个株系选5株进行测试,每株重复6次。结果如表2和图7所示。
表2、转基因水稻植株接种二化螟的抗虫实验结果
Figure BDA00002855823700201
表2的结果表明:转入PIC2-01核苷酸序列的水稻植株和转入天然序列的水稻植株中都可以选到对二化螟具有一定抗性的植株,但转入PIC2-01核苷酸序列的水稻植株的生测总分显著高于转入天然序列的水稻植株。转入PIC2-01核苷酸序列的水稻植株的生测总分均在200分左右或以上,而转入天然序列的水稻植株的生测总分在130分左右。图7的结果表明:转入PIC2-01核苷酸序列的水稻植株虽然不会造成初孵幼虫的大量死亡,但是却对幼虫发育进度造成极大的抑制,3天后幼虫基本仍处于初孵状态或介于初孵-阴性对照状态之间,且其叶片损伤率也较小。
由此证明转入PIC2-01核苷酸序列的水稻植株具有较高抗虫能力,即表达PIC2-01蛋白水平高的转入PIC2-01核苷酸序列的水稻植株也具有较高的毒力,因此依据玉米的偏好密码子优化的PIC2-01核苷酸序列显著地增加了PIC2-01蛋白在水稻中表达的毒力。
综上所述,本发明杀虫基因是依据玉米的偏好密码子而进行的优化改造,同时去除了使mRNA不稳定的序列、PolyA加尾信号和内含子剪切类似位点,且提高了GC含量,使得本发明杀虫基因特别适合在单子叶植物中表达,尤其是玉米和水稻,不仅显著提高了PIC2-01杀虫蛋白的表达量和稳定性,而且还显著增强了PIC2-01杀虫蛋白对昆虫害虫的毒力,尤其是鳞翅目昆虫害虫。
最后所应说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围。
Figure IDA00002855824300011
Figure IDA00002855824300021
Figure IDA00002855824300031
Figure IDA00002855824300041
Figure IDA00002855824300051
Figure IDA00002855824300061
Figure IDA00002855824300071
Figure IDA00002855824300091
Figure IDA00002855824300101
Figure IDA00002855824300111
Figure IDA00002855824300121
Figure IDA00002855824300131
Figure IDA00002855824300141
Figure IDA00002855824300151
Figure IDA00002855824300161
Figure IDA00002855824300171

Claims (15)

1.一种杀虫基因,其特征在于,其核苷酸序列包括:
(a)具有SEQ ID NO:1所示的核苷酸序列;或
(b)与(a)的核苷酸序列同类编码,且不为SEQ ID NO:2;或
(c)在严格条件下与(a)或(b)限定的核苷酸序列杂交且编码具有杀虫活性的蛋白质的核苷酸序列。
2.一种表达盒,其特征在于,包含在有效连接的调控序列调控下的权利要求1所述杀虫基因。
3.一种包含权利要求1所述杀虫基因或权利要求2所述表达盒的重组载体。
4.一种包含权利要求1所述杀虫基因或权利要求2所述表达盒的转基因宿主生物,其特征在于,包括植物细胞、动物细胞、细菌、酵母、杆状病毒、线虫或藻类。
5.根据权利要求4所述转基因宿主生物,其特征在于,所述植物为玉米、大豆、棉花、水稻或小麦。
6.一种产生杀虫蛋白质的方法,其特征在于,包括:
获得权利要求4或5所述转基因宿主生物的细胞;
在允许产生杀虫蛋白质的条件下培养所述转基因宿主生物的细胞;
回收所述杀虫蛋白质。
7.一种用于增加昆虫靶范围的方法,其特征在于,包括:将权利要求1所述杀虫基因编码的杀虫蛋白质或权利要求2所述表达盒编码的杀虫蛋白质在植物中与至少一种不同于权利要求1所述杀虫基因编码的杀虫蛋白质或权利要求2所述表达盒编码的杀虫蛋白质的第二种杀虫核苷酸一起表达。
8.根据权利要求7所述用于增加昆虫靶范围的方法,其特征在于,所述第二种杀虫核苷酸可以编码Cry类杀虫蛋白质、Vip类杀虫蛋白质、蛋白酶抑制剂、凝集素、α-淀粉酶或过氧化物酶。
9.根据权利要求7所述用于增加昆虫靶范围的方法,其特征在于,所述第二种杀虫核苷酸为抑制目标昆虫害虫中重要基因的dsRNA。
10.一种产生抗虫植物的方法,其特征在于,包括:将权利要求1所述杀虫基因或权利要求2所述表达盒或权利要求3所述重组载体导入植物。
11.根据权利要求10所述产生抗虫植物的方法,其特征在于,所述植物为玉米、大豆、棉花、水稻或小麦。
12.一种用于保护植物免受由昆虫害虫引起的损伤的方法,其特征在于,包括:将权利要求1所述杀虫基因或权利要求2所述表达盒或权利要求3所述重组载体导入植物,使导入后的植物产生足够保护其免受昆虫害虫侵害量的杀虫蛋白质。
13.根据权利要求12所述用于保护植物免受由昆虫害虫引起的损伤的方法,其特征在于,所述植物为玉米、大豆、棉花、水稻或小麦。
14.一种控制昆虫害虫的方法,其特征在于,包括:使昆虫害虫与抑制量的由权利要求1所述杀虫基因编码的昆虫抑制性蛋白接触。
15.根据权利要求14所述控制昆虫害虫的方法,其特征在于,所述昆虫害虫是鳞翅目昆虫害虫。
CN2013100589011A 2013-02-25 2013-02-25 杀虫基因及其用途 Pending CN103146717A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2013100589011A CN103146717A (zh) 2013-02-25 2013-02-25 杀虫基因及其用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2013100589011A CN103146717A (zh) 2013-02-25 2013-02-25 杀虫基因及其用途

Publications (1)

Publication Number Publication Date
CN103146717A true CN103146717A (zh) 2013-06-12

Family

ID=48545036

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2013100589011A Pending CN103146717A (zh) 2013-02-25 2013-02-25 杀虫基因及其用途

Country Status (1)

Country Link
CN (1) CN103146717A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1513868A (zh) * 2003-07-30 2004-07-21 中国农业科学院植物保护研究所 人工合成的用于转基因抗虫植物的Bt杀虫基因及其研制方法
CN101580843A (zh) * 2009-04-23 2009-11-18 中国农业大学 人工合成用于转基因抗虫植物的Bt杀虫基因
CN102533841A (zh) * 2012-02-13 2012-07-04 中国农业科学院生物技术研究所 一种提高Bt杀虫蛋白在汉逊酵母中表达量的方法
CN102586286A (zh) * 2012-03-07 2012-07-18 复旦大学 Bt杀虫蛋白Cry1Ac-a的表达体系
CN102596988A (zh) * 2009-10-02 2012-07-18 先正达参股股份有限公司 杀虫蛋白

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1513868A (zh) * 2003-07-30 2004-07-21 中国农业科学院植物保护研究所 人工合成的用于转基因抗虫植物的Bt杀虫基因及其研制方法
CN101580843A (zh) * 2009-04-23 2009-11-18 中国农业大学 人工合成用于转基因抗虫植物的Bt杀虫基因
CN102596988A (zh) * 2009-10-02 2012-07-18 先正达参股股份有限公司 杀虫蛋白
CN102533841A (zh) * 2012-02-13 2012-07-04 中国农业科学院生物技术研究所 一种提高Bt杀虫蛋白在汉逊酵母中表达量的方法
CN102586286A (zh) * 2012-03-07 2012-07-18 复旦大学 Bt杀虫蛋白Cry1Ac-a的表达体系

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
N.BOHOROVA 等: "Novel synthetic Bacillus thuringiensis cry1B gene and the cry1B-cry1Ab translational fusion confer resistance to southwestern corn borer, sugarcane borer and fall armyworm in transgenic tropical maize", 《THEOR APPL GENET》 *
ZHANG,J.等: "AAK63251.1", 《GENBANK》 *
周宗梁 等: "水稻中cry1Ah1基因密码子优化方案的比较", 《生物工程学报》 *
李圣彦 等: "利用密码子优化提高BtcryaAH基因在转基因玉米", 《中国农业科技导报》 *
王广君 等: "苏云金芽孢杆菌杀虫晶体蛋白Cry1Ba3活性区的研究", 《中国农业科学》 *

Similar Documents

Publication Publication Date Title
CN103509808B (zh) 杀虫基因及其用途
CN103718896B (zh) 控制害虫的方法
CN103718895A (zh) 控制害虫的方法
CN104824010A (zh) 杀虫蛋白的用途
CN104621172A (zh) 杀虫蛋白的用途
CN102972243A (zh) 控制害虫的方法
CN104522056A (zh) 杀虫蛋白的用途
CN102786584B (zh) 杀虫蛋白质、其编码基因及用途
CN102786585B (zh) 杀虫蛋白质、其编码基因及用途
CN103757049B (zh) 控制害虫的构建体及其方法
CN104920425A (zh) 杀虫蛋白的用途
CN103145814B (zh) 杀虫蛋白质、其编码基因及用途
CN104886111A (zh) 杀虫蛋白的用途
CN103739683B (zh) 杀虫蛋白质、其编码基因及用途
CN102533793B (zh) 杀虫基因及其用途
CN102796183B (zh) 杀虫蛋白质、其编码基因及用途
CN103734169A (zh) 控制害虫的方法
CN104621171A (zh) 杀虫蛋白的用途
CN103725704B (zh) 控制害虫的构建体及其方法
CN104522033A (zh) 杀虫蛋白的用途
CN102796182B (zh) 杀虫蛋白质、其编码基因及用途
CN102993280B (zh) 杀虫蛋白质、其编码基因及用途
CN102993281B (zh) 杀虫蛋白质、其编码基因及用途
CN103725696B (zh) 杀虫基因及其用途
CN105660674A (zh) 杀虫蛋白的用途

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20130612