[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN103102910A - Two-stage hydrogenation method for producing low freezing point motor fuel from biological oil - Google Patents

Two-stage hydrogenation method for producing low freezing point motor fuel from biological oil Download PDF

Info

Publication number
CN103102910A
CN103102910A CN2011103536746A CN201110353674A CN103102910A CN 103102910 A CN103102910 A CN 103102910A CN 2011103536746 A CN2011103536746 A CN 2011103536746A CN 201110353674 A CN201110353674 A CN 201110353674A CN 103102910 A CN103102910 A CN 103102910A
Authority
CN
China
Prior art keywords
oil
hydrogenation
reaction zone
catalyst
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011103536746A
Other languages
Chinese (zh)
Other versions
CN103102910B (en
Inventor
刘涛
孙洪江
李宝忠
张学辉
赵崇庆
孙海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Petroleum and Chemical Corp
Sinopec Fushun Research Institute of Petroleum and Petrochemicals
Original Assignee
China Petroleum and Chemical Corp
Sinopec Fushun Research Institute of Petroleum and Petrochemicals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petroleum and Chemical Corp, Sinopec Fushun Research Institute of Petroleum and Petrochemicals filed Critical China Petroleum and Chemical Corp
Priority to CN201110353674.6A priority Critical patent/CN103102910B/en
Publication of CN103102910A publication Critical patent/CN103102910A/en
Application granted granted Critical
Publication of CN103102910B publication Critical patent/CN103102910B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

The present invention relates to a two-stage hydrogenation method for producing a low freezing point motor fuel from a biological oil. The method is characterized in that a biological oil is adopted as a raw material oil; under a hydrogenation condition, the raw material oil and hydrogen are mixed, and pass through a first stage hydrogenation reaction zone; hydrogen-rich gas separated from a stream generated through hydrogenation is recycled at the first stage; the separated liquid enters a second stage hydrogenation modification reaction zone; and sub-hydrogen gas separated from the oil generated through second stage hydrogenation is recycled at the second stage, and the separated liquid product is subjected to fractionation to obtain naphtha and a low freezing point motor fuel, wherein hydrogenation activity components of the hydrogenation catalyst used at the first stage are one or a plurality of materials selected from reduction state W, Mo, Ni and Co, and hydrogenation activity components of the hydrogenation catalyst used at the second stage are one or a plurality of materials selected from sulfurization state W, Mo, Ni and Co under a reaction state. Compared with the method in the prior art, the method of the present invention has the following advantages that: a low freezing point motor fuel can be produced, activity stability of the catalyst can be ensured, and stable and long period device operation can be ensured.

Description

The two-stage method method of hydrotreating of the low condensation point automotive fuel of a kind of bio-oil production
Technical field
The present invention relates to a kind of method of hydrotreating, particularly a kind of take bio-oil as stock oil, the two-stage method method of hydrotreating of the low condensation point automotive fuel of direct production.
Background technology
The energy in global range is mainly derived from fossil energy at present, and its PetroChina Company Limited. is the main source of automotive fuel.Oil belongs to Nonrenewable energy resources, not only resource is day by day exhausted, and heaviness and in poor quality aggravation, and world economy sustainable development, environmental regulation increasingly stringent need to be produced a large amount of light clean fuels, increase new oil substitutes when these all require existing oil Refining Technologies is improved, produce satisfactory product with minimum cost.
Bio-oil obtains the extensive attention in the world as renewable resources, and each research unit and enterprise are all making great efforts to carry out it as the research of clean energy.Utilizing the method production biofuel (being generally fatty acid methyl ester) of transesterify has been proven technique, but because the fatty acid methyl ester oxygen level is high, although many countries and regions have been put into effect the standard of biofuel successively, and be not suitable for all oil engines.Bio-oil is produced automotive fuel by the method for hydrogenation, and soon oxygen is all removed or partly removed and produce the product that meets the automotive fuel standard, and this method can directly satisfy the requirement of existing market.
existing animal-plant oil hydrogenation method is produced the processing technology of automotive fuel, US20060186020, EP1693432, CN101321847A, CN200710012090.6, CN200680045053.9, CN200710065393.4, CN200780035038.0, CN200710012208.5, CN200780028314.0 and CN101029245A etc. disclose the vegetables oil hydroconversion process, adopt the coker gasoline cut, diesel oil distillate (straight-run diesel oil, LCO and coker gas oil), the petroleum hydrocarbon cuts such as wax oil cut and bio-oil are mixed into the hydrogenation catalyst bed, produce diesel product or preparing ethylene by steam cracking raw material etc.US5705722 discloses vegetables oil such as containing unsaturated fatty acids, fat and animal oil mixing back end hydrogenation is produced the diesel oil blending component of diesel oil distillate scope.
EP1741767 and EP1741768 disclose a kind of method of producing diesel oil distillate with animal-plant oil, be mainly animal-plant oil and at first pass through hydrotreatment, then by the isomerization catalyst bed layer, obtain the low freezing point diesel fuel component, but owing to generating water in the hydrotreatment process, isomerization catalyst is caused very adverse influence, and device can not long-period stable operation.
Comprise in the bio-oil hydrogenation process of aforesaid method, one of subject matter that runs into is that the bed carbon distribution causes shortening running period, the more catalyst changeout of need to often stopping work.Particularly separately take bio-oil as raw material or bio-oil blending ratio when higher, more be subject to obvious impact the running period of hydrogenation catalyst.
Summary of the invention
For the deficiencies in the prior art, the invention provides the two-stage method method of hydrotreating of the low condensation point automotive fuel of a kind of bio-oil production, separately take bio-oil as stock oil, first paragraph uses the hydrogenation catalyst of reduction-state, second segment uses the sulphided state catalyst for hydro-upgrading, the method of the low condensation point automotive fuel of direct production under the condition of hydrogenation, can the direct production super low sulfur, low density, low freezing point diesel fuel be in harmonious proportion product, make diesel product that the situation that biofuel that conventional animal-plant oil makes is gone mouldy can not occur, hydrogenation process is stable, and running period is long.
The two-stage method method of hydrotreating of the low condensation point automotive fuel of a kind of bio-oil production of the present invention comprises following content:
(a) one or more in bio-oil are stock oil;
(b) under the hydroprocessing condition, stock oil and hydrogen are by the first paragraph reaction zone, the first paragraph reaction zone comprises the hydrogenation catalyst bed that at least two hydrogenation activity component concentrations raise successively, stock oil and hydrogen are at first by the low beds of hydrogenation activity component concentration, then by the high beds of hydrogenation activity component concentration, under response behaviour, the hydrogenation activity component is one or more in W, Mo, Ni and the Co of reduction-state;
(c) first paragraph reaction zone hydrogenation effluent is separated into gas phase and liquid phase, gas-phase dehydration recycles at the first paragraph reaction zone after processing, liquid phase with enter the second segment reaction zone that uses catalyst for hydro-upgrading after circulation gas mixes, under response behaviour, the active metal component of catalyst for hydro-upgrading is one or more in W, Mo, Ni and the Co of sulphided state;
(d) second segment reaction zone resultant gas liquid separate obtain gas phase recycle at the second segment reaction zone, second segment reaction zone resultant gas liquid separate obtain liquid phase fractionation in separation column obtain petroleum naphtha and low freezing point diesel fuel;
(e) replenish S-contained substance in the second segment reaction mass, to keep hydrogen sulfide content in second segment reaction zone circulation gas.
In the inventive method step (a), the bio-oil that uses can comprise vegetables oil or animal grease, vegetables oil comprises one or more in soybean oil, peanut oil, Viscotrol C, rapeseed oil, Semen Maydis oil, sweet oil, plam oil, Oleum Cocois, tung oil, oleum lini, sesame oil, Oleum Gossypii semen, sunflower seed oil and rice bran wet goods, and animal grease comprises one or more in butter, lard, sheep oil and fish oil etc.
In the inventive method step (b), the hydroprocessing condition of first paragraph reaction zone is generally reaction pressure 3.0MPa ~ 20.0MPa, and hydrogen to oil volume ratio is 200:1 ~ 3000:1, and volume space velocity is 0.1h -1~ 6.0h -1, 180 ℃ ~ 465 ℃ of average reaction temperature; Preferred operational condition is reaction pressure 3.0MPa ~ 18.0MPa, hydrogen to oil volume ratio 300:1 ~ 2500:1, volume space velocity 0.2h -1~ 4.0h -1, 200 ℃ ~ 445 ℃ of average reaction temperature.
In the inventive method step (b), first paragraph reaction zone beds generally can arrange 2 ~ 5, in the beds that at first reaction mass passes through, the hydrogenation activity component is take the weight content of oxide compound as 3%~10%, the hydrogenation catalyst that at first reaction mass passes through accounts for 10% ~ 80% of all hydrogenation catalyst volumes of first paragraph reaction zone, preferred 20% ~ 70%, best 30% ~ 60%.The hydrogenation activity component of the downstream catalyst that reaction mass passes through increases by 3~25 percentage points in oxide weight than adjacent upstream catalyzer, preferably increases by 5 ~ 20 percentage points.Beds generally can arrange 2 ~ 5.The carrier of hydrogenation catalyst is generally aluminum oxide, amorphous silicon aluminium, silicon oxide, titanium oxide etc., can contain other auxiliary agent simultaneously, as P, Si, B, Ti, Zr etc.Can adopt the commercial catalyst, also can be by the existing method preparation in this area.the business hydrogenation catalyst that the first reaction zone uses mainly contains, as 3926 of Fushun Petrochemical Research Institute (FRIPP) development, 3936, CH-20, FF-14, FF-18, FF-24, FF-26, FF-36, FH-98, FH-UDS, the hydrogenation catalysts such as FZC-41, the HR-416 of Inst Francais Du Petrole, the hydrogenation catalysts such as HR-448, the ICR174 of CLG company, ICR178, the hydrogenation catalysts such as ICR179, Uop Inc. is newly developed HC-P, HC-K UF-210/220, the TK-525 of Topsor company, TK-555, the hydrogenation catalysts such as TK-557, the KF-752 of AKZO company, KF-840, KF-848, KF-901, the hydrogenation catalysts such as KF-907.
In the inventive method step (b), catalyzer uses hydrogen 200 ℃~500 ℃ temperature before use, reduces under preferred 220 ℃~450 ℃ conditions.Whenever forbid to inject sulfur-bearing, nitrogenous medium in the first paragraph system, avoid poisoning of catalyst.
In the inventive method step (c), the hydroprocessing condition of second segment reaction zone is generally reaction pressure 3.0MPa ~ 20.0MPa, and hydrogen to oil volume ratio is 200:1 ~ 3000:1, and volume space velocity is 0.3h -1~ 6.0h -1, 180 ℃ ~ 465 ℃ of average reaction temperature; Preferred operational condition is reaction pressure 3.0MPa ~ 18.0MPa, hydrogen to oil volume ratio 300:1 ~ 2500:1, volume space velocity 0.4h -1~ 4.0h -1, 200 ℃ ~ 445 ℃ of average reaction temperature.First paragraph reaction zone hydrogenation effluent need not lowered the temperature and be carried out gas-liquid separation, and the water that reaction generates enters in gas phase.The working pressure of second segment reaction zone can be identical with first paragraph, also can be different.
In the inventive method step (c), the catalyst for hydro-upgrading of second segment reaction zone has the isomery function, as contains beta-molecular sieve, the components such as SAPO-11 molecular sieve, SAPO-41, NU-10 molecular sieve or ZSM-22 molecular sieve.The hydrogenation active metals component of catalyst for hydro-upgrading is generally 10%~40% in the weight content of oxide compound, and the weight content of molecular sieve in catalyst for hydro-upgrading is generally 5%~60%.The commercial catalysts that the second segment reaction zone uses mainly contains, FC-14, the FC-16 that develops as Fushun Petrochemical Research Institute (FRIPP), FC-20 etc.
In the inventive method step (c), second segment reaction zone hydrogenation activity component is the catalyzer of oxidation state, carries out conventional sulfidizing before using, and makes the hydrogenation activity component be converted into sulphided state, perhaps uses the outer good catalyzer of prevulcanized of device.
The sulfur-containing medium that replenishes in reaction mass (optimum is dosed in the liquid phase feeding of second segment reaction zone) in the inventive method step (e) can be the compound of sulfur-bearing, as DMDS, and CS 2Deng, can be also the oil light-end products of sulfur-bearing, as the boat coal of sulfur-bearing, diesel oil etc.By replenishing of sulphur, can guarantee that the hydrogen sulfide content in circulation gas is not less than 0.005v%, preferred 0.01v%~2.0v%.
In prior art, the bio-oil hydrogenation is produced the method for automotive fuel, generally need to the petroleum fractions hybrid process of larger proportion, otherwise can not guarantee running period, perhaps directly by hydrofining-catalyst for hydro-upgrading bed, the component poor stability of cracking catalyst activity.The present invention uses grating technology and the operational condition of catalyzer by optimization, first paragraph hydrofining (the reduction-state hydrogenation catalyst of grating), the second segment hydro-upgrading, can directly hang down the condensation point automotive fuel take bio-oil as raw material production, solved the problem that the bio-oil hydrogenation unit can not the long period steady running, condensation point that simultaneously can the decrease diesel oil distillate.
Description of drawings
Fig. 1 is the two-stage method method of hydrotreating principle flow chart of the low condensation point automotive fuel of bio-oil production of the present invention.
Fig. 2 is the another one principle flow chart of the two-stage method method of hydrotreating of the low condensation point automotive fuel of bio-oil production of the present invention.
Embodiment
method of the present invention is specific as follows: the mixing oil of one or more in the bio-oil is as stock oil, under the hydroprocessing condition, stock oil and hydrogen are by comprising the first paragraph hydroconversion reaction zone of at least two kinds of hydrogenation catalysts, the hydrogenated oil that obtains separates in high-pressure separator (abbreviation high score) gas that obtains and recycles at first paragraph, the liquid distillate that obtains and hydrogen are mixed into and comprise the second segment reaction zone with isomery performance catalyst for hydro-upgrading, obtaining the hydro-upgrading logistics recycles at second segment at the gas that high-pressure separator (abbreviation high score) separation obtains, the liquid fractionation that obtains obtains following products: gas, petroleum naphtha, one or more in diesel oil, if further improve the character of diesel product or extend the cycle of operation, also consider at first paragraph, a part of diesel oil and unconverted oil to be looped back the first paragraph reactive system.The bio-oil that embodiment uses is the commercially available prod, filtering solid impurity before using.
Further illustrate particular case of the present invention below by embodiment.
The chief component of table 1 hydrogenation catalyst and character.
Catalyzer Catalyzer 1 Catalyzer 2 Catalyzer 3 Modifying catalyst
Catalyzer forms ? ? ? ?
MoO 3,wt% 9.5 22.5 4.5 16.2
CoO,wt% ? ? 1.6 ?
NiO,wt% 2.1 4.6 ? 2.4
Beta-molecular sieve, wt% ? ? ? 15.0
Alumina supporter, wt% Surplus Surplus Surplus Surplus
The main character of catalyzer ? ? ? ?
Specific surface, m 2/g >160 >160 >160 >160
Pore volume, ml/g 0.33 0.32 0.35 0.34
Table 2 embodiment processing condition and test-results.
First paragraph reaction zone processing condition Embodiment 1 Embodiment 2 Embodiment 3 Embodiment 4
Catalyzer Catalyzer 1/ catalyzer 2 Catalyzer 1/ catalyzer 2 Catalyzer 3/ catalyzer 1/ catalyzer 2 Catalyzer 1/ catalyzer 2
The catalyst volume ratio 15:85 40:60 30:30:40 30:70
Stock oil Oleum Gossypii semen Soybean oil Soybean oil Cocounut oil+30% turning oil
Reaction pressure, MPa 18.0 8.0 4.0 10.0
The entrance hydrogen to oil volume ratio 1000:1 1500:1 800:1 1000:1
The cumulative volume air speed, h -1 1.5 0.7 0.4 1.0
Average reaction temperature, ℃ 380 330 300 320
Second segment reaction zone processing condition ? ? ? ?
Catalyzer Modifying catalyst Modifying catalyst Modifying catalyst Modifying catalyst
Reaction pressure, MPa 18.0 8.0 4.0 6.0
The entrance hydrogen to oil volume ratio 1500:1 500:1 800:1 800:1
Volume space velocity, h -1 1.5 3.5 2.2 2.2
Average reaction temperature, ℃ 280 310 330 330
Sulfur-containing medium DMDS DMDS CS 2 CS 2
Hydrogen sulfide content in second segment circulation gas, μ L/L 50 10000 500 1000
Diesel product ? ? ? ?
Density, g/cm 3 0.782 0.781 0.780 0.776
Sulphur content, μ g/g <1 <1 <1 <1
Condensation point, ℃ -10 -20 -25 -27
Cetane value >80 >80 >80 >80
Table 3 embodiment processing condition and test-results.
First paragraph reaction zone processing condition Embodiment 5 Comparative example 1 Comparative example 2 Comparative example 3
Catalyzer Catalyzer 1/ catalyzer 2 Catalyzer 2/ modifying catalyst Catalyzer 2/ modifying catalyst Catalyzer 2/ modifying catalyst
The catalyst volume ratio 40:60 100 100 100
Stock oil Oleum Gossypii semen Oleum Gossypii semen Oleum Gossypii semen Oleum Gossypii semen
Reaction pressure, MPa 10.0 10.0 10.0 10.0
The entrance hydrogen to oil volume ratio 1000:1 1000:1 1000:1 1000:1
The cumulative volume air speed, h -1 0.5 0.4 0.4 0.4
Average reaction temperature, ℃ 310 310 310 320
Second segment reaction zone processing condition ?
Catalyzer Modifying catalyst ? ? ?
Reaction pressure, MPa 10.0 ? ? ?
The entrance hydrogen to oil volume ratio 1000:1 ? ? ?
Volume space velocity, h -1 2.0 ? ? ?
Average reaction temperature, ℃ 310 ? ? ?
Sulfur-containing medium DMDS ? ? ?
Hydrogen sulfide content in second segment circulation gas, μ L/L 200 ? ? ?
Runtime, h 1000 200 400 600
Pressure Drop, MPa 0 0.1 0.3 0.6
Diesel product ? ? ? ?
Density, g/cm 3 0.786 0.787 0.810 0.862
Sulphur content, μ g/g <5 <5 <5 <5
Condensation point, ℃ -20 -19 0 12
Cetane value >80 >80 78 70
Comparative example catalyzer 2 consumptions are identical with the total consumption of catalyzer 2 with embodiment 5 catalyzer 1, and comparative example modifying catalyst consumption is identical with embodiment 5 modifying catalyst consumptions.
Can be found out by embodiment, the method for hydrotreating of bio-oil by present technique can direct production low freezing point diesel fuel product, perhaps fine-quality diesel oil blending component, and can realize long-period stable operation.

Claims (10)

1. the two-stage method method of hydrotreating of the low condensation point automotive fuel of a bio-oil production is characterized in that comprising following content:
(a) one or more in bio-oil are stock oil;
(b) under the hydroprocessing condition, stock oil and hydrogen are by the first paragraph reaction zone, the first paragraph reaction zone comprises the hydrogenation catalyst bed that at least two hydrogenation activity component concentrations raise successively, stock oil and hydrogen are at first by the low beds of hydrogenation activity component concentration, then by the high beds of hydrogenation activity component concentration, under response behaviour, the hydrogenation activity component is one or more in W, Mo, Ni and the Co of reduction-state;
(c) first paragraph reaction zone hydrogenation effluent is separated into gas phase and liquid phase, gas-phase dehydration recycles at the first paragraph reaction zone after processing, liquid phase with enter the second segment reaction zone that uses catalyst for hydro-upgrading after circulation gas mixes, under response behaviour, the active metal component of catalyst for hydro-upgrading is one or more in W, Mo, Ni and the Co of sulphided state;
(d) second segment reaction zone resultant gas liquid separates the gas phase obtain and recycles at the second segment reaction zone, and second segment reaction zone resultant gas liquid separates the liquid phase fractionation in separation column that obtains and obtains petroleum naphtha and low freezing point diesel fuel;
(e) replenish S-contained substance in second segment reaction zone reaction mass, to keep hydrogen sulfide content in second segment reaction zone circulation gas.
2. in accordance with the method for claim 1, it is characterized in that: in step (a), the bio-oil of use comprises vegetables oil or animal grease.
3. in accordance with the method for claim 1, it is characterized in that: in step (b), the reaction pressure of first paragraph reaction zone is 3.0MPa ~ 20.0MPa, and hydrogen to oil volume ratio is 200:1 ~ 3000:1, and volume space velocity is 0.1h -1~ 6.0h -1, 180 ℃ ~ 465 ℃ of average reaction temperature.
4. in accordance with the method for claim 1, it is characterized in that: in step (b), the reaction pressure 3.0MPa of first paragraph reaction zone ~ 18.0MPa, hydrogen to oil volume ratio 300:1 ~ 2500:1, volume space velocity 0.2h -1~ 4.0h -1, 200 ℃ ~ 445 ℃ of average reaction temperature.
5. according to the described method of claim 1 or 3, it is characterized in that: in step (b), first paragraph reaction zone beds arranges 2 ~ 5, in the beds that at first reaction mass passes through, the hydrogenation activity component is take the weight content of oxide compound as 3%~10%, and the hydrogenation catalyst that at first reaction mass passes through accounts for 10% ~ 80% of all hydrogenation catalyst volumes of first paragraph reaction zone; The hydrogenation activity component of the downstream catalyst that reaction mass passes through increases by 3~25 percentage points in oxide weight than adjacent upstream catalyzer.
6. in accordance with the method for claim 5, it is characterized in that: in step (b) first paragraph reaction zone, the hydrogenation catalyst that at first reaction mass passes through accounts for 20% ~ 70% of all hydrogenation catalyst volumes of first paragraph reaction zone, and the hydrogenation activity component of the downstream catalyst that reaction mass passes through increases by 5 ~ 10 percentage points in the element quality than adjacent upstream catalyzer.
7. in accordance with the method for claim 1, it is characterized in that: in step (c), the reaction pressure of second segment reaction zone is 3.0MPa ~ 20.0MPa, and hydrogen to oil volume ratio is 200:1 ~ 3000:1, and volume space velocity is 0.3h -1~ 6.0h -1, 180 ℃ ~ 465 ℃ of average reaction temperature, preferred reaction pressure is that 3.0MPa ~ 18.0MPa hydrogen to oil volume ratio is 300:1 ~ 2500:1, volume space velocity is 0.4h -1~ 4.0h -1, average reaction temperature is 200 ℃ ~ 445 ℃.
8. in accordance with the method for claim 1, it is characterized in that: in step (c), the catalyst for hydro-upgrading of second segment reaction zone has the isomery function, catalyst for hydro-upgrading contains beta-molecular sieve, SAPO-11 molecular sieve, SAPO-41, NU-10 molecular sieve or ZSM-22 molecular sieve component, and the hydrogenation active metals component of catalyst for hydro-upgrading is take the weight content of oxide compound as 10%~40%.
9. in accordance with the method for claim 1, it is characterized in that: the sulfur-containing medium that replenishes in second segment reaction zone reaction mass is the compound of sulfur-bearing, or the oil light-end products of sulfur-bearing.
10. according to the described method of claim 1 or 9, it is characterized in that: in circulation gas, hydrogen sulfide content is not less than 0.005v%.
CN201110353674.6A 2011-11-10 2011-11-10 Two-stage hydrogenation method for producing low freezing point motor fuel from biological oil Active CN103102910B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201110353674.6A CN103102910B (en) 2011-11-10 2011-11-10 Two-stage hydrogenation method for producing low freezing point motor fuel from biological oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110353674.6A CN103102910B (en) 2011-11-10 2011-11-10 Two-stage hydrogenation method for producing low freezing point motor fuel from biological oil

Publications (2)

Publication Number Publication Date
CN103102910A true CN103102910A (en) 2013-05-15
CN103102910B CN103102910B (en) 2015-04-01

Family

ID=48311117

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110353674.6A Active CN103102910B (en) 2011-11-10 2011-11-10 Two-stage hydrogenation method for producing low freezing point motor fuel from biological oil

Country Status (1)

Country Link
CN (1) CN103102910B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106281401A (en) * 2015-05-21 2017-01-04 中国石化工程建设有限公司 A kind of method utilizing waste animal and plant fat to produce aviation bio-fuel

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5705722A (en) * 1994-06-30 1998-01-06 Natural Resources Canada Conversion of biomass feedstock to diesel fuel additive
CN102057019A (en) * 2008-04-06 2011-05-11 环球油品公司 Fuel and fuel blending components from biomass derived pyrolysis oil

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5705722A (en) * 1994-06-30 1998-01-06 Natural Resources Canada Conversion of biomass feedstock to diesel fuel additive
CN102057019A (en) * 2008-04-06 2011-05-11 环球油品公司 Fuel and fuel blending components from biomass derived pyrolysis oil

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106281401A (en) * 2015-05-21 2017-01-04 中国石化工程建设有限公司 A kind of method utilizing waste animal and plant fat to produce aviation bio-fuel
CN106281401B (en) * 2015-05-21 2018-08-14 中国石化工程建设有限公司 A method of producing aviation bio-fuel using waste animal and plant fat

Also Published As

Publication number Publication date
CN103102910B (en) 2015-04-01

Similar Documents

Publication Publication Date Title
CN102464996B (en) Hydrogenation method for producing biological grease by motor fuel
CN103102897B (en) Hydrogenation method for production of low-condensation point motor fuel from biolipid
CN102464997B (en) Hydrogenation method for producing motor fuel from biological grease
CN103102910B (en) Two-stage hydrogenation method for producing low freezing point motor fuel from biological oil
CN103102916B (en) Two-stage hydrogenation method for producing low freezing point motor fuel
CN103102912B (en) Two-stage hydrogenation method for producing high quality low freezing point motor fuel
CN103102904B (en) Two-stage hydrogenation method for producing high quality low freezing point motor fuel from biological oil
CN103102917B (en) Produce the two-stage method method of hydrotreating of low condensation point automotive fuel
CN103102901B (en) Hydrogenation method for producing low aromatic hydrocarbon solvent oil from biological oil
CN103102918B (en) Two-stage hydrogenation method for producing solvent oil
CN102911697A (en) Method for producing clean fuels by hydrogenation of biological oil and fat
CN103374405B (en) A kind of bio-oil produces the combined hydrogenation method of high-grade low-freezing point diesel oil
CN103102909B (en) Two-stage hydrogenation method for producing low freezing point motor fuel from biological oil
CN103102924B (en) Hydrogenation method for producing low freezing point motor fuel from biological oil
CN103102921B (en) Two-stage hydrogenation method for producing high quality low freezing point motor fuel
CN103102896B (en) Hydro-upgrading method for production of low-condensation point motor fuel from biolipid
CN103102905B (en) Bio-oil produces the two-stage method method of hydrotreating of high-grade low-freezing point automotive fuel
CN103102907B (en) Two-stage hydrogenation method for producing low aromatic hydrocarbon solvent oil from biological oil
CN103102923B (en) Hydrogenation method for producing high quality low freezing point motor fuel from biological oil
CN102464995B (en) Hydroprocessing method for producing motor fuel from biological oil
CN103102908B (en) Two-stage hydrogenation method for producing low aromatic hydrocarbon solvent oil from biological oil
CN103102922B (en) Two-stage hydrogenation method for producing solvent oil
CN103102895B (en) Hydro-upgrading method for production of low-condensation point motor fuel from biolipid
CN103102925B (en) Hydrogenation method for producing high quality low freezing point motor fuel from biological oil
CN103102961B (en) Residue oil hydrogenation method for diesel oil by-production

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant