[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN103106888A - Three-dimensional color gamut boundary description method - Google Patents

Three-dimensional color gamut boundary description method Download PDF

Info

Publication number
CN103106888A
CN103106888A CN2013100146136A CN201310014613A CN103106888A CN 103106888 A CN103106888 A CN 103106888A CN 2013100146136 A CN2013100146136 A CN 2013100146136A CN 201310014613 A CN201310014613 A CN 201310014613A CN 103106888 A CN103106888 A CN 103106888A
Authority
CN
China
Prior art keywords
rgb
color
value
color gamut
cielab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2013100146136A
Other languages
Chinese (zh)
Inventor
孙帮勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian University of Technology
Original Assignee
Xian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian University of Technology filed Critical Xian University of Technology
Priority to CN2013100146136A priority Critical patent/CN103106888A/en
Publication of CN103106888A publication Critical patent/CN103106888A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Facsimile Image Signal Circuits (AREA)
  • Color Image Communication Systems (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

本发明公开了一种三维色域边界描述方法,按照以下步骤实施:步骤1、设定电子色靶数据;步骤2、调整显示器周围的环境设置;步骤3、提取设备色域边界时需要从所有样本点中选择出处于立方体外表面的数据,再提取6个外接面的RGB值;步骤4、从所有的特性化建模数据中提取出RGB空间的色域边界离散点,RGB立方体的一个外接面产生128个三角形;步骤5、描述RGB色域外观;步骤6、将所有的三角形顶点的RGB值转换成测量获得的CIELAB值,在CIELAB空间中对所有三角形进行封闭贴片,得到色域外观图,即成。本发明的方法,步骤简便、运算快速,能够精确提取该设备类型的色域边界。

Figure 201310014613

The invention discloses a three-dimensional color gamut boundary description method, which is implemented according to the following steps: step 1, setting electronic color target data; step 2, adjusting the environment settings around the display; step 3, extracting the color gamut boundary of the device from all Select the data on the outer surface of the cube from the sample points, and then extract the RGB values of the six circumscribed surfaces; step 4, extract the discrete points of the color gamut boundary of the RGB space from all the characteristic modeling data, and one circumscribed point of the RGB cube Generate 128 triangles on the surface; step 5, describe the appearance of the RGB color gamut; step 6, convert the RGB values of all triangle vertices into CIELAB values obtained by measurement, and perform closed patches on all triangles in the CIELAB space to obtain the appearance of the color gamut Figure, Serve. The method of the invention has simple and convenient steps and fast operation, and can accurately extract the color gamut boundary of the equipment type.

Figure 201310014613

Description

一种三维色域边界描述方法A 3D Color Gamut Boundary Description Method

技术领域technical field

本发明属于图像色彩处理技术领域,涉及一种三维色域边界描述方法。The invention belongs to the technical field of image color processing, and relates to a method for describing a three-dimensional color gamut boundary.

背景技术Background technique

目前比较常用的三维色域边界描述算法中,Herzog将打印机色域视为一变形的六面体,以对应CIELAB空间中的8个顶点为基础,通过解析12条边以及6个面的变形程度来描述色域变形程度,其对比较规则色域的设备描述较准确,但对于普通设备而言,其色域规则性差。M.Mahy提出一种基于Neugebauer方程的色域解析模型,将n色呈色系统分解成多个n-1色系统,但受模型限制,对RGB加色法原理的设备不适用。北京理工大学的黄庆梅也将设备色域视为六个曲面为边界面的封闭立体,用Zernike多项式来表示边界曲面。浙江大学王勇博士提出一种TVHOP双变量高阶多项式解析模型用于设备色域边界的计算,描述CRT显示器色域时首先采用GOG模型及边(面)判断准则计算出RGB颜色空间中的色域边界,然后在CIELAB颜色空间中用双变量高阶多项式描述色域边界的每个表面,这些模型在描述色域边界时,用到复杂的解析式,使用并不方便。另外,Raja B.提出使用改进的凸壳算法来描述色域,其通过凸壳算法提取离散样本点中处于边界部分的数值,但由于部分内部点往往被认为边界点,因此计算出的色域边界一般都超过实际色域的10%。Morovic提出分区最大化算法计算色域,该算法的优点是快速和便利,但经常存在部分分区内找不到边界点,而需要通过插值重新构造,这也在一定程度上引入误差。In the currently commonly used three-dimensional color gamut boundary description algorithm, Herzog regards the printer color gamut as a deformed hexahedron, based on the corresponding 8 vertices in the CIELAB space, and describes it by analyzing the degree of deformation of 12 sides and 6 faces The degree of color gamut deformation, which is more accurate in describing equipment with a relatively regular color gamut, but for ordinary equipment, its color gamut regularity is poor. M. Mahy proposed a color gamut analysis model based on the Neugebauer equation, which decomposes the n-color color rendering system into multiple n-1 color systems, but limited by the model, it is not applicable to devices based on the RGB additive color method. Huang Qingmei of Beijing Institute of Technology also regards the device color gamut as a closed solid with six curved surfaces as boundary surfaces, and uses Zernike polynomials to represent the boundary surfaces. Dr. Wang Yong from Zhejiang University proposed a TVHOP bivariate high-order polynomial analytical model for the calculation of the device color gamut boundary. When describing the color gamut of a CRT display, the GOG model and edge (surface) judgment criteria are first used to calculate the color in the RGB color space. Gamut boundary, and then use bivariate high-order polynomials to describe each surface of the color gamut boundary in the CIELAB color space. These models use complex analytical formulas when describing the color gamut boundary, which is not convenient to use. In addition, Raja B. proposed to use the improved convex hull algorithm to describe the color gamut, which extracts the values in the boundary part of the discrete sample points through the convex hull algorithm, but because some internal points are often regarded as boundary points, the calculated color gamut Boundaries generally exceed 10% of the actual color gamut. Morovic proposed a partition maximization algorithm to calculate the color gamut. The advantage of this algorithm is that it is fast and convenient, but often there are boundary points that cannot be found in some partitions and need to be reconstructed by interpolation, which also introduces errors to a certain extent.

发明内容Contents of the invention

本发明的目的是提供一种三维色域边界描述方法,解决了现有技术中难以实现快速、准确获取RGB或CMY彩色设备色域边界并进行可视化的问题。The purpose of the present invention is to provide a three-dimensional color gamut boundary description method, which solves the problem in the prior art that it is difficult to quickly and accurately obtain and visualize the color gamut boundaries of RGB or CMY color devices.

本发明所采用的技术方案是,一种三维色域边界描述方法,按照以下步骤实施:The technical solution adopted in the present invention is a method for describing the boundary of a three-dimensional color gamut, which is implemented according to the following steps:

步骤1、设定电子色靶数据Step 1. Set the electronic color target data

根据用户所需控制的输出及测量时间进行调整,默认设置是R、G、B单通道被均匀划分成9级,即单通道驱动值的离散取值范围是[0 32 64 96 128160 192 224 255 ],如果用户设备的驱动信号范围为0~1,则以上驱动值取值范围为[0 32 64 96 128 160 192 224 255]/255,所建立的电子色靶中,色块RGB驱动值按照以上取值范围混合渐变,总共包含9×9×9=729个色块;Adjust according to the output and measurement time controlled by the user. The default setting is that the R, G, and B single channels are evenly divided into 9 levels, that is, the discrete value range of the single-channel drive value is [0 32 64 96 128160 192 224 255 ], if the driving signal range of the user equipment is 0~1, then the value range of the above driving value is [0 32 64 96 128 160 192 224 255]/255, in the established electronic color target, the RGB driving value of the color block is according to The above value ranges are mixed with gradients, which contain a total of 9×9×9=729 color blocks;

步骤2、调整显示器周围的环境设置Step 2. Adjust the environment settings around the monitor

设定色温为6500K,设定Gamma值;预热后,显示色靶上的所有色块,用分光光度计测量对应的CIELAB值,将每个色块的RGB值及CIELAB值对应存储;Set the color temperature to 6500K, and set the Gamma value; after preheating, display all the color blocks on the color target, measure the corresponding CIELAB value with a spectrophotometer, and store the RGB value and CIELAB value of each color block correspondingly;

步骤3、在RGB颜色空间中,其色域外观是规则的立方体结构,提取设备色域边界时需要从所有样本点中选择出处于立方体外表面的数据,采用步骤1中默认的色靶数据,提取RGB立方体的边界信息,对于所有12条边的离散边界点颜色信息,在三个通道中,其中一个通道颜色值在0~255间渐变,而另外两个通道都固定处于0或者255的极值状态,所以提取的12条边上每条边包含9个边界点,对应的RGB值分别为:Step 3. In the RGB color space, the appearance of its color gamut is a regular cube structure. When extracting the boundary of the device color gamut, it is necessary to select the data on the outer surface of the cube from all sample points, and use the default color target data in step 1. Extract the boundary information of the RGB cube. For the color information of the discrete boundary points of all 12 sides, among the three channels, the color value of one channel changes gradually between 0 and 255, while the other two channels are fixed at 0 or 255. Value status, so each of the extracted 12 edges contains 9 boundary points, and the corresponding RGB values are:

L1:R=[0 32 64 96 128 160 192 224 255];G=0;B=0,L1: R=[0 32 64 96 128 160 192 224 255]; G=0; B=0,

L2:R=[0 32 64 96 128 160 192 224 255];G=0;B=255,L2: R=[0 32 64 96 128 160 192 224 255]; G=0; B=255,

L3:R=[0 32 64 96 128 160 192 224 255];G=255;B=0,L3: R=[0 32 64 96 128 160 192 224 255]; G=255; B=0,

L4:R=[0 32 64 96 128 160 192 224 255];G=255;B=255,L4: R=[0 32 64 96 128 160 192 224 255]; G=255; B=255,

L5:G=[0 32 64 96 128 160 192 224 255];R=0;B=0,L5: G=[0 32 64 96 128 160 192 224 255]; R=0; B=0,

L6:G=[0 32 64 96 128 160 192 224 255];R=0;B=255,L6: G=[0 32 64 96 128 160 192 224 255]; R=0; B=255,

L7:G=[0 32 64 96 128 160 192 224 255];R=255;B=0,L7: G=[0 32 64 96 128 160 192 224 255]; R=255; B=0,

L8:G=[0 32 64 96 128 160 192 224 255];R=255;B=255,L8: G=[0 32 64 96 128 160 192 224 255]; R=255; B=255,

L9:B=[0 32 64 96 128 160 192 224 255];G=0;R=0,L9: B=[0 32 64 96 128 160 192 224 255]; G=0; R=0,

L10:B=[0 32 64 96 128 160 192 224 255];G=0;R=255,L10: B=[0 32 64 96 128 160 192 224 255]; G=0; R=255,

L11:B=[0 32 64 96 128 160 192 224 255];G=255;R=0,L11: B=[0 32 64 96 128 160 192 224 255]; G=255; R=0,

L12:B=[0 32 64 96 128 160 192 224 255];G=255;R=255,L12: B=[0 32 64 96 128 160 192 224 255]; G=255; R=255,

另外,RGB色域包含6个外接面,这6个外接面中的边界点信息中,都是一个通道值处于极值,另外两个通道值渐变,所以6个外接面中每个外接面均包含有81个边界点,6个外接面的RGB值分别为:In addition, the RGB color gamut contains 6 circumscribing surfaces. In the boundary point information of these 6 circumscribing surfaces, one channel value is at the extreme value, and the other two channel values are gradually changing. Therefore, each of the 6 circumscribing surfaces is Contains 81 boundary points, and the RGB values of the 6 circumscribed surfaces are:

F1:R=0;G=[0 32 64 96 128 160 192 224 255];B=[0 32 64 96 128 160 192224 255],F1: R=0; G=[0 32 64 96 128 160 192 224 255]; B=[0 32 64 96 128 160 192224 255],

F2:R=255;G=[0 32 64 96 128 160 192 224 255];B=[0 32 64 96 128 160192 224 255],F2: R=255; G=[0 32 64 96 128 160 192 224 255]; B=[0 32 64 96 128 160192 224 255],

F3:G=0;R=[0 32 64 96 128 160 192 224 255];B=[0 32 64 96 128 160 192224 255],F3: G=0; R=[0 32 64 96 128 160 192 224 255]; B=[0 32 64 96 128 160 192224 255],

F4:G=255;R=[0 32 64 96 128 160 192 224 255];B=[0 32 64 96 128 160192 224 255],F4: G=255; R=[0 32 64 96 128 160 192 224 255]; B=[0 32 64 96 128 160192 224 255],

F5:B=0;G=[0 32 64 96 128 160 192 224 255];R=[0 32 64 96 128 160 192224 255],F5: B=0; G=[0 32 64 96 128 160 192 224 255]; R=[0 32 64 96 128 160 192224 255],

F6:B=255;G=[0 32 64 96 128 160 192 224 255];R=[0 32 64 96 128 160192 224 255];F6: B=255; G=[0 32 64 96 128 160 192 224 255]; R=[0 32 64 96 128 160192 224 255];

步骤4、利用步骤3的数据信息,从所有的特性化建模数据中提取出RGB空间的色域边界离散点,利用每个外接面中的81个边界点,先将每四个相邻的边界点组成一个正方形,再利用每个正方形左上角和右下角两点组成的对角线将其分割成两个三角形,这样RGB立方体的一个外接面总共产生128个三角形;Step 4, using the data information in step 3, extract the discrete points of the color gamut boundary in RGB space from all the characteristic modeling data, and use the 81 boundary points in each circumscribed surface to first divide each of the four adjacent The boundary points form a square, and then use the diagonal line formed by the upper left corner and the lower right corner of each square to divide it into two triangles, so that a total of 128 triangles are generated on one circumscribed surface of the RGB cube;

步骤5、描述RGB色域外观Step 5. Describe the appearance of the RGB color gamut

针对步骤4对RGB立方体6个外接面分割产生的三角形,对它们进行颜色填充,对每个三角形填充颜色时,根据每个三角形的三个顶点的信息,在RGB空间中进行颜色填充,其颜色值用下式表示:For the triangles generated by the division of the 6 external surfaces of the RGB cube in step 4, fill them with color. When filling each triangle with color, according to the information of the three vertices of each triangle, perform color filling in the RGB space, and its color The value is represented by the following formula:

Ti=(Ai+Bi+Ci)/3,T i =(A i +B i +C i )/3,

其中i代表顶点的颜色通道R、G或B,Ti为需要填充的颜色值,A、B、C为三角形的三个顶点,对所有三角形进行封闭填充,得到RGB立方体色域外观;Where i represents the color channel R, G or B of the vertex, Ti is the color value to be filled, A, B, and C are the three vertices of the triangle, and all triangles are closed and filled to obtain the appearance of the RGB cube color gamut;

步骤6、利用步骤4提取出的RGB立方体色域边界点,在步骤2存储的测量数据中进行查找,找出对应的CIELAB值,将这些边界点的离散形式描述到CIELAB空间中,然后按照RGB立方体中的6个外接面、每个外接面中的128个三角形构造顺序,将所有的三角形顶点的RGB值转换成测量获得的CIELAB值,在CIELAB空间中对所有三角形进行封闭贴片,得到色域外观图,即成。Step 6. Use the RGB cube color gamut boundary points extracted in step 4 to search in the measurement data stored in step 2 to find out the corresponding CIELAB values, describe the discrete forms of these boundary points in CIELAB space, and then use RGB The 6 circumscribed surfaces in the cube and 128 triangles in each circumscribed surface are constructed sequentially, and the RGB values of all triangle vertices are converted into CIELAB values obtained by measurement, and all triangles are closed and pasted in CIELAB space to obtain the color Domain appearance map, that is.

本发明的有益效果是:考虑到以上算法的不足,以先查找设备空间色域边界、然后将其转换到色度空间CIELAB中的思路,并且由于RGB或CMY设备的设备空间色域与CIELAB色度空间色域相对应,步骤简便、运算快速,能够精确提取该设备类型的色域边界。The beneficial effects of the present invention are: considering the deficiency of the above algorithm, first find the boundary of the device space color gamut, and then convert it to the thinking in the chromaticity space CIELAB, and because the device space color gamut of RGB or CMY equipment is different from the CIELAB color Corresponding to the color gamut of the color space, the steps are simple and the calculation is fast, and the color gamut boundary of the device type can be accurately extracted.

附图说明Description of drawings

图1为本发明三维色域边界描述方法中的RGB空间中离散边界点;Fig. 1 is the discrete boundary points in the RGB space in the three-dimensional color gamut boundary description method of the present invention;

图2为本发明方法中的RGB色域面的三角形划分;Fig. 2 is the triangular division of the RGB color gamut surface in the inventive method;

图3为本发明方法中的RGB立方体色域外观;Fig. 3 is the RGB cube color gamut appearance in the inventive method;

图4为本发明方法中的RGB设备在CIELAB空间色域。Fig. 4 is the color gamut of the RGB device in the CIELAB space in the method of the present invention.

具体实施方式Detailed ways

本发明的三维色域边界描述方法的工作原理是:针对三色彩色设备,以RGB显示器为例,其设备颜色空间为RGB,其标准色度空间选择为CIELAB,首先制作一定数量的电子色块,根据每个色块中的RGB驱动值在显示器中的显示,通过测量记录对应的CIELAB值;由于R、G、B三通道之间是相互独立的,即任何单独一通道的颜色值是无法用另外一个或两个通道代替的,因此可视为其设备颜色空间中对应的色域边界,与CIELAB标准色度空间中的色域边界是对应的。The working principle of the three-dimensional color gamut boundary description method of the present invention is: for three-color color equipment, take RGB display as an example, its equipment color space is RGB, and its standard chromaticity space is selected as CIELAB, first make a certain number of electronic color blocks , according to the display of the RGB driving value in each color block in the monitor, record the corresponding CIELAB value by measuring; since the three channels of R, G, and B are independent of each other, that is, the color value of any single channel cannot It is replaced by another one or two channels, so it can be regarded as the corresponding color gamut boundary in the device color space, which corresponds to the color gamut boundary in the CIELAB standard chromaticity space.

本发明的三维色域边界描述方法,按照以下步骤实施:The three-dimensional color gamut boundary description method of the present invention is implemented according to the following steps:

步骤1、设定电子色靶数据Step 1. Set the electronic color target data

根据用户所需控制的输出及测量时间进行调整,默认设置是R、G、B单通道被均匀划分成9级,即单通道驱动值的离散取值范围是[0 32 64 96 128160 192 224 255],如果用户设备的驱动信号范围为0~1,则以上驱动值取值范围为[0 32 64 96 128 160 192 224 255]/255,所建立的电子色靶中,色块RGB驱动值按照以上取值范围混合渐变,总共包含9×9×9=729个色块。Adjust according to the output and measurement time controlled by the user. The default setting is that the R, G, and B single channels are evenly divided into 9 levels, that is, the discrete value range of the single-channel drive value is [0 32 64 96 128160 192 224 255 ], if the driving signal range of the user equipment is 0~1, then the value range of the above driving value is [0 32 64 96 128 160 192 224 255]/255, in the established electronic color target, the RGB driving value of the color block is according to The above value ranges are mixed with gradients, which contain a total of 9×9×9=729 color blocks.

步骤2、调整显示器周围的环境设置Step 2. Adjust the environment settings around the monitor

设定色温为6500K,设定Gamma值时,对于苹果系统为1.8,对于PC为2.2;预热30分钟左右,显示色靶上的所有色块,用分光光度计测量对应的CIELAB值,将每个色块的RGB值及CIELAB值对应存储。Set the color temperature to 6500K, and set the Gamma value to 1.8 for the Apple system and 2.2 for the PC; preheat for about 30 minutes, display all the color blocks on the color target, measure the corresponding CIELAB value with a spectrophotometer, and set each The RGB value and CIELAB value of each color block are stored correspondingly.

步骤3、如图1所示,在RGB颜色空间中,从描述所有色块的位置可见,其色域外观是规则的立方体结构,提取设备色域边界时需要从所有样本点中选择出处于立方体外表面的数据,采用步骤1中默认的色靶数据,提取RGB立方体的边界信息,对于所有12条边的离散边界点颜色信息,在三个通道中,其中一个通道颜色值在0~255间渐变,而另外两个通道都固定处于0或者255的极值状态,所以提取的12条边上每条边包含9个边界点,对应的RGB值分别为:Step 3, as shown in Figure 1, in the RGB color space, it can be seen from the positions describing all the color blocks, the appearance of the color gamut is a regular cubic structure, when extracting the boundary of the color gamut of the device, it is necessary to select the points in the cube from all the sample points For the data of the outer surface, use the default color target data in step 1 to extract the boundary information of the RGB cube. For the color information of the discrete boundary points of all 12 sides, among the three channels, the color value of one channel is between 0 and 255 Gradient, while the other two channels are fixed at the extreme value state of 0 or 255, so each of the extracted 12 sides contains 9 boundary points, and the corresponding RGB values are:

L1:R=[0 32 64 96 128 160 192 224 255];G=0;B=0,L1: R=[0 32 64 96 128 160 192 224 255]; G=0; B=0,

L2:R=[0 32 64 96 128 160 192 224 255];G=0;B=255,L2: R=[0 32 64 96 128 160 192 224 255]; G=0; B=255,

L3:R=[0 32 64 96 128 160 192 224 255];G=255;B=0,L3: R=[0 32 64 96 128 160 192 224 255]; G=255; B=0,

L4:R=[0 32 64 96 128 160 192 224 255];G=255;B=255,L4: R=[0 32 64 96 128 160 192 224 255]; G=255; B=255,

L5:G=[0 32 64 96 128 160 192 224 255];R=0;B=0,L5: G=[0 32 64 96 128 160 192 224 255]; R=0; B=0,

L6:G=[0 32 64 96 128 160 192 224 255];R=0;B=255,L6: G=[0 32 64 96 128 160 192 224 255]; R=0; B=255,

L7:G=[0 32 64 96 128 160 192 224 255];R=255;B=0,L7: G=[0 32 64 96 128 160 192 224 255]; R=255; B=0,

L8:G=[0 32 64 96 128 160 192 224 255];R=255;B=255,L8: G=[0 32 64 96 128 160 192 224 255]; R=255; B=255,

L9:B=[0 32 64 96 128 160 192 224 255];G=0;R=0,L9: B=[0 32 64 96 128 160 192 224 255]; G=0; R=0,

L10:B=[0 32 64 96 128 160 192 224 255];G=0;R=255,L10: B=[0 32 64 96 128 160 192 224 255]; G=0; R=255,

L11:B=[0 32 64 96 128 160 192 224 255];G=255;R=0,L11: B=[0 32 64 96 128 160 192 224 255]; G=255; R=0,

L12:B=[0 32 64 96 128 160 192 224 255];G=255;R=255,L12: B=[0 32 64 96 128 160 192 224 255]; G=255; R=255,

另外,RGB色域包含6个外接面,这6个外接面中的边界点信息中,都是一个通道值处于极值,另外两个通道值渐变,所以6个外接面中每个外接面均包含有81个边界点,6个外接面的RGB值分别为:In addition, the RGB color gamut contains 6 circumscribing surfaces. In the boundary point information of these 6 circumscribing surfaces, one channel value is at the extreme value, and the other two channel values are gradually changing. Therefore, each of the 6 circumscribing surfaces is Contains 81 boundary points, and the RGB values of the 6 circumscribed surfaces are:

F1:R=0;G=[0 32 64 96 128 160 192 224 255];B=[0 32 64 96 128 160 192224 255],F1: R=0; G=[0 32 64 96 128 160 192 224 255]; B=[0 32 64 96 128 160 192224 255],

F2:R=255;G=[0 32 64 96 128 160 192 224 255];B=[0 32 64 96 128 160192 224 255],F2: R=255; G=[0 32 64 96 128 160 192 224 255]; B=[0 32 64 96 128 160192 224 255],

F3:G=0;R=[0 32 64 96 128 160 192 224 255];B=[0 32 64 96 128 160 192224 255],F3: G=0; R=[0 32 64 96 128 160 192 224 255]; B=[0 32 64 96 128 160 192224 255],

F4:G=255;R=[0 32 64 96 128 160 192 224 255];B=[0 32 64 96 128 160192 224 255],F4: G=255; R=[0 32 64 96 128 160 192 224 255]; B=[0 32 64 96 128 160192 224 255],

F5:B=0;G=[0 32 64 96 128 160 192 224 255];R=[0 32 64 96 128 160 192224 255],F5: B=0; G=[0 32 64 96 128 160 192 224 255]; R=[0 32 64 96 128 160 192224 255],

F6:B=255;G=[0 32 64 96 128 160 192 224 255];R=[0 32 64 96 128 160192 224 255]。F6: B=255; G=[0 32 64 96 128 160 192 224 255]; R=[0 32 64 96 128 160192 224 255].

步骤4、利用步骤3的数据信息,从所有的特性化建模数据中提取出RGB空间的色域边界离散点,利用每个外接面中的81个边界点,采用的连接方式是,先将每四个相邻的边界点组成一个正方形,再利用每个正方形左上角和右下角两点组成的对角线将其分割成两个三角形,这样RGB立方体的一个外接面就产生出128个三角形,参照图2。Step 4. Using the data information in Step 3, extract the discrete points of the color gamut boundary in RGB space from all the characteristic modeling data, and use the 81 boundary points in each circumscribed surface. The connection method adopted is to first connect Every four adjacent boundary points form a square, and then use the diagonal line formed by the upper left corner and the lower right corner of each square to divide it into two triangles, so that one circumscribed surface of the RGB cube produces 128 triangles , refer to Figure 2.

步骤5、描述RGB色域外观Step 5. Describe the appearance of the RGB color gamut

针对步骤4对RGB立方体6个外接面分割产生的三角形,对它们进行颜色填充,对每个三角形填充颜色时,根据每个三角形的三个顶点的信息,在RGB空间中进行颜色填充,其颜色值采用下式表示:For the triangles generated by the division of the 6 external surfaces of the RGB cube in step 4, fill them with color. When filling each triangle with color, according to the information of the three vertices of each triangle, perform color filling in the RGB space, and its color Values are represented by the following formula:

Ti=(Ai+Bi+Ci)/3,T i =(A i +B i +C i )/3,

其中i代表顶点的颜色通道R、G或B,Ti为需要填充的颜色值,A、B、C为三角形的三个顶点,对所有三角形进行封闭填充,得到如图3所示的RGB立方体色域外观。Where i represents the color channel R, G or B of the vertex, Ti is the color value to be filled, A, B, and C are the three vertices of the triangle, and all the triangles are closed and filled to obtain the RGB cube color as shown in Figure 3 domain appearance.

步骤6、利用步骤4提取出的RGB立方体色域边界点,在步骤2存储的测量数据中进行查找,找出对应的CIELAB值,将这些边界点的离散形式描述到CIELAB空间中,然后按照RGB立方体中的6个外接面、每个外接面中的128个三角形构造顺序,将所有的三角形顶点的RGB值转换成测量获得的CIELAB值,在CIELAB空间中对所有三角形进行封闭贴片,得到色域外观,见图4,即成。Step 6. Use the RGB cube color gamut boundary points extracted in step 4 to search in the measurement data stored in step 2 to find out the corresponding CIELAB values, describe the discrete forms of these boundary points in CIELAB space, and then use RGB The 6 circumscribed surfaces in the cube and 128 triangles in each circumscribed surface are constructed sequentially, and the RGB values of all triangle vertices are converted into CIELAB values obtained by measurement, and all triangles are closed and pasted in CIELAB space to obtain the color Domain appearance, see Figure 4, and it's done.

本发明的三维色域边界描述方法,通过提取出该设备在RGB颜色空间中的色域边界点,再利用测量法或者色空间转换算法计算出这些边界点的CIELAB值,然后在CIELAB色空间中进行连接和封闭,获得标准色度空间中的三维连续色域,即成。The three-dimensional color gamut boundary description method of the present invention extracts the color gamut boundary points of the device in the RGB color space, and then calculates the CIELAB values of these boundary points by using a measurement method or a color space conversion algorithm, and then in the CIELAB color space Connect and close to obtain the three-dimensional continuous color gamut in the standard chromaticity space, and that's it.

Claims (2)

1. a three-dimensional gamut contour description method, is characterized in that, implements according to following steps:
Step 1, setting electronics look target data
Adjust according to output and the Measuring Time of the required control of user, default setting is that R, G, B single channel evenly are divided into 9 grades, the discrete span that is the single channel motivation value is [0 32 64 96 128 160 192 224 255], if the driving range of signal of subscriber equipment is 0 ~ 1, above motivation value span is [0 32 64 96 128 160 192 224 255]/255, in the electronics look target of setting up, color lump RGB motivation value comprises 9 * 9 * 9=729 color lump altogether according to above span mixed gradient;
Environment setting around step 2, adjustment display
The setting colour temperature is 6500K, sets the Gamma value; After preheating, show all color lumps on the look target, with CIELAB value corresponding to spectrophotometer measurement, with rgb value and the CIELAB value corresponding stored of each color lump;
step 3, in the RGB color space, its colour gamut outward appearance is the cube structure of rule, need to select the data that are in the cube outside surface during extraction equipment gamut boundary from all sample points, adopt the look target data of acquiescence in step 1, extract the cubical boundary information of RGB, divergent boundary point colouring information for all 12 limits, in three passages, one of them passage color value is 0 ~ 255 gradual change, and two other passage all fixedly is in 0 or 255 extreme value state, so on 12 limits of extracting, every limit comprises 9 frontier points, corresponding rgb value is respectively:
L1:R=[0?32?64?96?128?160?192?224?255];G=0;B=0,
L2:R=[0?32?64?96?128?160?192?224?255];G=0;B=255,
L3:R=[0?32?64?96?128?160?192?224?255];G=255;B=0,
L4:R=[0?32?64?96?128?160?192?224?255];G=255;B=255,
L5:G=[0?32?64?96?128?160?192?224?255];R=0;B=0,
L6:G=[0?32?64?96?128?160?192?224?255];R=0;B=255,
L7:G=[0?32?64?96?128?160?192?224?255];R=255;B=0,
L8:G=[0?32?64?96?128?160?192?224?255];R=255;B=255,
L9:B=[0?32?64?96?128?160?192?224?255];G=0;R=0,
L10:B=[0?32?64?96?128?160?192?224?255];G=0;R=255,
L11:B=[0?32?64?96?128?160?192?224?255];G=255;R=0,
L12:B=[0?32?64?96?128?160?192?224?255];G=255;R=255,
In addition, the RGB colour gamut comprises 6 outer junctions, in the frontier point information in these 6 outer junctions, all that a channel value is in extreme value, two other channel value gradual change, so in 6 outer junctions, each outer junction all includes 81 frontier points, the rgb value of 6 outer junctions is respectively:
F1:R=0;G=[0?32?64?96?128?160?192?224?255];B=[0?32?64?96?128?160?192?224?255],
F2:R=255;G=[0?32?64?96?128?160?192?224?255];B=[0?32?64?96?128?160?192?224?255],
F3:G=0;R=[0?32?64?96?128?160?192?224?255];B=[0?32?64?96?128?160?192?224?255],
F4:G=255;R=[0?32?64?96?128?160?192?224?255];B=[0?32?64?96?128?160?192?224?255],
F5:B=0;G=[0?32?64?96?128?160?192?224?255];R=[0?32?64?96?128?160?192?224?255],
F6:B=255;G=[0?32?64?96?128?160?192?224?255];R=[0?32?64?96?128?160?192?224?255];
Step 4, utilize the data message of step 3, extract the gamut boundary discrete point of rgb space from all characterization modeling datas, utilize 81 frontier points in each outer junction, first every four adjacent frontier points are formed a square, the diagonal line that recycles 2 compositions in each square upper left corner and the lower right corner is divided into two triangles, and the cubical outer junction of RGB produces 128 triangles altogether like this;
Step 5, description RGB colour gamut outward appearance
The triangle of cutting apart generation for 6 outer junctions of step 4 pair RGB cube, they are carried out color filling, during to each triangle Fill Color, the information on three summits leg-of-mutton according to each, carry out color filling in rgb space, its color value represents with following formula:
T i=(A i+B i+C i)/3,
Wherein i represents Color Channel R, G or the B on summit, the color value of Ti for needing to fill, and A, B, C are leg-of-mutton three summits, and all triangles are sealed filling, obtain RGB cube colour gamut outward appearance;
Step 6, the RGB cube gamut boundary point that utilizes step 4 to extract, search in the measurement data of step 2 storage, find out corresponding CIELAB value, the discrete form of these frontier points is described in the CIELAB space, then according to 128 triangular construction orders in 6 outer junctions in the RGB cube, each outer junction, convert the rgb value of all triangular apex to measure acquisition CIELAB value, in the CIELAB space, all triangles are sealed paster, obtain the colour gamut outside drawing.
2. three-dimensional gamut contour description method according to claim 1, is characterized in that, in described step 2, when setting the Gamma value, system is 1.8 for apple, is 2.2 for PC.
CN2013100146136A 2013-01-15 2013-01-15 Three-dimensional color gamut boundary description method Pending CN103106888A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2013100146136A CN103106888A (en) 2013-01-15 2013-01-15 Three-dimensional color gamut boundary description method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2013100146136A CN103106888A (en) 2013-01-15 2013-01-15 Three-dimensional color gamut boundary description method

Publications (1)

Publication Number Publication Date
CN103106888A true CN103106888A (en) 2013-05-15

Family

ID=48314690

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2013100146136A Pending CN103106888A (en) 2013-01-15 2013-01-15 Three-dimensional color gamut boundary description method

Country Status (1)

Country Link
CN (1) CN103106888A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104219512A (en) * 2014-09-30 2014-12-17 曲阜师范大学 Method for describing color gamut boundary of display device
CN104702815A (en) * 2015-03-26 2015-06-10 智川 Method for visualizing color gamut of color output device
CN105654455A (en) * 2014-11-11 2016-06-08 曲阜师范大学 'Image-to-device' color gamut mapping algorithm

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5832109A (en) * 1995-09-15 1998-11-03 Agfa Gevaert N.V. Method and apparatus for calculating color gamuts
US20070041026A1 (en) * 2005-08-19 2007-02-22 Canon Kabushiki Kaisha Effecting gamut operations using boundary line elements
CN102509312A (en) * 2011-09-20 2012-06-20 哈尔滨工业大学 Color range space of human body digital tongue image color and extraction method thereof
US8275199B2 (en) * 2006-12-12 2012-09-25 Canon Kabushiki Kaisha Color processing apparatus and color processing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5832109A (en) * 1995-09-15 1998-11-03 Agfa Gevaert N.V. Method and apparatus for calculating color gamuts
US20070041026A1 (en) * 2005-08-19 2007-02-22 Canon Kabushiki Kaisha Effecting gamut operations using boundary line elements
US8275199B2 (en) * 2006-12-12 2012-09-25 Canon Kabushiki Kaisha Color processing apparatus and color processing method
CN102509312A (en) * 2011-09-20 2012-06-20 哈尔滨工业大学 Color range space of human body digital tongue image color and extraction method thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
徐艳芳,刘文耀: "数字影像输出设备色域边界的插值计算方法", 《光学精密工程》, vol. 14, no. 2, 30 April 2006 (2006-04-30), pages 262 - 264 *
徐艳芳: "《色彩管理原理与应用》", 1 February 2011, article "设备的颜色特性化", pages: 057 - 059 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104219512A (en) * 2014-09-30 2014-12-17 曲阜师范大学 Method for describing color gamut boundary of display device
CN105654455A (en) * 2014-11-11 2016-06-08 曲阜师范大学 'Image-to-device' color gamut mapping algorithm
CN105654455B (en) * 2014-11-11 2018-06-15 曲阜师范大学 A kind of gamut mapping algorithm of " image to equipment "
CN104702815A (en) * 2015-03-26 2015-06-10 智川 Method for visualizing color gamut of color output device

Similar Documents

Publication Publication Date Title
CN104219512B (en) A method for describing the color gamut boundary of a display device
CN107480025B (en) Method and device for displaying temperature data
CN103714110B (en) System and method for creating a run-time color-conversion look-up table
US11749145B2 (en) Color calibration of display modules using a reduced number of display characteristic measurements
CN103279948B (en) A kind of data processing method of high-spectrum remote sensing data True color synthesis
CN101754030A (en) A color gamut extension mapping system and method for laser TV
CN103091615B (en) Method to measure response curve of image sensor and device
CN103106888A (en) Three-dimensional color gamut boundary description method
EP3961551B1 (en) Gamut conversion method and apparatus, and medium
CN104077987A (en) Fast displayer three-dimensional color gamut volume algorithm based on Alpha Shapes
CN102075667A (en) Method for reversely converting color space based on table lookup method
CN103209331A (en) System and method for strengthening image color saturation
US20150062115A1 (en) Contour gradients using three-dimensional models
CN104813148B (en) For the method and apparatus for the measured value for harmonizing color measurement instrument
CN104702815A (en) Method for visualizing color gamut of color output device
CN101409770B (en) Method and apparatus for determining two-dimension Lab color range map contour
Tódová et al. Moment-based Constrained Spectral Uplifting.
CN103971336B (en) Adjusting method, device and equipment for image lightness
CN103093412B (en) Description method of two-dimension equal brightness color gamut
US8837828B2 (en) CIE lab color space based color conversion method and device and liquid crystal display device
Zeyen et al. Color interpolation for non-Euclidean color spaces
CN103116905A (en) Gradual change coloring effect achievement method of mountain three-dimensional model
JP2020202524A (en) Color gamut measuring device and program thereof
CN115665394B (en) Color correction method, system and equipment
JP5696865B1 (en) Display control system, display control method, and display control program

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20130515