CN103092204B - A kind of Robotic Dynamic paths planning method of mixing - Google Patents
A kind of Robotic Dynamic paths planning method of mixing Download PDFInfo
- Publication number
- CN103092204B CN103092204B CN201310020680.9A CN201310020680A CN103092204B CN 103092204 B CN103092204 B CN 103092204B CN 201310020680 A CN201310020680 A CN 201310020680A CN 103092204 B CN103092204 B CN 103092204B
- Authority
- CN
- China
- Prior art keywords
- robot
- information
- potential field
- planning
- line
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 40
- 230000007613 environmental effect Effects 0.000 claims abstract description 12
- 230000003068 static effect Effects 0.000 claims abstract description 9
- 230000002068 genetic effect Effects 0.000 claims abstract description 7
- 230000001133 acceleration Effects 0.000 claims description 27
- 239000013598 vector Substances 0.000 claims description 18
- 230000000007 visual effect Effects 0.000 claims description 4
- 230000000694 effects Effects 0.000 abstract description 3
- 230000004888 barrier function Effects 0.000 abstract 2
- 241000726103 Atta Species 0.000 description 3
- 238000013528 artificial neural network Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000013473 artificial intelligence Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
Landscapes
- Manipulator (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种路径规划方法,尤其涉及一种移动机器人在存在动态障碍物和静态障碍物的环境中的路径规划方法。The invention relates to a path planning method, in particular to a path planning method for a mobile robot in an environment with dynamic obstacles and static obstacles.
背景技术Background technique
移动机器人实时路径规划和导航是反映机器人自主能力的关键要素之一,也是较难解决的问题之一。机器人路径规划主要分为环境信息已知的规划和环境信息未知的规划。对于前者多采用离线规划,得到的路径较优,后者多采用在线规划,体现了路径规划的实时性。Real-time path planning and navigation of mobile robots is one of the key elements reflecting the robot's autonomous ability, and it is also one of the more difficult problems to solve. Robot path planning is mainly divided into planning with known environmental information and planning with unknown environmental information. For the former, offline planning is mostly used, and the obtained path is better, while the latter mostly uses online planning, which reflects the real-time nature of path planning.
近年来许多路径规划的方法被人们所研究。主要的路径规划的方法可以分为两类——人工智能的方法(AI)和人工势场法(APF)。前者主要运用的方法有遗传算法(GA)、模糊逻辑控制(FLC)和人工神经网络(ANN),这些方法往往较为复杂运算速度也较为缓慢。而后者由于其简洁性和快速性在机器人路径规划中得到广泛应用,其基本思想是环境中的目标点对其的吸引力以及障碍物的对其的排斥力构成一种势场环境。在动态环境中人工势场法用于解决规划问题的思路主要有两种,一种解决思路由Fujimura等提出,主要思路是将时间信息作为一个维度,动态障碍规划转换为静态规划,但局限性在于动态障碍物的轨迹需要事先已知。另一种解决方法由Ko和Lee等提出,主要思想是把障碍物的速度信息引入到排斥势力函数中,Ge和Cui在此基础上做了进一步的改进,该方法的好处是不需事先知道障碍物的轨迹,所以具有较好的实时性。In recent years, many path planning methods have been studied by people. The main path planning methods can be divided into two categories - artificial intelligence methods (AI) and artificial potential field methods (APF). The former mainly uses genetic algorithm (GA), fuzzy logic control (FLC) and artificial neural network (ANN). The latter is widely used in robot path planning due to its simplicity and rapidity. Its basic idea is that the attraction of the target point in the environment to it and the repulsion of obstacles to it constitute a potential field environment. In a dynamic environment, there are two main ideas for using the artificial potential field method to solve planning problems. One solution is proposed by Fujimura et al. The main idea is to use time information as a dimension, and convert dynamic obstacle planning into static planning, but the limitations The reason is that the trajectories of dynamic obstacles need to be known in advance. Another solution was proposed by Ko and Lee. The main idea is to introduce the velocity information of obstacles into the repulsive force function. Ge and Cui made further improvements on this basis. The advantage of this method is that it does not need to know in advance The trajectory of obstacles, so it has better real-time performance.
现实生活中的情况往往是部分环境信息已知的情况,如在工厂环境下一些工况是已知的,一些工况是未知的。仅用上述的在线的路径规划方法得到的路径较不为优化,仅用上述的离线规划方法计算速度较慢,比较难以处理动态障碍物。The situation in real life is often the situation where part of the environmental information is known, such as some working conditions in the factory environment are known, and some working conditions are unknown. The path obtained by using only the above-mentioned online path planning method is less optimized, and only using the above-mentioned offline planning method is relatively slow in calculation speed, and it is difficult to deal with dynamic obstacles.
发明内容Contents of the invention
本发明的目的是克服现有技术的不足,提供一种混合的机器人动态路径规划方法。The purpose of the present invention is to overcome the deficiencies of the prior art and provide a hybrid robot dynamic path planning method.
本发明的目的是通过以下技术方案来实现的:一种混合的机器人动态路径规划方法包括如下步骤:The object of the present invention is achieved through the following technical solutions: a hybrid robot dynamic path planning method comprises the steps:
步骤1:利用视觉传感器获得环境信息,包括环境中已知静态障碍物信息、目标点信息以及机器人自身的位置信息;Step 1: Use the visual sensor to obtain environmental information, including known static obstacle information in the environment, target point information, and the position information of the robot itself;
步骤2:在步骤1中得到的环境信息用栅格法表示,得到栅格地图,栅格的大小取决于规划精度;Step 2: The environmental information obtained in step 1 is represented by a grid method to obtain a grid map, and the size of the grid depends on the planning accuracy;
步骤3:对于步骤2中得到的栅格地图用遗传算法进行全局的路径规划,得到一条全局的路径,该路径为一条折线;Step 3: Carry out global path planning with the genetic algorithm for the raster map obtained in step 2, and obtain a global path, which is a polyline;
步骤4:从步骤3中得到的折线中提取折点以及全局目标点、起点作为局部规划所需的关键点,这些关键点为局部规划的局部目标点;Step 4: Extract vertices, global target points, and starting points from the polylines obtained in step 3 as key points required for local planning, and these key points are local target points for local planning;
步骤5:利用移动机器人周边的动态静态障碍物以及步骤4中所述的关键点作为局部目标点,采用人工势场法(APF)构造势场环境,同时势场环境中还加入了由步骤4中的得到的相邻关键点连接而成的线段对机器人的吸引力势场;Step 5: Using the dynamic and static obstacles around the mobile robot and the key points mentioned in step 4 as local target points, the artificial potential field method (APF) is used to construct the potential field environment, and the potential field environment is also added by step 4 The attractive potential field of the line segment connected by the obtained adjacent key points to the robot;
步骤6:机器人在步骤5构造的势场环境中受到吸引力和排斥力,在合力的作用下运动,进行局部目标规划;Step 6: The robot is subjected to attractive and repulsive forces in the potential field environment constructed in step 5, moves under the action of the resultant force, and performs local target planning;
步骤7:判断机器人当前的位置是否到达步骤4所述的局部目标点,如果到达局部目标点则更新目标点为下一个关键点作为局部目标点并转向步骤5重新构造局部势场环境;Step 7: Determine whether the current position of the robot has reached the local target point described in step 4. If it reaches the local target point, update the target point to the next key point as the local target point and turn to step 5 to reconstruct the local potential field environment;
步骤8:如当前的局部目标点为环境的全局目标点则当机器人到达全局目标点后方法结束;Step 8: If the current local target point is the global target point of the environment, the method ends when the robot reaches the global target point;
本发明的有益效果是,对已知环境进行离线规划,对未知环境进行在线规划,结合了两者的优点,规划后的路径既比较优化,而且对动态障碍物等未知障碍物的处理也有较强的灵活性。本发明提出的方法更加适用于实际自动化工厂环境的路径规划。The beneficial effect of the present invention is that offline planning is carried out for known environments and online planning is carried out for unknown environments, combining the advantages of the two, the planned path is more optimized, and the processing of unknown obstacles such as dynamic obstacles is also more efficient. Strong flexibility. The method proposed by the invention is more suitable for the path planning of the actual automatic factory environment.
附图说明Description of drawings
图1是混合的机器人动态路径规划方法的流程图;Fig. 1 is the flowchart of the hybrid robot dynamic path planning method;
图2是机器人受到斥力向量图。Figure 2 is a vector diagram of the robot being repulsed.
具体实施方式detailed description
下面结合附图详细描述本发明,本发明的目的和效果将变得更加明显。The purpose and effects of the present invention will become more apparent by describing the present invention in detail below in conjunction with the accompanying drawings.
如图1所示,本发明混合的机器人动态路径规划方法包括如下步骤:As shown in Figure 1, the hybrid robot dynamic path planning method of the present invention includes the following steps:
步骤1:利用视觉传感器获得环境信息,包括环境中已知静态障碍物信息、目标点信息以及机器人自身的位置信息。Step 1: Use the visual sensor to obtain environmental information, including known static obstacle information in the environment, target point information, and the position information of the robot itself.
该步骤可以采用刘明烁.基于双目视觉测程法的柔性机械臂轨迹跟踪.浙江大学学位论文.2011.04中第三章的方法得到障碍物位置以及机器人自身的位置信息。This step can use the method in Chapter 3 of Liu Mingshuo. Flexible Manipulator Trajectory Tracking Based on Binocular Vision Odometry. Dissertation of Zhejiang University. 2011.04 to obtain the position information of the obstacle and the position of the robot itself.
步骤2:在步骤1中得到的环境信息用栅格法表示,得到栅格地图,栅格的大小取决于规划精度。Step 2: The environmental information obtained in step 1 is represented by the grid method to obtain a grid map, and the size of the grid depends on the planning accuracy.
该步骤可以采用张捍东.栅格编码新方法在机器人路径规划中的应用.华中科技大学学报:自然科学版,2007,35(1):50一53.的方法把环境信息用栅格法表示。This step can use Zhang Handong. Application of new raster coding method in robot path planning. Journal of Huazhong University of Science and Technology: Natural Science Edition, 2007, 35(1): 50-53. The method expresses the environmental information with the grid method.
步骤3:对于步骤2中得到的栅格地图用遗传算法进行全局的路径规划,得到一条全局的路径,该路径为一条折线。Step 3: For the raster map obtained in step 2, use the genetic algorithm to perform global path planning to obtain a global path, which is a polyline.
该步骤可以采用采用张捍东.栅格编码新方法在机器人路径规划中的应用.华中科技大学学报:自然科学版,2007,35(1):50一53.的方法使用遗传算法最后得到一条折线段。This step can be adopted using Zhang Handong. Application of new raster coding method in robot path planning. Journal of Huazhong University of Science and Technology: Natural Science Edition, 2007, 35(1): 50-53. The method uses the genetic algorithm to finally get a polyline segment.
步骤4:从步骤3中得到的折线中提取折点以及全局目标点、起点作为局部规划所需的关键点,这些关键点为局部规划的局部目标点。Step 4: Extract vertices, global target points, and starting points from the polylines obtained in step 3 as key points required for local planning, and these key points are local target points for local planning.
得到折线的折点以及起始点和目标点,将其依次编号1,2,3…N,其中1为起始点,N为目标点,取这些点作为路径规划的关键点。Get the vertices of the polyline, the starting point and the target point, and number them 1, 2, 3...N in sequence, where 1 is the starting point and N is the target point, and these points are taken as the key points of path planning.
步骤5:利用移动机器人周边的动态静态障碍物以及步骤4中所述的关键点作为局部目标点,采用人工势场法(APF)构造势场环境,同时势场环境中还加入了由步骤4中的得到的相邻关键点连接而成的线段对机器人的吸引力势场。Step 5: Using the dynamic and static obstacles around the mobile robot and the key points mentioned in step 4 as local target points, the artificial potential field method (APF) is used to construct the potential field environment, and the potential field environment is also added by step 4 The attractive potential field of the line segment connected by the adjacent key points to the robot is obtained.
构造的势场环境包括引力场函数和斥力场函数,势场环境的函数如下:U(q)=Uatt(q)+Urep(q),其中Uatt(q)为引力场函数Urep(q)为斥力场函数,q为机器人位置矢量。The constructed potential field environment includes a gravitational field function and a repulsive field function. The function of the potential field environment is as follows: U(q)=U att (q)+U rep (q), where U att (q) is the gravitational field function U rep (q) is the repulsion field function, and q is the robot position vector.
关于引力场函数,本发明在传统的引力场函数的基础上引入了机器人相对目标点的速度信息和加速度信息,这样机器人在势力场环境中的受力可以根据位置、速度、加速度进行调整。另外,为了跟踪一条较优的路线,机器人除了受到目标点的吸引外,始终受到一条已经存在的路径的吸引,即所谓的“线势场”。改进后的引力场函数为:Uatt(q,v,a)=αq||q-qg||m+αv||v-vg||n+αa||a-ag||p+αl(||q-qline||l+||v-vline||l+||a-aline||l)其中q,v,a分别为机器人的位置、速度、加速度的矢量,αq、αv、αa和m、n、p是比例系数,不同的值表示在引力函数中机器人和目标点相对位置信息、相对速度信息、相对加速度信息的权重,αl和l表示的是线势场的权重。αv、αa和αl为零时则,改进的引力场函数和传统引力场函数相同。qg、vg、ag为目标点的位置、速度和加速度矢量。qline=(x0,r(x0))T其中r(x)为曲线的方程(x0,r(x0))表示曲线上到移动机器人当前位置最近的点的坐标,随着机器人的移动该坐标会相应的变化。vline、aline为路径上的点的速度和加速度矢量,通常可取vline=(0,0)T,aline=(0,0)T表示机器人到曲线上的最近位置的点的加速度和速度为0。Regarding the gravitational field function, the present invention introduces the speed information and acceleration information of the robot relative to the target point on the basis of the traditional gravitational field function, so that the force of the robot in the force field environment can be adjusted according to the position, speed, and acceleration. In addition, in order to track a better route, the robot is always attracted by an existing path in addition to being attracted by the target point, which is the so-called "line potential field". The improved gravitational field function is: U att (q,v,a)=α q ||qq g || m +α v ||vv g || n +α a ||aa g || p +α l (||qq line || l +||vv line || l +||aa line || l ) where q, v, a are the vectors of the position, velocity and acceleration of the robot, α q , α v , α a , m, n, and p are proportional coefficients. Different values represent the weights of the relative position information, relative velocity information, and relative acceleration information of the robot and the target point in the gravitational function. α l and l represent the weight of the line potential field. When α v , α a and α l are zero, the improved gravitational field function is the same as the traditional gravitational field function. q g , v g , a g are the position, velocity and acceleration vectors of the target point. q line =(x 0 ,r(x 0 )) T where r(x) is the equation of the curve (x 0 ,r(x 0 )) represents the coordinates of the closest point on the curve to the current position of the mobile robot. The coordinates will change accordingly. v line and a line are the velocity and acceleration vectors of the points on the path, usually v line =(0,0) T , a line =(0,0) T represents the acceleration and speed is 0.
同理斥力场也包含机器人和障碍物的位置信息和相对速度信息以及相对加速度信息,这样机器人可以综合以上信息来获得避障受力。具体公式如下:Urep(q,v,a)=αq(1/ρobs-1/ρ0)+αvvro+αaaro其中分别为机器人的位置、速度、加速度的矢量,ρ0表示障碍物到机器人的安全距离,只有在ρ0的范围之内机器人才受到障碍物的排斥作用。ρobs=||q-qobs||为机器人的中心到障碍物的中心的距离,αv、αa和αl是比例系数,vro和aro分别表示障碍物的速度和机器人的速度的矢量差,障碍物的加速度速度和机器人的加速度的矢量差。Similarly, the repulsive force field also includes the position information, relative velocity information and relative acceleration information of the robot and the obstacle, so that the robot can synthesize the above information to obtain the obstacle avoidance force. The specific formula is as follows: U rep (q,v,a)=α q (1/ρ obs -1/ρ 0 )+α v v ro +α a a ro where they are the vectors of the position, velocity and acceleration of the robot, ρ0 represents the safe distance from the obstacle to the robot, and the robot is repelled by the obstacle only within the range of ρ0 . ρ obs =||qq obs || is the distance from the center of the robot to the center of the obstacle, α v , α a and α l are proportional coefficients, v ro and a ro represent the speed vector of the obstacle and the robot respectively Difference, the vector difference between the acceleration velocity of the obstacle and the acceleration of the robot.
步骤6:机器人在步骤5构造的势场环境中受到吸引力和排斥力,在合力的作用下运动,进行局部目标规划。Step 6: The robot is subjected to attractive and repulsive forces in the potential field environment constructed in step 5, moves under the action of the resultant force, and performs local goal planning.
机器人在势场环境下受力如下:F=Fatt+Frep其中Fatt为机器人受到吸引力,Frep为机器人受到的排斥力。The force on the robot in the potential field environment is as follows: F=F att +F rep where F att is the attractive force on the robot, and F rep is the repulsive force on the robot.
可由步骤5中的引力函数推得机器人所受吸引力为
可由步骤5中的中的斥力函数推得机器人所受斥力为
步骤7:判断机器人当前的位置是否到达步骤4所述的局部目标点,如果到达局部目标点则更新目标点为下一个关键点作为局部目标点并转向步骤5重新构造局部势场环境。Step 7: Determine whether the current position of the robot reaches the local target point described in step 4. If it reaches the local target point, update the target point to the next key point as the local target point and turn to step 5 to reconstruct the local potential field environment.
机器人通过视觉传感器能得知机器人当前自身的位置,如若机器人到达局部目标点则取步骤4所述的1…N中的下一个关键点,并标记上一个关键点已访问。The robot can know the current position of the robot through the visual sensor. If the robot reaches the local target point, it will take the next key point in 1...N mentioned in step 4, and mark the previous key point as visited.
步骤8:如当前的局部目标点为环境的全局目标点则当机器人到达全局目标点后方法结束。Step 8: If the current local target point is the global target point of the environment, the method ends when the robot reaches the global target point.
本发明针对环境信息部分已知的情况,采用了一种混合的避障方法,先用遗传算法进行全局规划得到全局路径,再用的改进人工势场法进行局部规划。改进的人工势函数中加入了速度信息和加速度信息,既可以使机器人能够较好的避开障碍物又可以使机器人到达目标点不至于速度过大。改进的人工势函数还增加了线势场,用于较好的跟踪期望路径,本方法简单可行,能满足机器人实时路径规划的要求。The present invention adopts a hybrid obstacle avoidance method for partially known environmental information, first uses genetic algorithm to carry out global planning to obtain a global path, and then uses the improved artificial potential field method to carry out local planning. The improved artificial potential function adds speed information and acceleration information, which can not only make the robot avoid obstacles better but also make the robot reach the target point without excessive speed. The improved artificial potential function also adds a line potential field to better track the desired path. This method is simple and feasible, and can meet the requirements of real-time path planning for robots.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310020680.9A CN103092204B (en) | 2013-01-18 | 2013-01-18 | A kind of Robotic Dynamic paths planning method of mixing |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310020680.9A CN103092204B (en) | 2013-01-18 | 2013-01-18 | A kind of Robotic Dynamic paths planning method of mixing |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103092204A CN103092204A (en) | 2013-05-08 |
CN103092204B true CN103092204B (en) | 2016-04-13 |
Family
ID=48204903
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310020680.9A Expired - Fee Related CN103092204B (en) | 2013-01-18 | 2013-01-18 | A kind of Robotic Dynamic paths planning method of mixing |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103092204B (en) |
Families Citing this family (57)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103455034B (en) * | 2013-09-16 | 2016-05-25 | 苏州大学张家港工业技术研究院 | A kind of based on the histogrammic obstacle-avoiding route planning method of minimum distance vector field |
CN103760904B (en) * | 2014-02-13 | 2016-10-19 | 北京工业大学 | A voice broadcast intelligent vehicle route planning device and implementation method |
CN104020776B (en) * | 2014-06-13 | 2016-08-24 | 哈尔滨工程大学 | The tracking of the UUV motion lash ship to having multiple prohibited area |
CN104317292A (en) * | 2014-09-16 | 2015-01-28 | 哈尔滨恒誉名翔科技有限公司 | Method for planning collision avoidance path of robot with complicated shape |
CN104202793A (en) * | 2014-09-26 | 2014-12-10 | 江南大学 | Obstacle avoidance method by adopting connected graph in mixed wireless sensor network |
CN104536445B (en) * | 2014-12-19 | 2018-07-03 | 深圳先进技术研究院 | Mobile navigation method and system |
CN104390648B (en) * | 2014-12-22 | 2017-07-11 | 中国矿业大学 | A kind of Mine Disaster Relief Robot paths planning method based on Artificial Potential Field |
CN104606886B (en) * | 2014-12-25 | 2017-10-17 | 珠海金山网络游戏科技有限公司 | A kind of method of distributed collisionless movement planning |
CN105988468A (en) * | 2015-01-28 | 2016-10-05 | 中国人民公安大学 | Improved genetic algorithm-based mobile robot path planning method |
CN104881026B (en) * | 2015-04-28 | 2017-11-24 | 国家电网公司 | High-tension line rushes to repair mechanical arm mobile route planning system and method |
CN105589459B (en) * | 2015-05-19 | 2019-07-12 | 中国人民解放军国防科学技术大学 | The semi-autonomous remote control method of unmanned vehicle |
CN104808671B (en) * | 2015-05-19 | 2017-03-15 | 东南大学 | A kind of robot path planning method under domestic environment |
CN105320133A (en) * | 2015-10-26 | 2016-02-10 | 广东雷洋智能科技股份有限公司 | An Improved Potential Field Grid Method Applied to Sweeping Robot |
CN105446339B (en) * | 2015-12-22 | 2018-03-16 | 安徽工程大学 | A kind of method for planning path for mobile robot |
CN105526942B (en) * | 2016-01-25 | 2019-03-08 | 重庆邮电大学 | Threat Estimation-Based Intelligent Vehicle Path Planning Method |
CN105629974B (en) * | 2016-02-04 | 2018-12-04 | 重庆大学 | A kind of robot path planning method and system based on modified Artificial Potential Field Method |
CN105974917B (en) * | 2016-05-11 | 2018-12-14 | 江苏大学 | A kind of vehicle obstacle-avoidance path planning research method based on novel artificial potential field method |
CN106020199B (en) * | 2016-07-06 | 2018-10-23 | 江苏科技大学 | Coagulo meter dynamic obstacle avoidance paths planning method based on optimization Artificial Potential Field Method |
CN106569491A (en) * | 2016-10-31 | 2017-04-19 | 江苏华航威泰机器人科技有限公司 | Robot obstacle avoidance trajectory planning method |
CN106325285A (en) * | 2016-11-05 | 2017-01-11 | 杭州畅动智能科技有限公司 | Control method based on underwater obstacle avoidance device |
CN106708063A (en) * | 2017-03-22 | 2017-05-24 | 江南大学 | Route planning method for search and rescue robot in chemical disaster scene |
CN110235153A (en) * | 2017-04-26 | 2019-09-13 | 深圳市元征科技股份有限公司 | A kind of item dispenser method and terminal |
CN108873875B (en) * | 2017-05-08 | 2023-11-14 | 中国华电集团有限公司青海分公司 | Robot steering motion control method and device, robot and storage medium |
CN107065880A (en) * | 2017-05-16 | 2017-08-18 | 南京农业大学 | Remote operating agricultural vehicle man-computer cooperation paths planning method based on dynamic guiding point |
EP4129581A1 (en) * | 2017-05-18 | 2023-02-08 | KUKA Hungária Kft. | Robot motion planning for avoiding collision with moving obstacles |
CN107092255A (en) * | 2017-05-19 | 2017-08-25 | 安徽工程大学 | A kind of multi-robots path-planning method based on improved adaptive GA-IAGA |
CN107357293A (en) * | 2017-07-31 | 2017-11-17 | 上海应用技术大学 | Method for planning path for mobile robot and system |
CN107544502A (en) * | 2017-09-25 | 2018-01-05 | 华中科技大学 | A kind of Planning of Mobile Robot under known environment |
CN107992036B (en) * | 2017-11-20 | 2021-03-16 | 汕头大学 | A method, device and storage medium for path planning of access vehicles in an intelligent parking garage |
CN108170136A (en) * | 2017-12-15 | 2018-06-15 | 武汉理工大学 | More unmanned boat formation control system and methods based on wireless sensor network |
CN108171796A (en) * | 2017-12-25 | 2018-06-15 | 燕山大学 | A kind of inspection machine human visual system and control method based on three-dimensional point cloud |
CN108508913B (en) * | 2018-03-29 | 2021-03-02 | 中国海洋大学 | Data-driven submarine path planning method for autonomous underwater vehicle |
CN109358637B (en) * | 2018-05-25 | 2021-11-09 | 武汉科技大学 | Three-dimensional obstacle avoidance method for earth surface close-range autonomous exploration unmanned aerial vehicle based on preset air route |
CN108803614A (en) * | 2018-07-04 | 2018-11-13 | 广东猪兼强互联网科技有限公司 | A kind of unmanned machine people path planning system |
CN108898866B (en) * | 2018-07-04 | 2021-03-16 | 矩阵数据科技(上海)有限公司 | Intelligent vehicle control system |
CN108958250A (en) * | 2018-07-13 | 2018-12-07 | 华南理工大学 | Multisensor mobile platform and navigation and barrier-avoiding method based on known map |
CN108983789A (en) * | 2018-08-20 | 2018-12-11 | 广东华中科技大学工业技术研究院 | A path planning and deployment scheduling method for unmanned boats |
CN108955696B (en) * | 2018-09-30 | 2020-07-03 | 江苏美的清洁电器股份有限公司 | Sweeper and path planning method and device thereof |
CN109445440B (en) * | 2018-12-13 | 2022-03-22 | 重庆邮电大学 | Dynamic obstacle avoidance method based on sensor fusion and improved Q-learning algorithm |
CN109782757A (en) * | 2018-12-30 | 2019-05-21 | 芜湖哈特机器人产业技术研究院有限公司 | A kind of path dispatching method of more AGV systems based on subsection scheduling |
CN109945873B (en) * | 2019-04-04 | 2022-07-15 | 东南大学 | A hybrid path planning method for motion control of indoor mobile robots |
CN109945885B (en) * | 2019-04-16 | 2021-01-15 | 清华大学 | Unmanned motorcycle dynamic obstacle avoidance path planning and calculating method |
CN110673633B (en) * | 2019-09-29 | 2023-04-07 | 合肥工业大学 | Power inspection unmanned aerial vehicle path planning method based on improved APF |
CN111369038B (en) * | 2020-02-25 | 2022-06-14 | 华南理工大学 | A Multi-objective Dynamic Scheduling Method Based on Genetic Algorithm |
CN111506068B (en) * | 2020-04-20 | 2023-02-03 | 哈尔滨工程大学 | A Local Path Planning Method for Unmanned Surface Vehicles for Multi-beam Sonar Scanning Operations |
EP4157589A4 (en) * | 2020-05-26 | 2024-02-28 | Edda Technology, Inc. | A robot path planning method with static and dynamic collision avoidance in an uncertain environment |
TWI780468B (en) | 2020-08-13 | 2022-10-11 | 國立陽明交通大學 | Method and system of robot for human following |
CN112034853A (en) * | 2020-09-04 | 2020-12-04 | 南京凌华微电子科技有限公司 | Working method of household monitoring robot |
CN112099501B (en) * | 2020-09-15 | 2022-10-28 | 哈尔滨工程大学 | Unmanned ship path planning method based on potential field parameter optimization |
CN112092810B (en) * | 2020-09-24 | 2022-06-14 | 上海汽车集团股份有限公司 | Vehicle parking-out method and device and electronic equipment |
CN112882479B (en) * | 2021-01-28 | 2022-11-22 | 南通大学 | A Path Planning Method Based on Cumulative State of Inner and Outer Angles |
CN113199474B (en) * | 2021-04-25 | 2022-04-05 | 广西大学 | A motion planning method for intelligent coordination of robot walking and work |
CN113791627B (en) * | 2021-11-16 | 2022-02-11 | 中国科学院自动化研究所 | Robot navigation method, equipment, medium and product |
CN114355926B (en) * | 2021-12-29 | 2022-10-14 | 深圳市云鼠科技开发有限公司 | Path planning method and device, robot and storage medium |
CN116414118A (en) * | 2021-12-31 | 2023-07-11 | 追觅创新科技(苏州)有限公司 | Path planning method and system based on obstacle marks and self-moving robot |
CN114779821B (en) * | 2022-05-25 | 2023-06-27 | 四川大学 | Unmanned aerial vehicle self-adaptive repulsive force coefficient path planning method based on deep learning |
CN115907248B (en) * | 2022-10-26 | 2023-07-14 | 山东大学 | Multi-robot unknown environment path planning method based on geometric neural network |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070100496A1 (en) * | 2003-05-27 | 2007-05-03 | Stockholmsmassan | Robot system, method and computer program product |
CN101077578A (en) * | 2007-07-03 | 2007-11-28 | 北京控制工程研究所 | Mobile Robot local paths planning method on the basis of binary environmental information |
CN101359229A (en) * | 2008-08-18 | 2009-02-04 | 浙江大学 | An Obstacle Avoidance Method for Mobile Robots Based on Obstacle Motion Prediction |
-
2013
- 2013-01-18 CN CN201310020680.9A patent/CN103092204B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070100496A1 (en) * | 2003-05-27 | 2007-05-03 | Stockholmsmassan | Robot system, method and computer program product |
CN101077578A (en) * | 2007-07-03 | 2007-11-28 | 北京控制工程研究所 | Mobile Robot local paths planning method on the basis of binary environmental information |
CN101359229A (en) * | 2008-08-18 | 2009-02-04 | 浙江大学 | An Obstacle Avoidance Method for Mobile Robots Based on Obstacle Motion Prediction |
Non-Patent Citations (2)
Title |
---|
机器人动态路径规划与协作路径规划研究;梁文君;《中国优秀硕士学位论文全文数据库》;20100815(第08期);第3、9、20-26、28页 * |
移动机器人路径规划方法研究;曲道奎等;《机器人》;20080331;第30卷(第2期);第97-99页 * |
Also Published As
Publication number | Publication date |
---|---|
CN103092204A (en) | 2013-05-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103092204B (en) | A kind of Robotic Dynamic paths planning method of mixing | |
CN102207736B (en) | Robot path planning method and apparatus thereof based on Bezier curve | |
Schneider et al. | A potential field based approach to multi robot formation navigation | |
CN105629974B (en) | A kind of robot path planning method and system based on modified Artificial Potential Field Method | |
Selvam et al. | Collision-free path planning for UAVs using efficient artificial potential field algorithm | |
CN109871031B (en) | Trajectory planning method for fixed-wing unmanned aerial vehicle | |
Dobrevski et al. | Adaptive dynamic window approach for local navigation | |
Jeon et al. | Online trajectory generation of a mav for chasing a moving target in 3d dense environments | |
Lee et al. | An improved artificial potential field method with a new point of attractive force for a mobile robot | |
Li et al. | Path planning of robot based on artificial potential field method | |
Yokoyama et al. | Success weighted by completion time: A dynamics-aware evaluation criteria for embodied navigation | |
CN101739509A (en) | Path navigation method for large-scale virtual crowd | |
Zeng et al. | Exploiting ocean energy for improved AUV persistent presence: path planning based on spatiotemporal current forecasts | |
Liu | Implementation of SLAM and path planning for mobile robots under ROS framework | |
Lv et al. | An improved FastSLAM algorithm based on revised genetic resampling and SR-UPF | |
Hu et al. | Optimal path planning for mobile manipulator based on manipulability and localizability | |
Zevering et al. | IMU-based pose-estimation for spherical robots with limited resources | |
Wang et al. | Potential-based obstacle avoidance in formation control | |
Zheng et al. | The navigation based on hybrid a star and TEB algorithm implemented in obstacles avoidance | |
Hellström | Robot navigation with potential fields | |
Yao | Path planning algorithm of indoor mobile robot based on ROS system | |
Junratanasiri et al. | Navigation system of mobile robot in an uncertain environment using type-2 fuzzy modelling | |
Yan et al. | Target tracking and obstacle avoidance for multi-agent systems | |
Lee et al. | Random force based algorithm for local minima escape of potential field method | |
Gao et al. | Toward obstacle avoidance for mobile robots using deep reinforcement learning algorithm |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20160413 Termination date: 20190118 |
|
CF01 | Termination of patent right due to non-payment of annual fee |