[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN103020054B - Fuzzy query method and system - Google Patents

Fuzzy query method and system Download PDF

Info

Publication number
CN103020054B
CN103020054B CN201110280094.9A CN201110280094A CN103020054B CN 103020054 B CN103020054 B CN 103020054B CN 201110280094 A CN201110280094 A CN 201110280094A CN 103020054 B CN103020054 B CN 103020054B
Authority
CN
China
Prior art keywords
index
inquiry
index value
data item
key word
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201110280094.9A
Other languages
Chinese (zh)
Other versions
CN103020054A (en
Inventor
陈伟君
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Kingdee Tianyanyun Computing Co Ltd
Original Assignee
Shenzhen Kingdee Middleware Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Kingdee Middleware Co ltd filed Critical Shenzhen Kingdee Middleware Co ltd
Priority to CN201110280094.9A priority Critical patent/CN103020054B/en
Publication of CN103020054A publication Critical patent/CN103020054A/en
Application granted granted Critical
Publication of CN103020054B publication Critical patent/CN103020054B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)

Abstract

A kind of fuzzy query method, comprises the following steps: set up global index according to the mapping relations between the index value preset and data item to database table; Described global index is sorted; Obtain key word of the inquiry, between the index area adopting interval binary search to mate with described key word of the inquiry; Obtain the index value in described index area, obtain the data item corresponding with described index value according to described mapping relations, and described data item is returned as Query Result.Have employed above-mentioned fuzzy query method and system, the advantage that binary chop method time complexity is low can well be utilized, when sacrificing a small amount of space complexity, exchanging higher retrieval rate for, thus improve recall precision.

Description

Fuzzy query method and system
[technical field]
The present invention relates to field of computer technology, particularly a kind of fuzzy query method and system.
[background technology]
Database is the common a kind of data persistence solution of field of computer technology.In the data bank service operation of conventional art, some is as the database table of informant, and query manipulation is frequent, and the less generation of the operation increasing, upgrade and delete.In order to improve search efficiency, usually index can be set up to database table.Index reduces the time complexity of inquiry by increasing space complexity in right amount, thus improves search efficiency.
Fuzzy query is a kind of common data query requirements in conventional art, the like statement in usual usage data library inquiry language SQL.But use according to key word of the inquiry in SQL with the like statement data query table of % beginning time, aforesaid index technology cannot be utilized, and whole tables of data must be traveled through.The mode efficiency of the whole tables of data of this traversal is very low, and inquiry velocity slowly, cannot meet some has requirement query task to real-time.
[summary of the invention]
Based on this, be necessary to provide a kind of fuzzy query method that can improve search efficiency.
A kind of fuzzy query method, comprises the following steps:
According to the mapping relations between the index value preset and data item, global index is set up to database table;
Described global index is sorted;
Obtain key word of the inquiry, between the index area adopting interval binary search to mate with described key word of the inquiry;
Obtain the index value in described index area, obtain the data item corresponding with described index value according to described mapping relations, and described data item is returned as Query Result.
Preferably, the mapping relations between described index value and data item are the mapping relations of the corresponding data item of multiple index value.
Preferably, the step between the index area that mates with described key word of the inquiry of the interval binary search of described employing is specially:
Dichotomy is adopted to locate the match index of mating with described key word of the inquiry;
With described match index for end points obtains between described index area border.
Preferably, the mapping relations between the index value preset of described basis and data item also comprise after setting up global index to database table:
The inquiry times of index value is stored in described global index;
The index value that inquiry times described in buffer memory is greater than threshold value and the data item corresponding to index value being greater than threshold value with described inquiry times.
Preferably, after described acquisition key word of the inquiry, also comprise:
Search the index value mated with described key word of the inquiry in the buffer, and the data item corresponding with the described index value found in buffer memory is returned as Query Result, and the inquiry times of the index value mated with described key word of the inquiry is added 1.
In addition, there is a need to provide a kind of fuzzy query system that can improve search efficiency.
A kind of fuzzy query system, comprises with lower module:
Index module, for setting up global index according to the mapping relations between the index value preset and data item to database table;
Order module, for sorting described global index;
Search module, for obtaining key word of the inquiry, between the index area adopting interval binary search to mate with described key word of the inquiry;
Value module, for obtaining the index value in described index area, obtaining the data item corresponding with described index value according to described mapping relations, and described data item being returned as Query Result.
Preferably, the mapping relations between described index value and data item are the mapping relations of the corresponding data item of multiple index value.
Preferably, search described in module comprise for adopt dichotomy locate the match index of mating with described key word of the inquiry the first submodule and for second submodule of described match index for the border that end points obtains between described index area.
Preferably, also comprise the inquiry times for storing index value in described global index, and the cache module of the index value that is greater than threshold value of inquiry times described in buffer memory and the data item corresponding to index value that is greater than threshold value with described inquiry times.
Preferably, describedly search module also for searching the index value mated with described key word of the inquiry in the buffer, and the data item corresponding with the described index value found in buffer memory returned as Query Result, and the inquiry times of the index value mated with described key word of the inquiry is added 1.
Above-mentioned fuzzy query method and system first establish unified global index to tables of data, between the index area that the index that then the lower dichotomy of complexity service time carries out Search and Orientation and Keywords matching is formed, make use of continuity and the order of index itself efficiently, thus the time complexity of inquiry is reduced when sacrificing segment space complexity (for storing index), improve inquiry velocity, thus improve the efficiency of fuzzy query.
[accompanying drawing explanation]
Fig. 1 is the process flow diagram of fuzzy query method in an embodiment;
Fig. 2 is the mapping relations exemplary plot of index value and data item in an embodiment;
Fig. 3 is the structural representation of fuzzy query system in an embodiment.
[embodiment]
As shown in Figure 1, in one embodiment, a kind of fuzzy query method, comprises the following steps:
Step S102, sets up global index according to the mapping relations between the index value preset and data item to database table.
Database is made up of multiple database table, stores many data records in database table, and a data record is a data item.Such as, user message table and organizational chart two table is stored in database.The data stored in user message table are the relevant information of user; The data stored in organizational chart are the relevant information of each department in the composition structure of company.
In one embodiment, first determining that query manipulation in database is frequent and increase, delete and database table that renewal rewards theory is less, is then the definition of data item key words of these search operations frequently in database table.Preferably, can be the multiple key word of definition of data item.Then key word is set up global index in a database as index value.Index value and data item have mapping relations, preferably, are many-to-one mapping relations, i.e. the corresponding data item of multiple index value.And for the situation with identical key word of multiple data item, multiple identical index value can be used to map multiple different data item respectively.
Such as, for index value " lm ", both can be the abbreviation at " dawn ", also can be the abbreviation of " Li Meng ".Now, two index values " lm " need only be set up respectively corresponding " dawn " and " Li Meng ".
Step S104, sorts global index.
In one embodiment, after global index establishes, then according to the ordering rule preset, global index is sorted.Preferably, the ordering rule preset is lexcographical order, namely first index value is converted to character string (Chinese character first converts phonetic to), then sorts according to the lexcographical order of character string.Such as: be [a, ab, abc, abe, b] after index value sequence [ab, a, abe, b, abc] sorts from small to large according to lexcographical order.
Step S106, obtains key word of the inquiry, between the index area adopting interval binary search to mate with key word of the inquiry.
Step S108, obtains the index value in index area, obtains the data item corresponding with index value, and data item returned as Query Result according to mapping relations.
Interval dichotomy (RBS, RangeBinarySearch) for a kind of based on the data search method of traditional dichotomy.Compared with traditional dichotomy, traditional binary search is the position determining key word of the inquiry place in one sequence, and interval dichotomy locates the continuum that all matching values of mating with key word of the inquiry form.
In one embodiment, key word of the inquiry is obtained, between the index area adopting interval binary search to mate with key word of the inquiry: (1) adopts dichotomy to locate the match index of mating with key word of the inquiry; (2) with this match index for end points obtains border between this index area (such as, the index value that in the continuous integral number sequence formed by the subscript that the border between index area during storage of array index value sequence is array, the left and right end points of certain continuum is corresponding, such as the continuum [a that array index is formed, b], then a is the left end point in this interval, and b is the right endpoint in this interval).
Concrete, be that end points obtains the step on the border between index area preferably: the left and right end points adopting dichotomy to obtain respectively between the index area mated with key word of the inquiry for end points with this match index with match index.
The detailed process of above-mentioned steps S106 is described with a concrete example below.In this example, if the index value sequence in global index is stored in array E, and arrange from small to large by lexcographical order.Expect that the key word searched is key.During fuzzy search, the matching relationship of key and index value is: if index value character string is using key as bebinning character (comprising index value character string and the identical situation of key), then this index value mates with key word key, otherwise, do not mate.
The method that two character strings compare size by lexcographical order is: the ASCII character value (being converted into phonetic for Chinese character) first comparing the initial character of two character strings, and the character string that initial character ASCII character value is large is larger; If the ASCII character value of initial character is equal, then continue to compare next bit character, until last position.If relatively to a certain position time, certain character string ends up, then giving tacit consent to this ASCII character of this character string is 0 (namely certainty is minimum).Such as, according to lexcographical order, a < b, a < ab, abcde < abcf.
The detailed process of searching in step S106 between the index area that mates with key word of the inquiry is:
(1) initialization integer vernier variable low, mid and high, make low=0, high=E.length-1, wherein, E.length represents the length of array E.Be designated as LOW under making the left end point between index area again, under right endpoint, be designated as HIGH, and be designated as LOW=HIGH=-1 under supposing initial left and right end points.
(2) as low <=high, circulation performs (3), otherwise, perform (4).
(3) assignment mid=(low+high)/2, compares the size of key and index value E [mid], and E [mid] is for being designated as the element of mid under in array E:
If by aforesaid lexcographical order relatively after, key < E [mid], then E [mid] drops on the right side of the right endpoint between index area, namely E [mid] is larger than the right endpoint in index interval, thus the index value that all subscripts are greater than mid-1 can be eliminated, then assignment high=mid-1 return (2) and continue to compare;
If by aforesaid lexcographical order relatively after, key > E [mid] and key and E [mid] do not mate, then E [mid] drops on the left side of the left end point between index area, namely E [mid] is less than the left end point in index interval, thus the index value that all subscripts are less than mid+1 can be eliminated, then assignment low=mid+1 return (2) and continue to compare;
If by aforesaid lexcographical order relatively after, if key <=E [mid] and key and E [mid] mate, then E [mid] drops in index area, and namely E [mid] is match index.
Then, perform subprocess S3 and S4, and by the rreturn value assignment of S3 to LOW, by the rreturn value assignment of S4 to HIGH.Subprocess S3 and S4 is respectively used to left end point and the right endpoint of locating index interval.
(4) judge the value of LOW, if the value of LOW is-1, then return null value, namely do not find match index; If LOW is <=HIGH, then return the subscript LOW of the left end point between index area and the subscript HIGH of right endpoint.
Subprocess S3 is for obtaining the left end point between index area, and detailed process is:
(a) initialization integer vernier variable s3_low=low, s3_high=mid, s3_mid=0 (low and high is herein the local vernier variable in abovementioned steps S106).
B (), as s3_low < s3_high, performs (c), otherwise, perform (d).
C () assignment s3_mid=(s3_low+s3_high)/2, compares key and E [s3_mid]:
If key and E [s3_mid] does not mate, then subscript is less than s3_mid+1 element in the past, i.e. s3_low=s3_mid+1.
If key and E [s3_mid] mates, then eliminate the element that subscript is greater than s3_mid-1, i.e. s3_high=s3_mid-1, performs (b) (final (c) will enter (d) because of s3_low=s3_high after terminating).
D () compares key and E [s3_low], if key mates E [s3_low], return s3_low, otherwise return s3_low+1.
Subprocess S4 is for obtaining the right endpoint between index area, and detailed process is:
(I) s4_low=mid, s4_high=high, s4_mid=0 (low and high is herein the local vernier variable in abovementioned steps S106) during initialization integer variable.
(II) as s4_low < s4_high, perform (III), otherwise, perform (IV).
(III) assignment s4_mid=(s4_low+s4_high)/2, the relatively size of key and E [s4_mid], if key and E [s4_mid] does not mate, then eliminate all in array E under be marked on the later element of s4_mid-1, i.e. s4_high=s4_mid-1.
If key and E [s4_mid] mates, then eliminate the record before s4_mid+1, i.e. s4_low=s4_mid+1, performs (II) (final, (III) will perform because of s4_low=s4_high (IV) after terminating).
(IV) compare the size of key and E [s4_low], if key and E [s4_low] coupling, then return s4_low, otherwise return s4_low-1.
It should be noted that, in other embodiments, can also preferably adjust according to the length of key word of the inquiry for the method between the index area that above-mentioned location is mated with key word of the inquiry.Namely, if certain key word of the inquiry longer (relative to index value), then can estimate and show that less between Matching band (key word of the inquiry is longer, then be greater than most of index value in global index, therefore the index value matched is also relatively less), then after determining match index, directly adopt the left and right end points of sequential search method (comparing one by one successively in order) position matching index.
Such as, if during certain inquiry, only include two index values between the Matching band mated with key word of the inquiry, then compare through three times the left and right end points can determined between Matching band according to sequential search method.If now still employing dichotomy determines the left and right end points between Matching band, when the length of index value sequence is longer, then need two just can obtain result several times.The above-mentioned method of the left and right end points of sequential search legal position match index that adopts when key word of the inquiry is longer can accelerate inquiry velocity.
Be located by step S106 and keyword match index area between border after, then according to aforesaid mapping relations, the all data item corresponding with all index values in index area are found out, generates a Query Result list, then Query Result list is returned as Query Result.
When fuzzy query result is a lot, and when the interface showing Query Result is less, usually disposable all Query Results can not be showed user.And in some cases, user is often only concerned about modal or follows the immediate result of fuzzy search.Therefore, also can comprise after according to the mapping relations preset global index being set up to database table: the inquiry times storing index value in global index; The index value that caching query number of times is greater than threshold value and the data item corresponding to index value being greater than threshold value with inquiry times.
In one embodiment, also can comprise after obtaining key word of the inquiry: search the index value mated with this key word of the inquiry in the buffer, and the data item corresponding with the index value found in buffer memory returned as Query Result, and the inquiry times of the index value mated with key word of the inquiry is added 1.
Such as, the number of times of key word " scb " coupling " market department " is maximum, and the number of times mating name " Shen Changbin " is less.Therefore, when receiving the inquiry request that key word is " scb ", first finding the data item " market department " that the inquiry times of " scb " correspondence is maximum in the buffer, then first " market department " data item being returned.Meanwhile, can continue to perform aforesaid step S106 in global index, finally all fuzzy query results be returned.This processing mode user is waited for the time of Query Result is shorter, efficiently utilize the time of user's browse queries result, improve Consumer's Experience.
As shown in Figure 3, in one embodiment, a kind of fuzzy query system, comprises index module 102, order module 104, searches module 106 and value module 108, wherein:
Index module 102 is for setting up global index according to the mapping relations between the index value preset and data item to database table.
Database is made up of multiple database table, stores many data records in database table, and a data record is a data item.Such as, user message table and organizational chart two table is stored in database.The data stored in user message table are the relevant information of user; The data stored in organizational chart are the relevant information of each department in the composition structure of company.
In one embodiment, index module 102 is first determined that query manipulation in database is frequent and increases, deletes and database table that renewal rewards theory is less, is then the definition of data item key words of these search operations frequently in database table.Preferably, index module 102 can be the multiple key word of definition of data item.Then key word is set up global index in a database as index value.Index value and data item have mapping relations, preferably, are many-to-one mapping relations, i.e. the corresponding data item of multiple index value.And for the situation with identical key word of multiple data item, multiple identical index value can be used to map multiple different data item respectively.
Such as, for index value " lm ", both can be the abbreviation at " dawn ", also can be the abbreviation of " Li Meng ".Now, two index values " lm " need only be set up respectively corresponding " dawn " and " Li Meng ".
Order module 104 is for sorting global index.
In one embodiment, after global index establishes, then according to the ordering rule preset, global index is sorted.Preferably, the ordering rule preset is lexcographical order, namely first index value is converted to character string (Chinese character first converts phonetic to), then sorts according to the lexcographical order of character string.Such as: be [a, ab, abc, abe, b] after index sequence [ab, a, abe, b, abc] sorts from small to large according to lexcographical order.
Enquiry module 106 for obtaining key word of the inquiry, between the index area adopting interval binary search to mate with key word of the inquiry.
Value module 108, for obtaining the index value in index area, obtains the data item corresponding with index value according to mapping relations, and data item is returned as Query Result.
Interval dichotomy (RBS, RangeBinarySearch) for a kind of based on the data search method of traditional dichotomy.Compared with traditional dichotomy, traditional binary search is the position determining key word of the inquiry place in one sequence, and interval dichotomy locates the continuum that all matching values of mating with key word of the inquiry form.
In one embodiment, search module comprise for adopt interval dichotomy locate the match index of mating with key word of the inquiry the first submodule (not shown) and for being that end points obtains border between index area (such as with match index, the index value that in the continuous integral number sequence formed by the subscript that the border between index area during storage of array index value sequence is array, the left and right end points of certain continuum is corresponding, such as the continuum [a that array index is formed, b], then a is the left end point in this interval, b is the right endpoint in this interval) the second submodule (not shown).
Concrete, the left and right end points that the second submodule adopts dichotomy to obtain respectively between the index area mated with key word of the inquiry with this match index for end points.
Detailed process between the index area that enquiry module 106 adopts interval binary search to mate with key word of the inquiry please refer to the query script that aforesaid step S106 describes, and does not repeat them here.
It should be noted that, in other embodiments, the second submodule, when locating between the index area mated with key word of the inquiry, can also preferably adjust according to the length of key word of the inquiry.Namely, if certain key word of the inquiry longer (relative to index value), then can estimate and show that less between Matching band (key word of the inquiry is longer, then be greater than most of index value in global index, therefore the index value matched is also relatively less), then after determining match index, directly adopt the left and right end points of sequential search method (comparing one by one successively in order) position matching index.
Such as, if during certain inquiry, only include two index values between the Matching band mated with key word of the inquiry, then compare through three times the left and right end points can determined between Matching band according to sequential search method.If now still employing dichotomy determines the left and right end points between Matching band, when the length of index value sequence is longer, then need two just can obtain result several times.The above-mentioned method of the left and right end points of sequential search legal position match index that adopts when key word of the inquiry is longer can accelerate inquiry velocity.
Enquiry module 106 located and keyword match index area between border after, value module 108 is according to aforesaid mapping relations, the all data item corresponding with all index values in index area are found out, generate a Query Result list, then Query Result list is returned as Query Result.
When fuzzy query result is a lot, and when the interface showing Query Result is less, usually disposable all Query Results can not be showed user.And in some cases, user is often only concerned about modal or follows the immediate result of fuzzy search, therefore, preferably, in one embodiment, also comprise the inquiry times for storing index value in aforesaid global index, and the cache module (not indicating in figure) of the caching query number of times index value that is greater than threshold value and the data item corresponding to index value that is greater than threshold value with inquiry times.
In one embodiment, search module also for searching the index value mated with key word of the inquiry in the buffer, and the data item corresponding with the index value found in buffer memory returned as Query Result, and the inquiry times of the index value mated with key word of the inquiry is added 1.
Such as, the number of times of key word " scb " coupling " market department " is maximum, and the number of times mating name " Shen Changbin " is less.Therefore, when receiving the inquiry request that key word is " scb ", first finding the data item " market department " that the inquiry times of " scb " correspondence is maximum in the buffer, then first " market department " data item being returned.Meanwhile, enquiry module 106 can continue in global index, inquire about all key words mated with key word of the inquiry, and all fuzzy query results return by last value module 108.This processing mode user is waited for the time of Query Result is shorter, efficiently utilize the time of user's browse queries result, improve Consumer's Experience.
The above embodiment only have expressed several embodiment of the present invention, and it describes comparatively concrete and detailed, but therefore can not be interpreted as the restriction to the scope of the claims of the present invention.It should be pointed out that for the person of ordinary skill of the art, without departing from the inventive concept of the premise, can also make some distortion and improvement, these all belong to protection scope of the present invention.Therefore, the protection domain of patent of the present invention should be as the criterion with claims.

Claims (4)

1. a fuzzy query method, comprises the following steps:
According to the mapping relations between the index value preset and data item, global index is set up to database table, the inquiry times of index value is stored, the index value that inquiry times described in buffer memory is greater than threshold value and the data item corresponding to index value being greater than threshold value with described inquiry times in described global index;
Described global index is sorted;
Obtain key word of the inquiry, between the index area adopting interval binary search to mate with described key word of the inquiry, wherein, dichotomy is adopted to locate the match index of mating with described key word of the inquiry, the left and right end points adopting dichotomy to obtain respectively between the index area mated with key word of the inquiry for end points with this match index;
Obtain the index value in described index area, obtain the data item corresponding with described index value according to described mapping relations, and described data item is returned as Query Result;
After described acquisition key word of the inquiry, also comprise:
Search the index value mated with described key word of the inquiry in the buffer, and the data item corresponding with the described index value found in buffer memory is returned as Query Result, and the inquiry times of the index value mated with described key word of the inquiry is added 1.
2. fuzzy query method according to claim 1, is characterized in that, the mapping relations between described index value and data item are the mapping relations of the corresponding data item of multiple index value.
3. a fuzzy query system, is characterized in that, comprises with lower module:
Index module, for setting up global index according to the mapping relations between the index value preset and data item to database table;
Order module, for sorting described global index;
Search module, for obtaining key word of the inquiry, between the index area adopting interval binary search to mate with described key word of the inquiry;
Value module, for obtaining the index value in described index area, obtaining the data item corresponding with described index value according to described mapping relations, and described data item being returned as Query Result; Wherein, described search module comprise for adopt dichotomy locate the match index of mating with described key word of the inquiry the first submodule and for second submodule of described match index for the border that end points obtains between described index area, the wherein left and right end points of the second submodule also for adopting dichotomy to obtain respectively between the index area mated with key word of the inquiry with this match index for end points;
Also comprise the inquiry times for storing index value in described global index, and the cache module of the index value that is greater than threshold value of inquiry times described in buffer memory and the data item corresponding to index value that is greater than threshold value with described inquiry times;
Describedly search module also for searching the index value mated with described key word of the inquiry in the buffer, and the data item corresponding with the described index value found in buffer memory returned as Query Result, and the inquiry times of the index value mated with described key word of the inquiry is added 1.
4. fuzzy query system according to claim 3, is characterized in that, the mapping relations between described index value and data item are the mapping relations of the corresponding data item of multiple index value.
CN201110280094.9A 2011-09-20 2011-09-20 Fuzzy query method and system Active CN103020054B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201110280094.9A CN103020054B (en) 2011-09-20 2011-09-20 Fuzzy query method and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110280094.9A CN103020054B (en) 2011-09-20 2011-09-20 Fuzzy query method and system

Publications (2)

Publication Number Publication Date
CN103020054A CN103020054A (en) 2013-04-03
CN103020054B true CN103020054B (en) 2016-04-13

Family

ID=47968671

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110280094.9A Active CN103020054B (en) 2011-09-20 2011-09-20 Fuzzy query method and system

Country Status (1)

Country Link
CN (1) CN103020054B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104346350A (en) * 2013-07-26 2015-02-11 南京中兴力维软件有限公司 Method and system for inquiring tree node of asynchronous tree

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104598652B (en) * 2015-02-14 2017-11-24 广州华多网络科技有限公司 A kind of data base query method and device
CN108614826A (en) * 2016-12-12 2018-10-02 中国移动通信集团公司 A kind of data query method and device
CN108268503B (en) * 2016-12-30 2020-06-16 华为技术有限公司 Database storage and query method and device
CN107808006B (en) * 2017-11-16 2021-10-26 中国工商银行股份有限公司 Fuzzy query method, device and system based on large data volume
CN107729570B (en) * 2017-11-20 2021-06-08 北京百度网讯科技有限公司 Data migration method and device for server
CN110134686B (en) * 2019-05-07 2023-04-21 浪潮软件集团有限公司 Index creation method and system for fuzzy query of Chinese keywords
CN112579588B (en) * 2020-12-30 2024-05-03 南京宏之图信息技术有限公司 Method for searching and accurately matching multiple groups of time sequence data based on dichotomy
CN116707528A (en) * 2021-03-10 2023-09-05 中国电子科技集团公司第三十四研究所 Automatic detection method for radio frequency signal amplitude based on programmable function

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1581846A (en) * 2003-08-12 2005-02-16 华为技术有限公司 Method for searching IP address
CN1746886A (en) * 2004-09-08 2006-03-15 华为技术有限公司 Functional selection of mobile terminal apparatus
CN101938551A (en) * 2010-08-26 2011-01-05 惠州Tcl移动通信有限公司 Fuzzy inquiry method and device for phonebook of mobile terminal
CN102084363A (en) * 2008-07-03 2011-06-01 加利福尼亚大学董事会 A method for efficiently supporting interactive, fuzzy search on structured data
CN102142035A (en) * 2011-03-31 2011-08-03 百度在线网络技术(北京)有限公司 Method and equipment for sequencing multiple character information records

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1581846A (en) * 2003-08-12 2005-02-16 华为技术有限公司 Method for searching IP address
CN1746886A (en) * 2004-09-08 2006-03-15 华为技术有限公司 Functional selection of mobile terminal apparatus
CN102084363A (en) * 2008-07-03 2011-06-01 加利福尼亚大学董事会 A method for efficiently supporting interactive, fuzzy search on structured data
CN101938551A (en) * 2010-08-26 2011-01-05 惠州Tcl移动通信有限公司 Fuzzy inquiry method and device for phonebook of mobile terminal
CN102142035A (en) * 2011-03-31 2011-08-03 百度在线网络技术(北京)有限公司 Method and equipment for sequencing multiple character information records

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104346350A (en) * 2013-07-26 2015-02-11 南京中兴力维软件有限公司 Method and system for inquiring tree node of asynchronous tree
CN104346350B (en) * 2013-07-26 2019-09-20 南京中兴力维软件有限公司 The tree node querying method and system of Asynchronous Tree

Also Published As

Publication number Publication date
CN103020054A (en) 2013-04-03

Similar Documents

Publication Publication Date Title
CN103020054B (en) Fuzzy query method and system
CN109299102B (en) HBase secondary index system and method based on Elastcissearch
US9798772B2 (en) Using persistent data samples and query-time statistics for query optimization
CN104424258B (en) Multidimensional data query method, query server, column storage server and system
US9129005B2 (en) Method and apparatus for searching a hierarchical database and an unstructured database with a single search query
US7392250B1 (en) Discovering interestingness in faceted search
EP2727247B1 (en) Database compression system and method
US20110264667A1 (en) Column-oriented storage in a row-oriented database management system
US8924373B2 (en) Query plans with parameter markers in place of object identifiers
JP2005267612A (en) Improved query optimizer using implied predicates
CN102915381B (en) Visual network retrieval based on multi-dimensional semantic presents system and presents control method
CN109597829B (en) Middleware method for realizing searchable encryption relational database cache
CN104391908B (en) Multiple key indexing means based on local sensitivity Hash on a kind of figure
CN103914570A (en) Intelligent customer service searching method and system based on character string similarity algorithm
CN104424219A (en) Method and equipment of managing data documents
CN108319608A (en) The method, apparatus and system of access log storage inquiry
CN110928882B (en) Memory database indexing method and system based on improved red black tree
CN106484815B (en) A kind of automatic identification optimization method based on mass data class SQL retrieval scene
CN102193983A (en) Relation path-based node data filtering method of graphic database
CN116186133A (en) Electronic document management method integrating forward index and backward index
Zhou et al. Top-down XML keyword query processing
CN112800023B (en) Multi-model data distributed storage and hierarchical query method based on semantic classification
CN102902701B (en) Information query system and method
WO2015015559A1 (en) Search system and search method
CN111797095A (en) Index construction method and JSON data query method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C56 Change in the name or address of the patentee
CP03 Change of name, title or address

Address after: South South technology twelve road 518000 in Guangdong province Shenzhen City Guangdong streets Nanshan District high tech Industrial Park, No. 2, Kingdee Software Park building A floor 2 South Block

Patentee after: Shenzhen Kingdee middleware Limited by Share Ltd.

Address before: 518057 Guangdong City, Nanshan District province high tech Zone in the middle of the industrial zone of the sparrow tower M-6 building, floor 1, area 3, second, 4

Patentee before: Shenzhen Kingdee Middleware Co., Ltd.

CP01 Change in the name or title of a patent holder

Address after: South South technology twelve road 518000 in Guangdong province Shenzhen City Guangdong streets Nanshan District high tech Industrial Park, No. 2, Kingdee Software Park building A floor 2 South Block

Patentee after: Shenzhen Kingdee tianyanyun computing Co., Ltd.

Address before: South South technology twelve road 518000 in Guangdong province Shenzhen City Guangdong streets Nanshan District high tech Industrial Park, No. 2, Kingdee Software Park building A floor 2 South Block

Patentee before: Shenzhen Kingdee middleware Limited by Share Ltd.

CP01 Change in the name or title of a patent holder