CN103009389A - Track planning method of redundant space mechanical arm for on-track catching - Google Patents
Track planning method of redundant space mechanical arm for on-track catching Download PDFInfo
- Publication number
- CN103009389A CN103009389A CN2012105200490A CN201210520049A CN103009389A CN 103009389 A CN103009389 A CN 103009389A CN 2012105200490 A CN2012105200490 A CN 2012105200490A CN 201210520049 A CN201210520049 A CN 201210520049A CN 103009389 A CN103009389 A CN 103009389A
- Authority
- CN
- China
- Prior art keywords
- motion
- collision
- algorithm
- track
- capture
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 60
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 85
- 230000033001 locomotion Effects 0.000 claims abstract description 85
- 238000010845 search algorithm Methods 0.000 claims abstract description 30
- 239000012636 effector Substances 0.000 claims description 65
- 230000001133 acceleration Effects 0.000 claims description 30
- 238000001514 detection method Methods 0.000 claims description 13
- 239000011159 matrix material Substances 0.000 claims description 13
- 238000005457 optimization Methods 0.000 claims description 8
- 230000010354 integration Effects 0.000 claims description 4
- 230000003247 decreasing effect Effects 0.000 claims description 2
- 238000009795 derivation Methods 0.000 claims description 2
- 230000004888 barrier function Effects 0.000 claims 3
- 230000009191 jumping Effects 0.000 claims 1
- 239000000523 sample Substances 0.000 claims 1
- 230000006870 function Effects 0.000 description 8
- 239000002585 base Substances 0.000 description 7
- 238000009499 grossing Methods 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 230000000007 visual effect Effects 0.000 description 6
- 239000000243 solution Substances 0.000 description 5
- 238000004364 calculation method Methods 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 230000011218 segmentation Effects 0.000 description 2
- 241001061260 Emmelichthys struhsakeri Species 0.000 description 1
- 239000003637 basic solution Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 230000017105 transposition Effects 0.000 description 1
Images
Landscapes
- Manipulator (AREA)
- Numerical Control (AREA)
Abstract
一种冗余空间机械臂在轨抓捕的轨迹规划方法,通过将空间机械臂的抓捕操作分为粗略抓捕段和精细抓捕段,将问题进行了简化。针对不同阶段的突出问题,采用了不同的规划算法。在粗略抓捕段采用基于构型空间的轨迹搜索算法,该算法基于构型空间中的试探;在精细抓捕段采用基于运动学的伪逆算法,通过对目标相对运动的补偿保证最终的精确抓捕。
A trajectory planning method for on-orbit capture of a redundant space manipulator simplifies the problem by dividing the capture operation of the space manipulator into a rough capture segment and a fine capture segment. Aiming at the outstanding problems in different stages, different planning algorithms are adopted. The trajectory search algorithm based on the configuration space is used in the rough capture section, which is based on the trial in the configuration space; the pseudo-inverse algorithm based on kinematics is used in the fine capture section, and the final accuracy is guaranteed by compensating the relative motion of the target. arrest.
Description
技术领域technical field
本发明涉及一种冗余空间机械臂在轨抓捕的轨迹规划方法,属于航天器姿态控制领域。The invention relates to a trajectory planning method for on-orbit capture of a redundant space manipulator, belonging to the field of spacecraft attitude control.
背景技术Background technique
空间机械臂在轨抓捕操作中,为了节省燃料,不对空间操控平台的位置加以控制,只对空间操控平台的姿态进行稳定控制,属于姿态受控的自由飞行机器人,因此在系统模型的变量中可以加以任意控制的只有机械臂的各个关节角。轨迹规划的基本要求即是以期望的末端作用器的位置和姿态指向为目标,来通过一定的算法确定出各个关节角的角位置、角速度和角加速度轨迹,从而由控制器实现机械臂的抓捕操作。这里冗余是指,机械臂具有7个自由度,除了能够使得末端作用器到达指定的位置姿态之外,还具有多余的自由度用于规避与障碍物的碰撞,同时可以采用多个机械臂协同操控,使得灵活更换末端作用器、稳固安全可靠地抓捕非合作目标。In the on-orbit capture operation of the space manipulator, in order to save fuel, the position of the space control platform is not controlled, but only the attitude of the space control platform is stabilized, which belongs to the attitude-controlled free-flying robot. Only the individual joint angles of the manipulator can be controlled arbitrarily. The basic requirement of trajectory planning is to target the desired position and orientation of the end effector, and determine the angular position, angular velocity and angular acceleration trajectory of each joint angle through a certain algorithm, so that the controller can realize the grasping of the mechanical arm. capture operation. Redundancy here means that the robotic arm has 7 degrees of freedom. In addition to enabling the end effector to reach the specified position and posture, it also has redundant degrees of freedom for avoiding collisions with obstacles. Multiple robotic arms can be used at the same time. Coordinated control enables flexible replacement of end effectors, stable, safe and reliable capture of non-cooperative targets.
机械臂在抓捕操作中如果与障碍物发生碰撞,则空间操控平台受到未知的反作用力的作用,对整个系统带来未知干扰力和干扰力矩,使平台出现无法预料的运动,破坏平台的姿态稳定和机械臂的运动稳定,不仅会导致抓捕操作的失败,还可能对空间操控平台造成不可预测的损害。因此,规避碰撞是空间机械臂抓捕操作轨迹规划中必须考虑的因素。此外,机械臂的奇异问题和目标相对运动的补偿问题也是轨迹规划中必须考虑的问题。If the robotic arm collides with an obstacle during the capture operation, the space control platform will be affected by an unknown reaction force, which will bring an unknown disturbance force and disturbance torque to the entire system, causing the platform to move unpredictably and destroy the attitude of the platform Stability and stability of the movement of the robotic arm will not only lead to the failure of the capture operation, but also may cause unpredictable damage to the space manipulation platform. Therefore, collision avoidance is a factor that must be considered in the trajectory planning of the space manipulator capture operation. In addition, the singularity of the manipulator and the compensation of the relative motion of the target are also issues that must be considered in trajectory planning.
机械臂的轨迹规划算法主要有伪逆算法、人工势场法和基于构型空间的自由空间法。伪逆算法在求解中易出现奇异。人工势场法存在局部最小值问题,且对于复杂问题,计算量过大,较适用于移动机器人的轨迹规划。构型空间中,构型点的坐标为机械臂的各关节角。由运动学关系将作用器目标位姿和障碍物由工作空间映射到构型空间,得到目标构型点和构型空间障碍。无碰撞轨迹规划即要在构型空间中搜索出连接初始和目标构型点且不经过障碍的路径。目前存在的方法都需求解构型空间,对于多自由度机械臂计算量很大,构型空间障碍只能通过离散化得到,为提高精度需占用大量内存。这导致现存的算法无法应用于计算资源紧张的空间机械臂,难以应用于航天任务。The trajectory planning algorithms of the manipulator mainly include pseudo-inverse algorithm, artificial potential field method and free space method based on configuration space. Pseudo-inverse algorithm is prone to singularities in the solution. The artificial potential field method has a local minimum problem, and for complex problems, the amount of calculation is too large, so it is more suitable for trajectory planning of mobile robots. In the configuration space, the coordinates of configuration points are the joint angles of the manipulator. The target pose and obstacles of the actor are mapped from the workspace to the configuration space by the kinematic relationship, and the target configuration points and obstacles in the configuration space are obtained. Collision-free trajectory planning is to search for a path connecting the initial and target configuration points without passing through obstacles in the configuration space. The existing methods all require the deconstruction of the space. For the multi-degree-of-freedom manipulator, the calculation is very large, and the configuration space obstacle can only be obtained through discretization, which requires a large amount of memory to improve the accuracy. As a result, existing algorithms cannot be applied to space manipulators with limited computing resources, and are difficult to apply to space missions.
发明内容Contents of the invention
本发明所要解决的技术问题是:克服现有技术的不足,提供一种无碰撞无奇异的冗余空间机械臂在轨抓捕的轨迹规划方法,该方法工程实施简单,能够节省计算资源。The technical problem to be solved by the present invention is to overcome the deficiencies of the prior art and provide a trajectory planning method for on-orbit capture of a redundant space manipulator without collision and singularity. The method is simple in engineering implementation and can save computing resources.
本发明的技术方案是:Technical scheme of the present invention is:
一种冗余空间机械臂在轨抓捕的轨迹规划方法;所述冗余空间机械臂安装在空间操控平台上,机械臂末端安装末端作用器;空间操控平台装有视觉测量敏感器和星载计算机;冗余空间机械臂在轨抓捕的对象是空间非合作目标;将空间机械臂的抓捕操作分为粗略抓捕段和精细抓捕段,A trajectory planning method for on-orbit capture of a redundant space manipulator; the redundant space manipulator is installed on a space control platform, and an end effector is installed at the end of the manipulator; the space control platform is equipped with a visual measurement sensor and a space-borne computer; the object captured by the redundant space manipulator in orbit is a space non-cooperative target; the capture operation of the space manipulator is divided into a rough capture segment and a fine capture segment,
粗略抓捕段的轨迹规划方法包括如下步骤:The trajectory planning method of the rough capture segment includes the following steps:
(1.1)由粗略抓捕段末端作用器的期望位置和姿态,利用无碰撞目标构型求解算法求得无碰撞的目标构型;(1.1) From the expected position and attitude of the end effector in the rough capture section, the collision-free target configuration is obtained by using the non-collision target configuration algorithm;
(1.2)根据机械臂当前构型和目标构型,利用无碰撞路径搜索算法,求得无碰撞的构型空间中的路径;(1.2) According to the current configuration and the target configuration of the manipulator, use the collision-free path search algorithm to obtain the path in the configuration space without collision;
(1.3)利用路径优化算法,对无碰撞的构型空间中的路径进行优化获得不与障碍物相碰的机械臂的各个关节角的运动序列;(1.3) Utilize the path optimization algorithm to optimize the path in the configuration space without collision to obtain the motion sequence of each joint angle of the mechanical arm that does not collide with the obstacle;
精细抓捕段的轨迹规划方法包括如下步骤:The trajectory planning method of the fine capture segment includes the following steps:
(2.1)由期望的抓捕目标的末端作用器位置/姿态和当前末端作用器的位置/姿态预先设计出末端作用器位置/姿态的运动轨迹,速度轨迹和加速度轨迹;(2.1) Pre-design the motion track, velocity track and acceleration track of the end effector position/posture from the position/posture of the end effector of the desired capture target and the position/posture of the current end effector;
(2.2)根据视觉测量敏感器测量得到的目标相对运动对所述末端作用器位置/姿态的运动轨迹,速度轨迹和加速度轨迹进行补偿获得补偿后的末端作用器位置/姿态的运动轨迹,速度轨迹和加速度轨迹;(2.2) According to the relative motion of the target measured by the visual measurement sensor, the motion track of the position/posture of the end effector, the velocity track and the acceleration track are compensated to obtain the motion track of the position/posture of the end effector after compensation, and the speed track and acceleration trajectory;
(2.3)根据补偿后的末端作用器位置/姿态的运动轨迹,速度轨迹和加速度轨迹采用基于运动学的伪逆算法获得机械臂的各个关节角的角速度轨迹和角加速度轨迹。(2.3) According to the motion trajectory, velocity trajectory and acceleration trajectory of the compensated end effector position/attitude, the angular velocity trajectory and angular acceleration trajectory of each joint angle of the manipulator are obtained by using a pseudo-inverse algorithm based on kinematics.
所述步骤(1.1)中,无碰撞目标构型求解算法如下:In the step (1.1), the collision-free target configuration solution algorithm is as follows:
首先根据目标构型求解算法计算目标构型;Firstly, the target configuration is calculated according to the target configuration solving algorithm;
目标构型求解算法的输入为机械臂当前的各个关节角,以及抓捕目标所需的末端作用器的位置和姿态,目标构型求解算法利用数值积分方法求解机械臂逆运动学方程得到抓捕目标所需的各个关节角,即目标构型;The input of the target configuration solving algorithm is the current joint angle of the manipulator, and the position and attitude of the end effector required to capture the target. The target configuration solving algorithm uses the numerical integration method to solve the inverse kinematics equation of the manipulator to obtain the captured Each joint angle required by the target, that is, the target configuration;
然后利用碰撞检测算法判断计算得到的目标构型是否与障碍物相碰,如果与障碍物相碰,则对输入至目标构型求解算法的机械臂当前的关节角进行调整,按照目标构型求解算法重新进行计算,直至得到无碰撞的目标构型。Then use the collision detection algorithm to judge whether the calculated target configuration collides with an obstacle. If it collides with an obstacle, adjust the current joint angle of the manipulator input to the target configuration solving algorithm to solve the problem according to the target configuration The algorithm recalculates until a collision-free target configuration is obtained.
所述步骤(1.2)中无碰撞路径搜索算法将每个关节角从当前构型到目标构型的总转角都平均分成N份,将每一个关节角转过每份转角定义为一个子运动,从而形成了pN个子运动,其中p为关节数目;In the step (1.2), the collision-free path search algorithm divides the total rotation angle of each joint angle from the current configuration to the target configuration into N parts on average, and each joint angle is defined as a sub-motion through each rotation angle, Thus, pN sub-movements are formed, where p is the number of joints;
记第i个关节角的子运动为子运动i,i=1,2,...,P,无碰撞路径搜索算法将pN个子运动以合适的顺序排列,形成一个pN步的运动序列;Denote the sub-motion of the i-th joint angle as sub-motion i, i=1, 2, ..., P, and the collision-free path search algorithm arranges the pN sub-motions in an appropriate order to form a motion sequence of pN steps;
设定序号生成函数F(i),该函数由当前子运动序号i生成下一步要试探的子运动序号;F(i)为递增、递减或随机生成函数;Set serial number generation function F (i), this function generates the sub-movement serial number that next step will be tried by current sub-motion serial number i; F (i) is increment, decrement or random generation function;
用m表示步号,T表示试探总次数,Tmax表示可接受最大试探次数;Use m to represent the step number, T to represent the total number of trials, and T max to represent the maximum acceptable number of trials;
无碰撞路径搜索算法步骤如下:The steps of the collision-free path search algorithm are as follows:
1)初始化,令m=1,T=1,选取i,设置Tmax;1) Initialize, make m=1, T=1, choose i, set Tmax ;
2)判断m是否等于pN+1;2) Determine whether m is equal to pN+1;
若m=pN+1,则输出无碰撞的关节运动序列,并结束搜索算法;否则利用碰撞检测算法,判断机械臂第m步执行子运动i是否与障碍物碰撞;如果不碰撞,机械臂执行予运动i,并做记录,执行步骤3);如果碰撞,执行步骤4);If m=pN+1, output a joint motion sequence without collision, and end the search algorithm; otherwise, use the collision detection algorithm to judge whether the sub-movement i of the m-th step of the manipulator collides with an obstacle; if there is no collision, the manipulator executes Give movement i, and make a record, execute step 3); if there is a collision, execute step 4);
3)m=m+1,i=F(i),T=T+1,执行步骤6);3) m=m+1, i=F(i), T=T+1, execute step 6);
4)判断第m步是否已经试探了所有可能的子运动i,若是,执行步骤5);否则i=F(i),T=T+I,执行步骤6);4) judge whether all possible sub-movements i have been tested in step m, if so, perform step 5); otherwise i=F(i), T=T+I, perform step 6);
5)跳回第m-1步,令m=m-1;判断第m步是否已经试探了所有可能的子运动,若是重新执行步骤5);否则令i=F(i(m)),i(m)指第m步原来采用的子运动序号,T=T+1,执行步骤6);5) Jump back to the m-1th step, let m=m-1; judge whether all possible sub-movements have been tested in the m-th step, if re-execute step 5); otherwise let i=F(i(m)), i(m) refers to the sub-motion serial number that the m step originally adopted, T=T+1, and executes step 6);
6)判断T是否等于Tmax,6) Judging whether T is equal to T max ,
若T=Tmax,则输出算法搜索失败并结束搜索算法,否则执行步骤2);If T=T max , then the output algorithm search fails and the search algorithm ends, otherwise, perform step 2);
若算法搜索失败,则采用不同的试探规律F(i)或增大路径分割常数N重新执行无碰撞路径搜索算法。If the algorithm search fails, use a different trial rule F(i) or increase the path segmentation constant N to re-execute the collision-free path search algorithm.
所述步骤(1.3)中路径优化算法方法如下:将无碰撞路径搜索算法搜索到的无碰撞的机械臂的各个关节角的运动序列中相邻的两个子运动合并成一个子运动,然后采用碰撞检测算法检测合并后的子运动是否与障碍物相碰;如果不相碰,则将这两个运动合并;若相碰则取消合并;重复上述过程,直至得到的运动序列中相邻的子运动无法进一步合并。The path optimization algorithm method in the step (1.3) is as follows: the two adjacent sub-motions in the motion sequence of each joint angle of the non-collision mechanical arm searched by the collision-free path search algorithm are merged into one sub-motion, and then the collision is adopted. The detection algorithm detects whether the merged sub-motion collides with an obstacle; if not, the two motions are merged; if they collide, the merge is canceled; the above process is repeated until the adjacent sub-motion in the obtained motion sequence Cannot merge further.
所述碰撞检测算法方法如下:将机械臂简化为一些连接的线段,然后进行空间上的离散化,离散化为机械臂上的一系列的点,把障碍物分成几部分,每一部分找到一个凸多面体的包络,然后用这些凸多面体近似代替障碍物本身;记某个凸多面体的第i个面的中心点为Pi,第i个面的外法线矢量为记待检测的点为PT,则点PT位于这个凸多面体的充分必要条件是:对于凸多面体的所有的面都有若存在待检测点在障碍物内部,则认为机械臂与障碍物相碰,否则认为机械臂与障碍物不会发生碰撞。The collision detection algorithm method is as follows: Simplify the manipulator into some connected line segments, then perform spatial discretization, discretize into a series of points on the manipulator, divide obstacles into several parts, each part finds a convex The envelope of the polyhedron, and then use these convex polyhedrons to approximate the obstacle itself; record the center point of the i-th face of a certain convex polyhedron as P i , and the external normal vector of the i-th face is Note that the point to be detected is P T , then the necessary and sufficient condition for the point P T to be located in this convex polyhedron is: for all faces of the convex polyhedron, there are If there is a point to be detected inside the obstacle, it is considered that the robot arm collides with the obstacle, otherwise it is considered that the robot arm will not collide with the obstacle.
所述步骤(2.3)中的机械臂的各个关节角的角速度轨迹公式为:The angular velocity trajectory of each joint angle of the mechanical arm in the step (2.3) The formula is:
其中,XEr(t)、和为补偿后的末端作用器位置/姿态的运动轨迹和速度轨迹,XE(t)为机械臂实际运动过程中末端作用器的位置/姿态;δ·(XEr(t)-XE(t))为加入的比例调节项,其中δ>0;J+=JT(JJT)-1为雅克比矩阵J的伪逆;Among them, X Er (t), and is the motion trajectory and velocity trajectory of the compensated end effector position/attitude, X E (t) is the position/attitude of the end effector during the actual movement of the manipulator; δ·(X Er (t)-X E (t )) is the added proportional adjustment item, where δ>0; J + =J T (JJ T ) -1 is the pseudo-inverse of the Jacobian matrix J;
所述机械臂的各个关节角的关节角加速度轨迹为:The joint angular acceleration trajectory of each joint angle of the mechanical arm for:
其中,为补偿后的末端作用器位置/姿态的加速度轨迹;为雅克比矩阵J的伪逆的时间导数。in, is the acceleration trajectory of the compensated end effector position/attitude; is the time derivative of the pseudoinverse of the Jacobian matrix J.
所述精细抓捕段的轨迹规划方法还包括如下步骤:利用机械臂的冗余自由度,采用空转使机械臂远离奇异构型。The trajectory planning method for the fine capture section further includes the following steps: utilizing the redundant degrees of freedom of the manipulator, and using idling to keep the manipulator away from the singular configuration.
带空转的机械臂的各个关节角的角速度轨迹为The angular velocity trajectory of each joint angle of the manipulator with idling is
PJ=(I-JT(JJT)-1J)为雅可比矩阵J的正交投影矩阵;列向量y=αv;ξ(q)为奇异度量:ξ(q)=det(JJT);标量参数α选取为:上标“.”代表求导运算;上标“T”代表求转置运算;上标“-1”代表求逆运算;代表标量ξ对矢量q求梯度。P J = (IJ T (JJ T ) -1 J) is the orthogonal projection matrix of Jacobian matrix J; Column vector y=αv; ξ(q) is a singular metric: ξ(q)=det(JJ T ); the scalar parameter α is selected as: The superscript "." stands for derivative operation; the superscript "T" stands for transpose operation; the superscript "-1" stands for inverse operation; Represents the scalar ξ to find the gradient of the vector q.
本发明与现有技术相比的有益效果为:The beneficial effects of the present invention compared with prior art are:
(1)本发明是一种全新的针对空间冗余机械臂在轨抓捕操作的无碰撞无奇异轨迹规划算法。通过将空间机械臂的抓捕操作分为粗略抓捕段和精细抓捕段,将问题进行了简化。针对不同阶段的突出问题,采用了不同的规划算法。在粗略抓捕段采用基于构型空间的轨迹搜索算法,该算法基于构型空间中的试探;在精细抓捕段采用基于运动学的伪逆算法,通过对目标相对运动的补偿保证最终的精确抓捕。(1) The present invention is a brand-new non-collision and non-singularity trajectory planning algorithm for on-orbit capture operations of spatially redundant manipulators. The problem is simplified by dividing the capture operation of the space manipulator into a rough capture segment and a fine capture segment. Aiming at the outstanding problems in different stages, different planning algorithms are adopted. The trajectory search algorithm based on the configuration space is used in the rough capture section, which is based on the trial in the configuration space; the pseudo-inverse algorithm based on kinematics is used in the fine capture section, and the final accuracy is guaranteed by compensating the relative motion of the target. arrest.
(2)该方法在粗略抓捕段通过基于构型空间的轨迹搜索算法,实现了对障碍物的规避。构型空间是以机械臂各个关节角为坐标的一个高维的抽象空间。这种基于在构型空间中试探的轨迹搜索算法,不需要求解构型空间,通过碰撞检测试探就可以在构型空间中找出无碰撞路径,与现有技术相比,节约了计算资源和内存,适用于计算资源紧张的空间机械臂的轨迹的快速规划,为航天工程应用提供了一种简单有效的方法。通过轨迹优化算法,得到的最终轨迹较为平滑,易于工程实现。(2) In the rough capture stage, the method realizes the avoidance of obstacles through the trajectory search algorithm based on configuration space. The configuration space is a high-dimensional abstract space with the coordinates of each joint angle of the manipulator. This trajectory search algorithm based on trial in the configuration space does not need to solve the configuration space, and can find the collision-free path in the configuration space through the collision detection trial. Compared with the existing technology, it saves computing resources and In-memory, suitable for fast planning of trajectories of space manipulators with limited computing resources, provides a simple and effective method for aerospace engineering applications. Through the trajectory optimization algorithm, the final trajectory obtained is relatively smooth, which is easy to realize in engineering.
(3)该方法在精细抓捕段通过加入目标相对运动补偿的基于运动学的伪逆算法,可以通过空间操控平台上的视觉敏感器的测量信息,获得目标的相对运动,将目标的相对运动引入到伪逆算法中,实现对目标相对运动的补偿。此外,在伪逆算法中,加入比例调节项,对轨迹的跟随误差进行补偿,增加系统的抗干扰能力和鲁棒性,保证了在精细抓捕段,机械臂对目标的准确抓捕。(3) In the fine capture stage, by adding the kinematics-based pseudo-inverse algorithm of target relative motion compensation, the relative motion of the target can be obtained through the measurement information of the visual sensor on the space manipulation platform, and the relative motion of the target can be obtained. Introduced into the pseudo-inverse algorithm to realize the compensation of the relative motion of the target. In addition, in the pseudo-inverse algorithm, a proportional adjustment item is added to compensate the tracking error of the trajectory, increase the anti-interference ability and robustness of the system, and ensure the accurate capture of the target by the robotic arm in the fine capture section.
(4)本发明中所涉及的方法工程实施简单,推广应用前景良好。该方法不仅满足了空间机械臂无碰撞无奇异轨迹规划的基本要求,而且算法简单易于实施,节约计算时间,节省计算资源和内存,特别适用于计算资源紧张的空间机械臂的快速轨迹规划。该方法尤其适用于空间机械臂对非合作目标的快速抓捕,也适用于月球车上机械臂的无碰撞轨迹规划。(4) The engineering implementation of the method involved in the present invention is simple, and has good prospects for popularization and application. This method not only meets the basic requirements of collision-free and non-singular trajectory planning for space manipulators, but also has a simple algorithm that is easy to implement, saves computing time, computing resources and memory, and is especially suitable for fast trajectory planning of space manipulators with tight computing resources. This method is especially suitable for the rapid capture of non-cooperative targets by the space manipulator, and also for the collision-free trajectory planning of the manipulator on the lunar rover.
附图说明Description of drawings
图1为本发明空间操控平台抓捕空间目标示意图;Fig. 1 is a schematic diagram of capturing a space target by a space manipulation platform of the present invention;
图2为本发明无碰撞无奇异的机械臂轨迹规划算法的流程示意图;Fig. 2 is the schematic flow chart of the non-collision and non-singular manipulator trajectory planning algorithm of the present invention;
图3为本发明中无碰撞路径搜索算法的流程示意图;Fig. 3 is a schematic flow chart of a collision-free path search algorithm in the present invention;
图4为本发明中7自由度机械臂的初始构型和转轴正方向;Fig. 4 is the initial configuration and the positive direction of the rotating shaft of the 7-DOF mechanical arm in the present invention;
图5为本发明中算法平滑前的无碰撞路径;Fig. 5 is the non-collision path before algorithm smoothing among the present invention;
图6为本发明中算法平滑前的关节角速度;其中图6(a)中曲线11、12、13分别是第1、2、3关节的角速度变化曲线;图6(b)中曲线14、15、16分别是第4、5、6关节的角速度变化曲线;Fig. 6 is the joint angular velocity before algorithm smoothing among the present invention; Wherein Fig. 6 (a) curve 11,12,13 are the angular velocity variation curves of the 1st, 2,3 joints respectively; Curve 14,15 among Fig. 6 (b) , 16 are the angular velocity curves of
图7为本发明中算法平滑后的无碰撞路径;Fig. 7 is the non-collision path after algorithm smoothing among the present invention;
图8为本发明中算法平滑后的关节角速度;其中图8(a)中曲线21、22、23分别是第1、2、3关节的角速度变化曲线;图8(b)中曲线24、25、26分别是第4、5、6关节的角速度变化曲线。Fig. 8 is the joint angular velocity after algorithm smoothing among the present invention; Wherein Fig. 8 (a)
具体实施方式Detailed ways
本发明提供了一种冗余空间机械臂在轨抓捕的无碰撞无奇异轨迹规划方法,如图1所示,方法所依托的设备包括空间操控平台1以及安装在空间操控平台上的机械臂系统3;空间操控平台装有视觉测量敏感器和星载计算机;机械臂末端安装有末端作用器;机械臂抓捕的对象是空间非合作目标2。对于空间操作平台一般可指带有机械臂的在轨可控卫星,空间非合作目标一般指空间不可控卫星等。机械臂系统3包括n部机械臂,每部机械臂包含p个关节4,从空间操控平台开始依次记为第1关节,第2关节......第p关节,第p关节上安装末端作用器5。本发明提供的即为机械臂系统3抓捕目标的无碰撞无奇异的轨迹规划方法。The present invention provides a collision-free and non-singular trajectory planning method for on-orbit capture by a redundant space manipulator. As shown in Figure 1, the equipment on which the method relies includes a
例如机械臂系统3可以包括3个机械臂,每个机械臂具有7个自由度。For example, the
下面结合附图2及实例对本发明做详细说明。如图2所示将空间机械臂的整个抓捕操作分为粗略抓捕段和精细抓捕段。在粗略抓捕段将空间机械臂的轨迹规划问题简化为固定基座机械臂的轨迹规划问题,采用基于构型空间的轨迹搜索算法,将末端作用器移动到接近抓捕目标的位置和姿态的状态,与最终抓捕目标的位置和姿态的差值和粗略抓捕段由目标相对运动引起的误差一并由精细抓捕段加以修正。而精细抓捕段操作量很小,目标相对运动不明显,同时采用基于运动学的伪逆算法进行轨迹规划,在算法中对目标的相对运动进行实时补偿,最终实现准确抓捕。The present invention will be described in detail below in conjunction with accompanying drawing 2 and examples. As shown in Figure 2, the entire capture operation of the space manipulator is divided into a rough capture segment and a fine capture segment. In the rough capture stage, the trajectory planning problem of the space manipulator is simplified to the trajectory planning problem of the fixed base manipulator, and the trajectory search algorithm based on the configuration space is used to move the end effector to the position and attitude close to the capture target. State, the difference between the position and attitude of the final capture target and the error caused by the relative motion of the target in the rough capture segment are corrected by the fine capture segment. In the fine capture segment, the operation volume is very small, and the relative motion of the target is not obvious. At the same time, the pseudo-inverse algorithm based on kinematics is used for trajectory planning, and the relative motion of the target is compensated in real time in the algorithm, so as to finally achieve accurate capture.
一、粗略抓捕段的轨迹规划1. Trajectory planning of the rough capture segment
具体包括如下步骤:Specifically include the following steps:
(1.1)由粗略抓捕段末端作用器的期望位置和姿态,利用无碰撞目标构型求解算法求得无碰撞的目标构型;(1.1) From the expected position and attitude of the end effector in the rough capture section, the collision-free target configuration is obtained by using the non-collision target configuration algorithm;
粗略抓捕段末端作用器的期望位置和姿态为粗略抓捕段结束时期望达到的位置和姿态,也就是抓捕目标所需的末端作用器的位置和姿态。The expected position and attitude of the end effector in the rough capture segment is the expected position and orientation at the end of the rough capture segment, that is, the position and orientation of the end effector required to capture the target.
所述无碰撞目标构型求解算法首先根据目标构型求解算法计算目标构型;The non-collision target configuration solving algorithm first calculates the target configuration according to the target configuration solving algorithm;
目标构型求解算法的输入为机械臂当前的各个关节角,即当前机械臂构型,以及抓捕目标所需的末端作用器的位置和姿态,输出为抓捕目标所需的各个关节角,即目标构型。采用的方法为利用数值积分方法(如4阶龙格-库塔方法)求解机械臂逆运动学方程The input of the target configuration solving algorithm is the current joint angles of the manipulator, that is, the current manipulator configuration, and the position and attitude of the end effector required to capture the target, and the output is the joint angles required to capture the target. the target configuration. The method used is to solve the inverse kinematics equation of the manipulator by using the numerical integration method (such as the 4th order Runge-Kutta method)
逆运动学方程积分的初始关节角为机械臂当前的各个关节角,积分的末端值即为算法的输出:抓捕目标所需的各个关节角,即目标构型。在方程中,XE为机械臂末端作用器位置/姿态矢量;为由当前末端作用器的位置和姿态、抓捕目标所需的末端作用器的位置和姿态以及抓捕时间设计的机械臂末端作用器位置/姿态矢量XE的运动规律,可以是关于时间的多项式函数或正弦函数;q为机械臂关节角列向量;为机械臂关节角速度列向量;J+(q)=JT(JJT)-1为雅克比矩阵J的广义逆;上标“.”代表求导运算;上标“T”代表转置运算;上标“-1”代表求逆运算。The initial joint angle of the inverse kinematics equation integration is the current joint angle of the manipulator, and the end value of the integral is the output of the algorithm: the joint angles required to capture the target, that is, the target configuration. In the equation, X E is the position/attitude vector of the end effector of the manipulator; The motion law of the position/attitude vector X E of the end effector of the mechanical arm designed for the position and attitude of the current end effector, the position and attitude of the end effector required to capture the target, and the capture time can be about time Polynomial function or sine function; q is the column vector of the joint angle of the manipulator; is the column vector of the joint angular velocity of the manipulator; J + (q) = J T (JJ T ) -1 is the generalized inverse of the Jacobian matrix J; the superscript "." represents the derivation operation; the superscript "T" represents the transposition operation ; The superscript "-1" represents the inverse operation.
然后利用碰撞检测算法判断计算得到的目标构型是否与障碍物相碰,如果积分得到的目标构型与障碍物相碰,则可以对目标构型求解算法的输入:机械臂当前的关节角进行任意的调整(如改变第一个关节角的角度),按照目标构型求解算法重新进行计算,获得满足抓捕目标所需的末端作用器位置和姿态的目标构型,直至得到无碰撞的目标构型。上述过程只是对输入至目标构型求解算法的机械臂当前的关节角进行调整,机械臂当前的关节角并不发生变化。Then use the collision detection algorithm to judge whether the calculated target configuration collides with the obstacle. If the integrated target configuration collides with the obstacle, the input of the target configuration solution algorithm: the current joint angle of the manipulator can be calculated. Arbitrary adjustments (such as changing the angle of the first joint angle), recalculate according to the target configuration solving algorithm, and obtain the target configuration that meets the position and posture of the end effector required to capture the target, until the target without collision is obtained structure. The above process only adjusts the current joint angle of the manipulator input to the target configuration solving algorithm, and the current joint angle of the manipulator does not change.
(1.2)根据机械臂当前构型和目标构型,利用无碰撞路径搜索算法,求得无碰撞的构型空间中的路径;(1.2) According to the current configuration and the target configuration of the manipulator, use the collision-free path search algorithm to obtain the path in the configuration space without collision;
如图3所示,无碰撞路径搜索算法思路如下:算法输入为当前机械臂的构型(起始构型),机械臂要到达的目标构型以及障碍物的参数,输出为不与障碍物相碰的机械臂的各个关节角的运动序列。令正整数N为路径分割常数,将每个关节角从当前构型到目标构型的总转角都平均分成N份,将每一个关节角转过每份转角定义为一个子运动,就形成了pN个子运动,其中p为关节数目。那么只要N足够大,将路径分割得足够细,就可以用这pN个子运动按合适的顺序拼接成一个无碰撞折线路径。As shown in Figure 3, the idea of the collision-free path search algorithm is as follows: the input of the algorithm is the configuration of the current manipulator (starting configuration), the target configuration to be reached by the manipulator, and the parameters of obstacles, and the output is The motion sequence of the joint angles of the colliding arms. Let the positive integer N be the path segmentation constant, and divide the total rotation angle of each joint angle from the current configuration to the target configuration into N parts on average, and define each joint angle as a sub-motion through each rotation angle, which forms pN sub-motions, where p is the number of joints. Then as long as N is large enough and the path is divided fine enough, the pN sub-movements can be spliced into a non-collision polyline path in an appropriate order.
记第i个关节角的子运动为子运动i,i=1,2,...,p,搜索算法的任务是通过不断试探确定这pN个子运动的顺序。即将总路径分成pN步,将pN个子运动以合适的顺序排列,形成一个pN步的运动序列。Denote the sub-motion of the i-th joint angle as sub-motion i, i=1, 2, ..., p, and the task of the search algorithm is to determine the order of the pN sub-motions through constant trial and error. That is, the total path is divided into pN steps, and the pN sub-movements are arranged in an appropriate order to form a pN-step motion sequence.
设定序号生成函数F(i),该函数由当前子运动序号i生成下一步要试探的子运动序号,F(i)可以根据需要选取,如递增、递减或随机生成。用m表示步号,T表示试探总次数,Tmax表示可接受最大试探次数,算法如下:Set the serial number generation function F(i), which generates the sub-motion serial number to be tested in the next step from the current sub-motion serial number i, and F(i) can be selected according to needs, such as increasing, decreasing or randomly generated. Use m to represent the step number, T to represent the total number of trials, and T max to represent the maximum number of trials that can be accepted. The algorithm is as follows:
1)初始化,m=1,T=1,选取i,设置Tmax;1) Initialize, m=1, T=1, select i, set Tmax ;
2)若m=pN+1,算法成功结束,输出结果,否则利用碰撞检测算法,判断机械臂第m步执行子运动i是否与障碍物碰撞。如果不碰撞,机械臂执行子运动i(这是在计算机中的模拟),并做记录,执行步骤3);如果碰撞,执行步骤4);2) If m=pN+1, the algorithm ends successfully, and the result is output; otherwise, the collision detection algorithm is used to judge whether the sub-movement i executed by the robot arm in step m collides with an obstacle. If there is no collision, the robotic arm performs sub-motion i (this is a simulation in the computer), and makes a record, perform step 3); if there is a collision, perform step 4);
3)m=m+1,i=F(i),T=T+1,执行步骤6);3) m=m+1, i=F(i), T=T+1, execute step 6);
4)判断第m步是否已经试探了所有可能的子运动,若是,执行步骤5);否则i=F(),T=T+1,执行步骤6);4) judge whether all possible sub-movements have been tested in step m, if so, perform step 5); otherwise i=F (), T=T+1, perform step 6);
5)跳回第m-1步,令m=m-1。判断第m步是否已经试探了所有可能的子运动,若是重新执行步骤5);否则令i=F(i(m)),i(m)指第m步原来采用的子运动序号,T=T+1,执行步骤6);5) Jump back to step m-1, let m=m-1. Judge whether all possible sub-movements have been tested in the mth step, if step 5) is re-executed; otherwise let i=F(i(m)), i(m) refers to the original sub-movement sequence number used in the m-th step, T= T+1, execute step 6);
6)若T=Tmax,算法失败结束,否则执行2。6) If T=T max , the algorithm fails and ends, otherwise, execute 2.
若该算法搜索失败,则可以采用不同的试探规律F(i)或增大路径分割常数N重新搜索。试探规律F(i)可以有多种,若采用随机试探,每次试探的结果都会不同。试探规律的多样性,保证了搜索算法的有效性。增大路径分割常数N则可以增大搜索的成功率,但是这是以增加计算量为代价的。If the algorithm search fails, you can use a different trial rule F(i) or increase the path division constant N to search again. There can be many kinds of trial rules F(i). If random trial is used, the result of each trial will be different. The diversity of trial rules ensures the effectiveness of the search algorithm. Increasing the path division constant N can increase the success rate of the search, but this is at the cost of increasing the amount of calculation.
(1.3)利用路径优化算法,对无碰撞的构型空间中的路径进行优化获得不与障碍物相碰的机械臂的各个关节角的运动序列。(1.3) Using the path optimization algorithm, optimize the path in the configuration space without collision to obtain the motion sequence of each joint angle of the mechanical arm that does not collide with obstacles.
算法输入为无碰撞路径搜索算法得到的不与障碍物相碰的机械臂的各个关节角的运动序列,输出为优化后的不与障碍物相碰的机械臂的各个关节角的运动序列。尝试将无碰撞路径搜索算法搜索到的无碰撞的机械臂的各个关节角的运动序列中相邻的两个子运动合并成一个子运动,将之前按时间先后顺序顺次进行的两个子运动同时进行,然后检测合并后的子运动是否与障碍物相碰。如果不相碰,则将这两个子运动合并;若相碰则取消合并。不断尝试,直至得到的运动序列中相邻的子运动无法进一步合并。The input of the algorithm is the motion sequence of each joint angle of the manipulator that does not collide with obstacles obtained by the collision-free path search algorithm, and the output is the optimized motion sequence of each joint angle of the manipulator that does not collide with obstacles. Try to combine two adjacent sub-movements in the motion sequence of each joint angle of the collision-free manipulator searched by the collision-free path search algorithm into one sub-motion, and simultaneously perform the two sub-motions that were performed sequentially in chronological order , and then detect whether the merged sub-motion collides with an obstacle. If they do not collide, the two sub-motions are merged; if they collide, the merge is cancelled. Keep trying until the resulting motion sequence cannot further merge adjacent sub-motions.
所述碰撞检测算法可以检测机械臂的一个运动过程或某一个构型是否与障碍物相碰。The collision detection algorithm can detect whether a movement process or a certain configuration of the robotic arm collides with an obstacle.
碰撞检测算法方法如下:算法的输入为待检测的机械臂的某一个运动过程,即各个关节角随时间的运动规律。首先将机械臂的运动过程进行时间上的离散化,离散为处于一系列构型的机械臂;在各个构型下,将机械臂简化为一些连接的线段,然后进行空间上的离散化,离散化为机械臂上的一系列的点,将问题简化为检测点是否在障碍物内部;把障碍物分成几部分,每一部分找到一个凸多面体的包络,然后用这些凸多面体近似代替障碍物本身。记某个凸多面体的第i个面的中心点为Pi,第i个面的外法线矢量为记待检测的点为PT,则点PT位于这个凸多面体的充分必要条件是:对于凸多面体的所有的面都有若存在待检测点在障碍物内部,则认为机械臂与障碍物相碰,否则认为机械臂与障碍物不会发生碰撞。The collision detection algorithm method is as follows: the input of the algorithm is a certain motion process of the robot arm to be detected, that is, the motion law of each joint angle with time. Firstly, the movement process of the manipulator is discretized in time, which is discretized into a series of configurations of the manipulator; in each configuration, the manipulator is simplified into some connected line segments, and then discretized in space, discrete Turn it into a series of points on the robotic arm, simplify the problem to detect whether the point is inside the obstacle; divide the obstacle into several parts, find the envelope of a convex polyhedron for each part, and then use these convex polyhedrons to approximate the obstacle itself . Note that the center point of the i-th face of a certain convex polyhedron is P i , and the external normal vector of the i-th face is Note that the point to be detected is P T , then the necessary and sufficient condition for the point P T to be located in this convex polyhedron is: for all faces of the convex polyhedron, there are If there is a point to be detected inside the obstacle, it is considered that the robot arm collides with the obstacle, otherwise it is considered that the robot arm will not collide with the obstacle.
二、精细抓捕段的轨迹规划2. Trajectory planning of fine capture segment
精细抓捕段的轨迹规划方法包括如下步骤:The trajectory planning method of the fine capture segment includes the following steps:
(2.1)由期望的抓捕目标的末端作用器位置/姿态和当前末端作用器的位置/姿态预先设计出末端作用器位置/姿态的运动轨迹,速度轨迹和加速度轨迹;(2.1) Pre-design the motion track, velocity track and acceleration track of the end effector position/posture from the position/posture of the end effector of the desired capture target and the position/posture of the current end effector;
在粗略抓捕段结束之后,利用空间操作平台上的视觉敏感器对目标上抓捕点的位置/姿态进行测量获得期望的抓捕目标的末端作用器的位置/姿态,并与当前末端作用器的位置/姿态做差,然后设计出一条连接期望值和当前值的末端作用器位置/姿态运动轨迹,速度轨迹和加速度轨迹。After the rough capture segment is over, use the visual sensor on the space operation platform to measure the position/attitude of the capture point on the target to obtain the position/attitude of the end effector of the desired capture target, and compare it with the current end effector The position/attitude of the end effector is compared, and then an end effector position/attitude trajectory, velocity trajectory and acceleration trajectory are designed to connect the expected value and the current value.
预先设计出的末端作用器位置/姿态的速度轨迹和加速度轨迹在操作的起点和终点处为0。The velocity and acceleration trajectories of the pre-designed end-effector position/attitude are 0 at the start and end of the operation.
(2.2)根据视觉测量敏感器测量得到的目标相对运动对所述末端作用器位置/姿态的运动轨迹,速度轨迹和加速度轨迹进行补偿获得补偿后的末端作用器位置/姿态的运动轨迹,速度轨迹和加速度轨迹;从而实现对目标的相对运动的实时补偿;(2.2) According to the relative motion of the target measured by the visual measurement sensor, the motion track of the position/posture of the end effector, the velocity track and the acceleration track are compensated to obtain the motion track of the position/posture of the end effector after compensation, and the speed track and acceleration trajectory; thereby realizing real-time compensation for the relative motion of the target;
(2.3)根据补偿后的末端作用器位置/姿态的运动轨迹,速度轨迹和加速度轨迹采用基于运动学的伪逆算法获得机械臂的各个关节角的角速度轨迹和角加速度轨迹;从而能够使末端作用器的位置和姿态跟随预先设计的运动轨迹,速度轨迹和加速度轨迹的机械臂。(2.3) According to the motion track of the position/attitude of the end effector after compensation, the velocity track and the acceleration track adopt the pseudo-inverse algorithm based on kinematics to obtain the angular velocity track and the angular acceleration track of each joint angle of the mechanical arm; The position and attitude of the robot follow the pre-designed motion trajectory, velocity trajectory and acceleration trajectory of the manipulator.
机械臂的各个关节角的角速度轨迹公式为:The angular velocity trajectory of each joint angle of the manipulator The formula is:
其中,XEr(t)、和为补偿后的末端作用器位置/姿态的运动轨迹和速度轨迹,XE(t)为机械臂实际运动过程中末端作用器的位置/姿态;δ·(XEr(t)-XE(t))为加入的比例调节项,可以对实际运动与预先设计的轨迹的跟随误差进行补偿,增加系统的抗干扰能力和鲁棒性,其中δ>0;J+=JT(JJT)-1为雅克比矩阵J的伪逆;Among them, X Er (t), and is the motion trajectory and velocity trajectory of the compensated end effector position/attitude, X E (t) is the position/attitude of the end effector during the actual movement of the manipulator; δ·(X Er (t)-X E (t )) is the added proportional adjustment item, which can compensate the following error between the actual motion and the pre-designed trajectory, and increase the anti-interference ability and robustness of the system, where δ>0; J + =J T (JJ T ) - 1 is the pseudo-inverse of the Jacobian matrix J;
上标“·”代表求导运算;上标“T”代表转置运算;上标“-1”代表求逆运算。The superscript "·" represents the derivative operation; the superscript "T" represents the transpose operation; the superscript "-1" represents the inverse operation.
关节角加速度轨迹为:The trajectory of joint angular acceleration is:
其中,为补偿后的末端作用器位置/姿态的加速度轨迹;为雅克比矩阵J的伪逆的时间导数。in, is the acceleration trajectory of the compensated end effector position/attitude; is the time derivative of the pseudoinverse of the Jacobian matrix J.
(2.4)利用机械臂的冗余自由度,采用空转使机械臂远离奇异构型。(2.4) Utilizing the redundant degrees of freedom of the manipulator, idling is used to keep the manipulator away from the singular configuration.
利用机械臂的冗余自由度,采用空转使机械臂远离奇异构型,最终的关节角速度为Utilizing the redundant degrees of freedom of the manipulator, using idling to keep the manipulator away from the singular configuration, the final joint angular velocity is
其中为步骤(203)中得到的逆运动学的基础解;PJ=(I-JT(JJT)-1J)为雅可比矩阵J的正交投影矩阵;列向量y=αv;ξ(q)为奇异度量:ξ(q)=det(JJT);标量参数α选取为:上标“·”代表求导运算;上标“T”代表求转置运算;上标“-1”代表求逆运算;代表标量ξ对矢量q求梯度。in Be the basic solution of the inverse kinematics obtained in step (203); P J = (IJ T (JJ T ) -1 J) is the orthogonal projection matrix of Jacobian matrix J; Column vector y=αv; ξ(q) is a singular metric: ξ(q)=det(JJ T ); the scalar parameter α is selected as: The superscript "·" represents the derivative operation; the superscript "T" represents the transpose operation; the superscript "-1" represents the inverse operation; Represents the scalar ξ to find the gradient of the vector q.
实施例1Example 1
实施例1主要用于验证粗略抓捕段的算法的有效性。
(1)设计了一个7自由度机械臂。机械臂的几何参数如表1所示,其中第1节臂安装点在基座坐标系中表示。各个关节角为0时的初始构型以及各个转角的正方向见图4,图中黑色线段代表了机械臂,黑色圆圈代表连接各节机械臂的关节,关节旁的箭头表示各个关节转角的正方向。此时基座坐标系和各节臂的体坐标系重合,见图4中的坐标系oxyz。图4中,6为机械臂的基座安装点,7为机械臂的末端作用器,即第7节臂。下面以该机械臂为例验证粗略抓捕段的算法的有效性。(1) A 7-DOF manipulator is designed. The geometric parameters of the manipulator are shown in Table 1, where the installation point of the first section of the arm is expressed in the coordinate system of the base. The initial configuration and the positive direction of each joint angle when each joint angle is 0 are shown in Figure 4. The black line segment in the figure represents the mechanical arm, the black circle represents the joints connecting each segment of the mechanical arm, and the arrow next to the joint indicates the positive direction of each joint rotation angle. direction. At this time, the coordinate system of the base coincides with the body coordinate system of each section arm, see the coordinate system oxyz in Fig. 4 . In Fig. 4, 6 is the base installation point of the robotic arm, and 7 is the end effector of the robotic arm, that is, the seventh segment arm. The following takes the robotic arm as an example to verify the effectiveness of the algorithm for the rough capture segment.
表1各节臂的安装点位置参数Table 1 The installation point position parameters of each section arm
(2)设机械臂的初始构型为qS,各关节角为(-1.5707,3.1414,1,0,0,0,0)rad。以下参数在基座坐标系中描述:期望的粗略抓捕段结束时末端作用器端点位置为(2.0,0.3,0.5)m;期望的粗略抓捕段结束时末端作用器轴线方向余弦为(0.4699,-0.1987,0.8601);障碍物为一个棱边与坐标轴平行的长方体,坐标范围为χ:1.2~1.7m,y:0~0.5m,z:0~0.5m。注意,目标位姿对末端作用器沿轴线的旋转没有约束,且第7节臂轴线与第7关节角转轴平行,所以第7关节角不会发生运动,实质上是一个6自由度机械臂满足5自由度的末端作用器位姿要求。(2) Let the initial configuration of the manipulator be q S , and each joint angle be (-1.5707, 3.1414, 1, 0, 0, 0, 0) rad. The following parameters are described in the base coordinate system: the end point position of the end effector at the end of the expected rough capture segment is (2.0, 0.3, 0.5) m; the cosine of the end effector axis direction at the end of the expected rough capture segment is (0.4699 , -0.1987, 0.8601); the obstacle is a cuboid whose edges are parallel to the coordinate axis, and the coordinate range is χ: 1.2~1.7m, y: 0~0.5m, z: 0~0.5m. Note that the target pose has no constraints on the rotation of the end effector along the axis, and the axis of the seventh joint arm is parallel to the rotation axis of the seventh joint angle, so the seventh joint angle will not move, which is essentially a 6-DOF mechanical arm that satisfies 5-DOF end-effector pose requirements.
(3)首先由无碰撞的目标构型求解算法,求解出一个满足末端作用器位姿要求且不与障碍物相碰的目标构型qE,各关节角为(-0.0567,4.6127,1.4569,-2.1691,0.9561,-0.3024,0)rad。(3) Firstly, a target configuration qE that satisfies the pose requirements of the end effector and does not collide with obstacles is solved by the non-collision target configuration algorithm. The joint angles are (-0.0567, 4.6127, 1.4569, - 2.1691, 0.9561, -0.3024, 0) rad.
(4)接着由无碰撞路径搜索算法搜索出一条不与障碍物相碰的路径,路径分隔常数N=10,第7关节角转角没有变化,实质上是6维空间的搜索问题,共分成6N=60个子运动,函数F(i)采用递增试探。经过64次试探,找到一个无碰撞的运动序列:1,2,3,4,5,6,1,2,3,4,5,6,1,2,3,4,5,6,1,2,3,4,5,6,1,2,3,4,5,6,1,2,3,4,5,6,1,2,3,4,5,6,2,3,4,5,6,2,3,4,5,6,2,3,4,5,6,1,1,1。可以看到序列的前面部分与试探顺序相同,没有进行调整,在序列的后面算法对试探顺序进行调整以避开障碍。这里得到的无碰撞路径并不是最终结果,但为了说明路径优化算法的必要性,我们在这里给出机械臂在未优化的无碰撞运动序列上的运动过程和关节角的运动曲线。得到机械臂的关节角运动序列之后,还需要给出机械臂完成序列中每一步所需的关节角的运动规律。设定每一段子运动运动时间为4s,关节角运动规律采用关于时间的多项式,保证每个子运动开始和结束时,关节角速度和角加速度为0。机械臂的运动过程见图5,图中每隔一段时间记录一次机械臂的位置,图中8为机械臂初始构型,9为粗抓捕段结束时的目标构型,6为机械臂的基座安装点,10为障碍物。如图5所示,机械臂从底部绕过障碍物到达了目标构型。图6给出了各个关节角的角速度曲线。从图6可以看出,关节角速度从总体来看是不够平滑的。因此对该路径进行优化是必要的。(4) Next, a collision-free path search algorithm is used to search for a path that does not collide with obstacles. The path separation constant is N=10, and the angle of the seventh joint does not change. In essence, it is a search problem in 6-dimensional space, which is divided into 6N = 60 sub-movements, the function F(i) uses incremental heuristics. After 64 trials, find a collision-free motion sequence: 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1 , 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 2, 3 , 4, 5, 6, 2, 3, 4, 5, 6, 2, 3, 4, 5, 6, 1, 1, 1. It can be seen that the front part of the sequence is the same as the trial order without adjustment, and the algorithm adjusts the trial order at the back of the sequence to avoid obstacles. The collision-free path obtained here is not the final result, but in order to illustrate the necessity of the path optimization algorithm, here we give the motion process of the manipulator on the unoptimized collision-free motion sequence and the motion curve of the joint angle. After obtaining the joint angle movement sequence of the manipulator, it is also necessary to give the movement law of the joint angle required by the manipulator to complete each step in the sequence. Set the movement time of each sub-motion to 4s, and the joint angular motion law adopts a polynomial about time to ensure that the joint angular velocity and angular acceleration are 0 at the beginning and end of each sub-motion. The movement process of the mechanical arm is shown in Figure 5. In the figure, the position of the mechanical arm is recorded every once in a while. In the figure, 8 is the initial configuration of the mechanical arm, 9 is the target configuration at the end of the rough capture section, and 6 is the position of the mechanical arm. Base mounting points, 10 for obstacles. As shown in Fig. 5, the robot arm reaches the target configuration from the bottom around the obstacle. Figure 6 shows the angular velocity curves of each joint angle. It can be seen from Figure 6 that the joint angular velocity is not smooth enough in general. Therefore, it is necessary to optimize this path.
(5)下面采用路径平滑算法对上面得到的折线路径进行平滑。结果发现原有的60个子运动组成的序列只需分割成2步即可避开障碍物,第1步由初始构型运动至中间构型,第2步由中间构型至目标构型,各构型见表2所示。得到每一步的起始构型和结束构型之后,还需要给出机械臂完成每一步所需的关节角的运动规律。设定每一步运动时间为20s,关节角运动规律采用关于时间的多项式,保证每一步开始和结束时,关节角速度和角加速度为0。机械臂的运动过程见图7所示,图中每隔一段时间记录一次机械臂的位置,图中8为机械臂初始构型,9为粗抓捕段结束时的目标构型,6为机械臂的基座安装点,10为障碍物,11为机械臂的中间构型。机械臂第一步由初始构型8运动至中间构型11,第二步由中间构型11运动至目标构型9。由图7可见,机械臂从底部绕过障碍物到达了目标构型,机械臂在这两步运动过程中,都没有与障碍物相碰。图8给出了各个关节角的角速度曲线。从图8可以看出,与图6相比,机械臂各个关节角的运动规律非常平滑,易于实现,并且操作时间大大减小,便于对非合作目标的快速抓捕。(5) Next, the path smoothing algorithm is used to smooth the polyline path obtained above. It was found that the original sequence of 60 sub-movements only needs to be divided into two steps to avoid obstacles. The first step is from the initial configuration to the intermediate configuration, and the second step is from the intermediate configuration to the target configuration. The configuration is shown in Table 2. After obtaining the initial configuration and the final configuration of each step, it is also necessary to give the motion law of the joint angle required by the manipulator to complete each step. The motion time of each step is set to 20s, and the joint angular motion law adopts a polynomial about time to ensure that the joint angular velocity and angular acceleration are 0 at the beginning and end of each step. The movement process of the mechanical arm is shown in Figure 7. In the figure, the position of the mechanical arm is recorded every once in a while. In the figure, 8 is the initial configuration of the mechanical arm, 9 is the target configuration at the end of the rough capture segment, and 6 is the mechanical arm. The base mounting point of the arm, 10 is an obstacle, and 11 is the middle configuration of the mechanical arm. The robot arm moves from the
表2平滑后路径上的三个关键构型(rad)Table 2 Three key configurations on the path after smoothing (rad)
实施例2Example 2
实施例2给出了冗余空间机械臂整个抓捕过程的控制方法。
(1)将实施例1中的机械臂安装在一个空间操作平台上,对一个非合作目标进行抓捕。首先由抓捕任务要求和敏感器测量,确定非合作目标上的抓捕点,计算出抓捕目标时所需要的末端作用器的位置和姿态。(1) Install the robotic arm in Example 1 on a space operation platform to capture a non-cooperative target. First, according to the requirements of the capture task and the measurement of the sensor, the capture point on the non-cooperative target is determined, and the position and attitude of the end effector required for capturing the target are calculated.
(2)将整个抓捕过程划分为粗略抓捕段和精细抓捕段。粗略抓捕段的起始状态即为机械臂的当前构型,将粗略抓捕段的结束状态设定为机械臂的末端作用器位于抓捕点上方一定距离处(比如20cm)。(2) Divide the whole capture process into a rough capture segment and a fine capture segment. The initial state of the rough capture segment is the current configuration of the robotic arm, and the end state of the rough capture segment is set as the end effector of the mechanical arm is located at a certain distance above the capture point (for example, 20cm).
(3)由上一步所设定的粗略抓捕段结束时末端作用器的位置和姿态,由无碰撞目标构型求解算法,求出无碰撞的目标构型。由机械臂的当前构型和目标构型,由无碰撞路径搜索算法和路径优化算法求得平滑的无碰撞的关节角运动序列。根据抓捕任务的时间要求,设定无碰撞运动序列上每一步的运动时间(比如每一步耗时20s)。然后根据设定的运动时间,设计关节角运动规律为时间的多项式函数,保证在每一步开始和结束时,关节角速度和角加速度为0。随后,空间操作平台的控制系统,采用一定的控制方法(比如PID控制器),驱动机械臂关节处的电机,跟随给定的关节角运动规律,从而实现粗略抓捕段的目标,将机械臂的末端作用器无碰撞地移动至抓捕点上方一定距离处。(3) Based on the position and attitude of the end effector at the end of the rough capture segment set in the previous step, the non-collision target configuration solution algorithm is used to obtain the non-collision target configuration. Based on the current configuration and the target configuration of the manipulator, a smooth collision-free joint angular motion sequence is obtained by a collision-free path search algorithm and a path optimization algorithm. According to the time requirements of the capture task, set the motion time of each step in the collision-free motion sequence (for example, each step takes 20s). Then, according to the set motion time, the joint angular motion rule is designed as a polynomial function of time to ensure that the joint angular velocity and angular acceleration are 0 at the beginning and end of each step. Subsequently, the control system of the space operation platform adopts a certain control method (such as a PID controller) to drive the motors at the joints of the manipulator to follow the given joint angle motion law, so as to achieve the goal of the rough capture segment, and move the manipulator The end effector of moves to a certain distance above the grab point without collision.
(4)粗略抓捕段结束之后,由空间操作平台上的敏感器,测量得到此时的抓捕点的位置,设计出末端作用器位置和姿态的运动轨迹,速度轨迹和加速度轨迹,采用基于运动学的伪逆算法,实时解算出机械臂关节角的位置,速度和加速度信息,由空间操作台的控制系统,采用一定的控制方法(比如PID控制器),驱动机械臂关节处的电机,跟随实时解算出的关节角运动规律。同时,由空间操作平台上的敏感器,测量目标上的抓捕点相对于空间操作平台的运动,在伪逆算法中对目标的相对运动加以补偿,从而实现最终的精确抓捕,即机械臂将末端作用器精确移动到目标上的抓捕点处。(4) After the rough capture section is over, the sensor on the space operation platform measures the position of the capture point at this time, and designs the motion trajectory, velocity trajectory and acceleration trajectory of the position and attitude of the end effector. The pseudo-inverse algorithm of kinematics calculates the position, velocity and acceleration information of the joint angle of the manipulator in real time. The control system of the space console adopts a certain control method (such as a PID controller) to drive the motor at the joint of the manipulator. Follow the joint angle motion law calculated by the real-time solution. At the same time, the sensor on the space operation platform measures the movement of the capture point on the target relative to the space operation platform, and compensates the relative movement of the target in the pseudo-inverse algorithm, so as to achieve the final precise capture, that is, the mechanical arm Move the end effector precisely to the snap point on the target.
本具体实施方式部分针对7自由度的冗余机械臂目标抓捕实现了无碰撞无奇异的轨迹规划,满足工程要求,易于工程应用,具有良好的推广前景。This specific implementation part realizes the trajectory planning without collision and without singularity for the target capture of the redundant mechanical arm with 7 degrees of freedom, which meets the engineering requirements, is easy to apply in engineering, and has a good promotion prospect.
本发明说明书中未作详细描述的内容属本领域技术人员的公知技术。The content that is not described in detail in the description of the present invention belongs to the well-known technology of those skilled in the art.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210520049.0A CN103009389B (en) | 2012-11-30 | 2012-11-30 | Track planning method of redundant space mechanical arm for on-track catching |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210520049.0A CN103009389B (en) | 2012-11-30 | 2012-11-30 | Track planning method of redundant space mechanical arm for on-track catching |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103009389A true CN103009389A (en) | 2013-04-03 |
CN103009389B CN103009389B (en) | 2015-07-08 |
Family
ID=47958772
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210520049.0A Active CN103009389B (en) | 2012-11-30 | 2012-11-30 | Track planning method of redundant space mechanical arm for on-track catching |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103009389B (en) |
Cited By (46)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103568012A (en) * | 2013-10-24 | 2014-02-12 | 安徽埃夫特智能装备有限公司 | Method for planning biplanar swing arc track of arc welding robot |
CN104070525A (en) * | 2014-06-18 | 2014-10-01 | 大连大学 | Space manipulator continuous trajectory tracking method |
CN104331547A (en) * | 2014-10-23 | 2015-02-04 | 北京控制工程研究所 | Space mechanical arm structure parameter optimization method based on operability |
CN105382843A (en) * | 2015-11-30 | 2016-03-09 | 北京控制工程研究所 | Coordination control method for mechanical arm and operation platform in final stage of grabbing |
CN105437235A (en) * | 2016-01-25 | 2016-03-30 | 珠海格力电器股份有限公司 | Singular point region deceleration protection method and system and industrial robot |
CN106055810A (en) * | 2016-06-07 | 2016-10-26 | 中国人民解放军国防科学技术大学 | Attitude and orbit arm integrated motion planning method used for rapidly capturing on orbit |
CN106054876A (en) * | 2016-06-02 | 2016-10-26 | 西北工业大学 | Obstacle avoidance path optimal successive operation planning method for spatial multiplexing |
CN106166749A (en) * | 2016-06-29 | 2016-11-30 | 北京控制工程研究所 | The motion track planing method of multi-arm robot is moved in a kind of space |
CN106272380A (en) * | 2016-09-30 | 2017-01-04 | 西北工业大学 | A kind of arrest the attitude stabilization method of mechanical arm assembly after high speed rotating target |
CN106313031A (en) * | 2016-10-11 | 2017-01-11 | 北京航空航天大学 | Space mechanical arm driven by control torque spinning tops |
CN106469133A (en) * | 2016-09-12 | 2017-03-01 | 哈尔滨工程大学 | A kind of redundant degree of freedom mechanism position update method |
CN106625671A (en) * | 2016-12-27 | 2017-05-10 | 西北工业大学 | Optimal track planning method for space robot for capturing rolling target |
CN106625666A (en) * | 2016-12-16 | 2017-05-10 | 广州视源电子科技股份有限公司 | Control method and device of redundant mechanical arm |
CN106737671A (en) * | 2016-12-21 | 2017-05-31 | 西安科技大学 | The bilayer personification motion planning method of seven degrees of freedom copy man mechanical arm |
CN107102548A (en) * | 2017-05-12 | 2017-08-29 | 西北工业大学 | A kind of the secondary of Spatial Instability noncooperative target arrests control strategy |
CN107234617A (en) * | 2017-07-10 | 2017-10-10 | 北京邮电大学 | A kind of obstacle-avoiding route planning method of the unrelated Artificial Potential Field guiding of avoidance task |
CN107443373A (en) * | 2017-07-20 | 2017-12-08 | 广东工业大学 | Collision prevention method for planning track and device based on articulated arm robots |
CN107696033A (en) * | 2017-09-18 | 2018-02-16 | 北京控制工程研究所 | A kind of space manipulator track Rolling Planning method of view-based access control model measurement |
CN107850885A (en) * | 2015-07-09 | 2018-03-27 | 西门子公司 | For nonproductive time, the track of motion determines method |
CN108237534A (en) * | 2018-01-04 | 2018-07-03 | 清华大学深圳研究生院 | A kind of space collision free trajectory method of continuous type mechanical arm |
CN108326853A (en) * | 2018-01-17 | 2018-07-27 | 广东工业大学 | A kind of milling robot system |
CN108621167A (en) * | 2018-07-23 | 2018-10-09 | 中南大学 | A kind of visual servo decoupling control method based on profile side and the interior feature that takes all of |
CN108621162A (en) * | 2018-05-09 | 2018-10-09 | 广西科技大学 | A kind of manipulator motion planning method |
CN108919649A (en) * | 2018-07-26 | 2018-11-30 | 西北工业大学 | It is a kind of to arrest optimal path design method for what fault satellites external envelope was arrested |
CN109159151A (en) * | 2018-10-23 | 2019-01-08 | 北京无线电测量研究所 | A kind of mechanical arm space tracking tracking dynamic compensation method and system |
CN109246353A (en) * | 2018-09-07 | 2019-01-18 | 百度在线网络技术(北京)有限公司 | Catching method |
CN109689309A (en) * | 2016-09-09 | 2019-04-26 | 杜尔系统股份公司 | Optimization method and corresponding application system for coating robot |
CN109760040A (en) * | 2017-11-09 | 2019-05-17 | 欧姆龙株式会社 | Method of determining interference, determining interference system and storage medium |
CN109933008A (en) * | 2019-03-28 | 2019-06-25 | 佛山智能装备技术研究院 | A kind of double interpolating methods and device of non real-time system and robot controller |
CN109986554A (en) * | 2019-01-21 | 2019-07-09 | 中国船舶重工集团公司第七一六研究所 | A kind of geometry method for optimally controlling of industrial robot path planning |
CN110014427A (en) * | 2019-03-26 | 2019-07-16 | 华侨大学 | A high-precision motion planning method for redundant manipulators based on pseudo-inverse |
CN110340890A (en) * | 2019-06-27 | 2019-10-18 | 北京控制工程研究所 | A Global Collision-Free Trajectory Planning System for Space Manipulator |
CN110371325A (en) * | 2019-07-02 | 2019-10-25 | 西北工业大学 | A kind of adaptive envelope of inert satellite based on super redundant mechanical arm arrests method |
CN111230881A (en) * | 2020-02-24 | 2020-06-05 | 华南理工大学 | A space trajectory optimization method for a six-degree-of-freedom manipulator |
CN111347678A (en) * | 2020-03-09 | 2020-06-30 | 西南交通大学 | Multi-joint industrial robot 3D printing post-processing and path optimization method |
CN111367314A (en) * | 2020-03-09 | 2020-07-03 | 西北工业大学 | A collaborative capture method for space non-cooperative targets based on multi-spacecraft formation |
CN112720498A (en) * | 2020-12-30 | 2021-04-30 | 深兰人工智能芯片研究院(江苏)有限公司 | Control method and device for manipulator, pickup device and storage medium |
CN112828890A (en) * | 2021-01-04 | 2021-05-25 | 武汉晴川学院 | Mechanical arm track planning method and device, electronic equipment and storage medium |
CN113104240A (en) * | 2021-02-24 | 2021-07-13 | 北京空间飞行器总体设计部 | Device and method suitable for on-orbit article transfer of spacecraft |
CN114326725A (en) * | 2021-12-23 | 2022-04-12 | 武汉理工大学 | Human-computer interaction-oriented ship intelligent collision avoidance method and system |
CN114932549A (en) * | 2022-05-15 | 2022-08-23 | 西北工业大学 | Motion Planning Method and Device for Spatially Redundant Manipulator |
CN114955020A (en) * | 2022-06-08 | 2022-08-30 | 南京理工大学 | A method and system for safe capture of on-orbit targets based on a heterogeneous multi-flexible-arm space robot |
CN115338865A (en) * | 2022-08-18 | 2022-11-15 | 哈尔滨工业大学(深圳) | Grabbing effect measuring method for space non-cooperative target enveloping type grabbing |
CN116494230A (en) * | 2023-04-18 | 2023-07-28 | 浙江大学 | Mechanical arm track planning method and device for grabbing moving objects on conveyor belt |
WO2023246576A1 (en) * | 2022-06-22 | 2023-12-28 | 瑞龙诺赋(上海)医疗科技有限公司 | Robotic arm adjustment method, apparatus, electronic device and storage medium |
CN118348902A (en) * | 2024-06-18 | 2024-07-16 | 中国科学院空天信息创新研究院 | Space robot on-orbit non-cooperative target capture control method, system and medium |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101726296A (en) * | 2009-12-22 | 2010-06-09 | 哈尔滨工业大学 | Vision measurement, path planning and GNC integrated simulation system for space robot |
CN101733746A (en) * | 2009-12-22 | 2010-06-16 | 哈尔滨工业大学 | Autonomously identifying and capturing method of non-cooperative target of space robot |
-
2012
- 2012-11-30 CN CN201210520049.0A patent/CN103009389B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101726296A (en) * | 2009-12-22 | 2010-06-09 | 哈尔滨工业大学 | Vision measurement, path planning and GNC integrated simulation system for space robot |
CN101733746A (en) * | 2009-12-22 | 2010-06-16 | 哈尔滨工业大学 | Autonomously identifying and capturing method of non-cooperative target of space robot |
Non-Patent Citations (5)
Title |
---|
杨志: "《面向运动目标捕获的空间机器人轨迹规划与碰撞问题研究》", 30 June 2011, article "运动目标捕获的轨迹规划", pages: 31 * |
王悦: "冗余空间机械臂粗捕获段无碰撞轨迹规划算法", 《中国空间科学技术》, no. 3, 30 June 2012 (2012-06-30), pages 49 - 55 * |
贾庆轩: "基于A*算法的空间机械臂避障路径规划", 《机械工程学报》, vol. 46, no. 13, 31 July 2010 (2010-07-31), pages 109 - 115 * |
陆震: "《冗余自由度机器人原理及应用》", 1 January 2007, article "冗余自由度机器人避障的运动学规划", pages: 63 * |
黄献龙: "机器人避碰规划综述", 《航天控制》, no. 1, 30 March 2002 (2002-03-30), pages 30 - 40 * |
Cited By (69)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103568012A (en) * | 2013-10-24 | 2014-02-12 | 安徽埃夫特智能装备有限公司 | Method for planning biplanar swing arc track of arc welding robot |
CN104070525A (en) * | 2014-06-18 | 2014-10-01 | 大连大学 | Space manipulator continuous trajectory tracking method |
CN104070525B (en) * | 2014-06-18 | 2016-02-03 | 大连大学 | For the method for space manipulator continuous trajectory tracking |
CN104331547B (en) * | 2014-10-23 | 2017-05-10 | 北京控制工程研究所 | Space mechanical arm structure parameter optimization method based on operability |
CN104331547A (en) * | 2014-10-23 | 2015-02-04 | 北京控制工程研究所 | Space mechanical arm structure parameter optimization method based on operability |
US10513034B2 (en) | 2015-07-09 | 2019-12-24 | Siemens Aktiengesellschaft | Trajectory determination method for non-productive movements |
CN107850885A (en) * | 2015-07-09 | 2018-03-27 | 西门子公司 | For nonproductive time, the track of motion determines method |
CN107850885B (en) * | 2015-07-09 | 2020-11-10 | 西门子公司 | Trajectory determination method for non-productive time movements |
CN105382843A (en) * | 2015-11-30 | 2016-03-09 | 北京控制工程研究所 | Coordination control method for mechanical arm and operation platform in final stage of grabbing |
CN105437235A (en) * | 2016-01-25 | 2016-03-30 | 珠海格力电器股份有限公司 | Singular point region deceleration protection method and system and industrial robot |
CN106054876A (en) * | 2016-06-02 | 2016-10-26 | 西北工业大学 | Obstacle avoidance path optimal successive operation planning method for spatial multiplexing |
CN106054876B (en) * | 2016-06-02 | 2019-04-19 | 西北工业大学 | An optimal successive operation planning method for obstacle avoidance paths for spatial multitasking |
CN106055810A (en) * | 2016-06-07 | 2016-10-26 | 中国人民解放军国防科学技术大学 | Attitude and orbit arm integrated motion planning method used for rapidly capturing on orbit |
CN106166749A (en) * | 2016-06-29 | 2016-11-30 | 北京控制工程研究所 | The motion track planing method of multi-arm robot is moved in a kind of space |
CN109689309A (en) * | 2016-09-09 | 2019-04-26 | 杜尔系统股份公司 | Optimization method and corresponding application system for coating robot |
US11230008B2 (en) | 2016-09-09 | 2022-01-25 | Dürr Systems Ag | Optimisation method for a coating robot and corresponding coating system |
CN106469133A (en) * | 2016-09-12 | 2017-03-01 | 哈尔滨工程大学 | A kind of redundant degree of freedom mechanism position update method |
CN106469133B (en) * | 2016-09-12 | 2019-05-17 | 哈尔滨工程大学 | A kind of redundant degree of freedom mechanism position update method |
CN106272380A (en) * | 2016-09-30 | 2017-01-04 | 西北工业大学 | A kind of arrest the attitude stabilization method of mechanical arm assembly after high speed rotating target |
CN106313031A (en) * | 2016-10-11 | 2017-01-11 | 北京航空航天大学 | Space mechanical arm driven by control torque spinning tops |
CN106625666B (en) * | 2016-12-16 | 2019-03-01 | 广州视源电子科技股份有限公司 | Control method and device of redundant mechanical arm |
CN106625666A (en) * | 2016-12-16 | 2017-05-10 | 广州视源电子科技股份有限公司 | Control method and device of redundant mechanical arm |
CN106737671A (en) * | 2016-12-21 | 2017-05-31 | 西安科技大学 | The bilayer personification motion planning method of seven degrees of freedom copy man mechanical arm |
CN106625671A (en) * | 2016-12-27 | 2017-05-10 | 西北工业大学 | Optimal track planning method for space robot for capturing rolling target |
CN107102548B (en) * | 2017-05-12 | 2019-11-22 | 西北工业大学 | A secondary capture control strategy for spatially unstable non-cooperative targets |
CN107102548A (en) * | 2017-05-12 | 2017-08-29 | 西北工业大学 | A kind of the secondary of Spatial Instability noncooperative target arrests control strategy |
CN107234617B (en) * | 2017-07-10 | 2020-04-28 | 北京邮电大学 | An obstacle avoidance path planning method guided by an artificial potential field independent of obstacle avoidance tasks |
CN107234617A (en) * | 2017-07-10 | 2017-10-10 | 北京邮电大学 | A kind of obstacle-avoiding route planning method of the unrelated Artificial Potential Field guiding of avoidance task |
CN107443373A (en) * | 2017-07-20 | 2017-12-08 | 广东工业大学 | Collision prevention method for planning track and device based on articulated arm robots |
CN107696033A (en) * | 2017-09-18 | 2018-02-16 | 北京控制工程研究所 | A kind of space manipulator track Rolling Planning method of view-based access control model measurement |
CN109760040A (en) * | 2017-11-09 | 2019-05-17 | 欧姆龙株式会社 | Method of determining interference, determining interference system and storage medium |
CN109760040B (en) * | 2017-11-09 | 2021-12-28 | 欧姆龙株式会社 | Interference determination method, interference determination system, and storage medium |
CN108237534A (en) * | 2018-01-04 | 2018-07-03 | 清华大学深圳研究生院 | A kind of space collision free trajectory method of continuous type mechanical arm |
CN108326853B (en) * | 2018-01-17 | 2021-08-24 | 广东工业大学 | A grinding robot system |
CN108326853A (en) * | 2018-01-17 | 2018-07-27 | 广东工业大学 | A kind of milling robot system |
CN108621162A (en) * | 2018-05-09 | 2018-10-09 | 广西科技大学 | A kind of manipulator motion planning method |
CN108621167A (en) * | 2018-07-23 | 2018-10-09 | 中南大学 | A kind of visual servo decoupling control method based on profile side and the interior feature that takes all of |
CN108919649A (en) * | 2018-07-26 | 2018-11-30 | 西北工业大学 | It is a kind of to arrest optimal path design method for what fault satellites external envelope was arrested |
CN108919649B (en) * | 2018-07-26 | 2021-01-08 | 西北工业大学 | Design method of capture optimal path aiming at capture of fault satellite outer envelope |
CN109246353B (en) * | 2018-09-07 | 2020-02-18 | 百度在线网络技术(北京)有限公司 | Fishing method |
CN109246353A (en) * | 2018-09-07 | 2019-01-18 | 百度在线网络技术(北京)有限公司 | Catching method |
CN109159151B (en) * | 2018-10-23 | 2021-12-10 | 北京无线电测量研究所 | Mechanical arm space trajectory tracking dynamic compensation method and system |
CN109159151A (en) * | 2018-10-23 | 2019-01-08 | 北京无线电测量研究所 | A kind of mechanical arm space tracking tracking dynamic compensation method and system |
CN109986554A (en) * | 2019-01-21 | 2019-07-09 | 中国船舶重工集团公司第七一六研究所 | A kind of geometry method for optimally controlling of industrial robot path planning |
CN110014427A (en) * | 2019-03-26 | 2019-07-16 | 华侨大学 | A high-precision motion planning method for redundant manipulators based on pseudo-inverse |
CN110014427B (en) * | 2019-03-26 | 2021-11-02 | 华侨大学 | A high-precision motion planning method for redundant manipulators based on pseudo-inverse |
CN109933008A (en) * | 2019-03-28 | 2019-06-25 | 佛山智能装备技术研究院 | A kind of double interpolating methods and device of non real-time system and robot controller |
CN109933008B (en) * | 2019-03-28 | 2021-11-09 | 佛山智能装备技术研究院 | Double-interpolation method and device for non-real-time system and robot controller |
CN110340890A (en) * | 2019-06-27 | 2019-10-18 | 北京控制工程研究所 | A Global Collision-Free Trajectory Planning System for Space Manipulator |
CN110371325A (en) * | 2019-07-02 | 2019-10-25 | 西北工业大学 | A kind of adaptive envelope of inert satellite based on super redundant mechanical arm arrests method |
CN111230881A (en) * | 2020-02-24 | 2020-06-05 | 华南理工大学 | A space trajectory optimization method for a six-degree-of-freedom manipulator |
CN111230881B (en) * | 2020-02-24 | 2021-05-14 | 华南理工大学 | A space trajectory optimization method for a six-degree-of-freedom manipulator |
CN111367314B (en) * | 2020-03-09 | 2021-07-27 | 西北工业大学 | A collaborative capture method for space non-cooperative targets based on multi-spacecraft formation |
CN111347678A (en) * | 2020-03-09 | 2020-06-30 | 西南交通大学 | Multi-joint industrial robot 3D printing post-processing and path optimization method |
CN111367314A (en) * | 2020-03-09 | 2020-07-03 | 西北工业大学 | A collaborative capture method for space non-cooperative targets based on multi-spacecraft formation |
CN112720498A (en) * | 2020-12-30 | 2021-04-30 | 深兰人工智能芯片研究院(江苏)有限公司 | Control method and device for manipulator, pickup device and storage medium |
CN112828890A (en) * | 2021-01-04 | 2021-05-25 | 武汉晴川学院 | Mechanical arm track planning method and device, electronic equipment and storage medium |
CN112828890B (en) * | 2021-01-04 | 2022-08-02 | 武汉晴川学院 | Mechanical arm track planning method and device, electronic equipment and storage medium |
CN113104240A (en) * | 2021-02-24 | 2021-07-13 | 北京空间飞行器总体设计部 | Device and method suitable for on-orbit article transfer of spacecraft |
CN114326725B (en) * | 2021-12-23 | 2023-10-24 | 武汉理工大学 | Man-machine interaction-oriented intelligent ship collision prevention method and system |
CN114326725A (en) * | 2021-12-23 | 2022-04-12 | 武汉理工大学 | Human-computer interaction-oriented ship intelligent collision avoidance method and system |
CN114932549A (en) * | 2022-05-15 | 2022-08-23 | 西北工业大学 | Motion Planning Method and Device for Spatially Redundant Manipulator |
CN114932549B (en) * | 2022-05-15 | 2024-05-31 | 西北工业大学 | Motion planning method and device for spatial redundant manipulator |
CN114955020A (en) * | 2022-06-08 | 2022-08-30 | 南京理工大学 | A method and system for safe capture of on-orbit targets based on a heterogeneous multi-flexible-arm space robot |
WO2023246576A1 (en) * | 2022-06-22 | 2023-12-28 | 瑞龙诺赋(上海)医疗科技有限公司 | Robotic arm adjustment method, apparatus, electronic device and storage medium |
CN115338865A (en) * | 2022-08-18 | 2022-11-15 | 哈尔滨工业大学(深圳) | Grabbing effect measuring method for space non-cooperative target enveloping type grabbing |
CN116494230A (en) * | 2023-04-18 | 2023-07-28 | 浙江大学 | Mechanical arm track planning method and device for grabbing moving objects on conveyor belt |
CN118348902A (en) * | 2024-06-18 | 2024-07-16 | 中国科学院空天信息创新研究院 | Space robot on-orbit non-cooperative target capture control method, system and medium |
CN118348902B (en) * | 2024-06-18 | 2024-08-16 | 中国科学院空天信息创新研究院 | Method, system and medium for controlling on-orbit non-cooperative target capture of space robot |
Also Published As
Publication number | Publication date |
---|---|
CN103009389B (en) | 2015-07-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103009389B (en) | Track planning method of redundant space mechanical arm for on-track catching | |
CN110125936B (en) | Ground experiment verification system of space robot | |
CN101733749B (en) | Multidomain uniform modeling and emulation system of space robot | |
CN106625671B (en) | An optimal trajectory planning method for space robots to capture rolling targets | |
CN108381553B (en) | Relative navigation close-range tracking method and system for space non-cooperative target capture | |
Wenfu et al. | Area-oriented coordinated trajectory planning of dual-arm space robot for capturing a tumbling target | |
CN109048890A (en) | Coordination method for controlling trajectory, system, equipment and storage medium based on robot | |
CN109606753A (en) | A kind of control method of Dual-arm space robot collaboration capture target | |
CN107505846B (en) | A kind of anti-interference attitude harmony verification device of Space Manipulator System and control method | |
CN106864776B (en) | A kind of method and system of the capture target satellite based on butt joint ring | |
CN109426147B (en) | Adaptive gain adjustment control method for combined spacecraft after satellite acquisition | |
JP2566665B2 (en) | Robot controller in inertial system | |
Xu et al. | Modeling and planning of a space robot for capturing tumbling target by approaching the dynamic closest point | |
Han et al. | Capture and detumble of a non-cooperative target without a specific gripping point by a dual-arm space robot | |
CN115284293A (en) | Multimodal path planning system and method for space station manipulator adapted to complex tasks | |
Suarez et al. | Flexible link long reach manipulator with lightweight dual arm: Soft-collision detection, reaction, and obstacle localization | |
Ma et al. | Hand-eye servo and impedance control for manipulator arm to capture target satellite safely | |
Zhao et al. | Minimum base disturbance control of free-floating space robot during visual servoing pre-capturing process | |
Liu et al. | Trajectory planning and coordination control of a space robot for detumbling a flexible tumbling target in post-capture phase | |
CN107696033A (en) | A kind of space manipulator track Rolling Planning method of view-based access control model measurement | |
Xie et al. | Trajectory planning and base attitude restoration of dual-arm free-floating space robot by enhanced bidirectional approach | |
Rybus et al. | Application of bidirectional rapidly exploring random trees (BiRRT) algorithm for collision-free trajectory planning of free-floating space manipulator | |
Shi et al. | Modeling and simulation of space robot visual servoing for autonomous target capturing | |
Gu et al. | Dexterous obstacle-avoidance motion control of Rope Driven Snake Manipulator based on the bionic path following | |
Ding et al. | Chat-pm: A class of composite hybrid aerial/terrestrial precise manipulator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |