CN102999911B - Three-dimensional image quality objective evaluation method based on energy diagrams - Google Patents
Three-dimensional image quality objective evaluation method based on energy diagrams Download PDFInfo
- Publication number
- CN102999911B CN102999911B CN201210493072.5A CN201210493072A CN102999911B CN 102999911 B CN102999911 B CN 102999911B CN 201210493072 A CN201210493072 A CN 201210493072A CN 102999911 B CN102999911 B CN 102999911B
- Authority
- CN
- China
- Prior art keywords
- mrow
- dis
- org
- pixel
- directions
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000011156 evaluation Methods 0.000 title claims abstract description 93
- 238000010586 diagram Methods 0.000 title claims description 22
- 230000000007 visual effect Effects 0.000 claims abstract description 45
- 230000008859 change Effects 0.000 claims abstract description 20
- 230000008447 perception Effects 0.000 claims abstract description 9
- 230000004927 fusion Effects 0.000 claims abstract description 5
- 230000000873 masking effect Effects 0.000 claims description 39
- 230000004044 response Effects 0.000 claims description 38
- 238000000034 method Methods 0.000 claims description 36
- 238000001914 filtration Methods 0.000 claims description 18
- 230000008569 process Effects 0.000 claims description 14
- 230000006870 function Effects 0.000 claims description 10
- 238000012800 visualization Methods 0.000 claims description 5
- 238000005286 illumination Methods 0.000 claims description 4
- 238000012545 processing Methods 0.000 claims description 3
- 238000005259 measurement Methods 0.000 abstract description 3
- 230000016776 visual perception Effects 0.000 abstract 1
- 238000013441 quality evaluation Methods 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 4
- 241001182632 Akko Species 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000013210 evaluation model Methods 0.000 description 2
- YYJNOYZRYGDPNH-MFKUBSTISA-N fenpyroximate Chemical compound C=1C=C(C(=O)OC(C)(C)C)C=CC=1CO/N=C/C=1C(C)=NN(C)C=1OC1=CC=CC=C1 YYJNOYZRYGDPNH-MFKUBSTISA-N 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
Landscapes
- Image Analysis (AREA)
- Image Processing (AREA)
Abstract
本发明公开了一种基于能量图的立体图像质量客观评价方法,其首先通过分别计算原始的无失真的立体图像在不同尺度和方向的能量图和待评价的失真的立体图像在不同尺度和方向的能量图,得到待评价的失真的立体图像中的每个像素点的客观评价度量值,然后根据能量图和双目最小可察觉变化图像,对待评价的失真的立体图像的每个像素点的客观评价度量值进行融合,得到待评价的失真的立体图像的图像质量客观评价预测值,优点在于获得的不同尺度和方向的能量图能够较好地反映人类视觉系统的视觉感知特性,并采用能量图和最小可察觉变化图像进行融合,能有效地提高客观评价结果与主观感知的相关性。
The invention discloses an objective evaluation method for the quality of stereoscopic images based on energy maps. Firstly, the energy maps of the original undistorted stereoscopic images at different scales and directions and the distorted stereoscopic images to be evaluated at different scales and directions are respectively calculated. The energy map of the distorted stereo image to be evaluated is obtained to obtain the objective evaluation metric value of each pixel in the distorted stereo image, and then according to the energy map and the binocular minimum perceptible change image, the value of each pixel of the distorted stereo image to be evaluated The objective evaluation measurement value is fused to obtain the image quality objective evaluation prediction value of the distorted stereo image to be evaluated. The advantage is that the obtained energy maps of different scales and directions can better reflect the visual perception characteristics of the human visual system, and use energy The fusion of images with minimal perceptible change can effectively improve the correlation between objective evaluation results and subjective perception.
Description
技术领域technical field
本发明涉及一种图像质量评价方法,尤其是涉及一种基于能量图的立体图像质量客观评价方法。The invention relates to an image quality evaluation method, in particular to an energy map-based objective evaluation method for stereoscopic image quality.
背景技术Background technique
随着图像编码技术和立体显示技术的迅速发展,立体图像技术受到了越来越广泛的关注与应用,已成为当前的一个研究热点。立体图像技术利用人眼的双目视差原理,双目各自独立地接收来自同一场景的左右视点图像,通过大脑融合形成双目视差,从而欣赏到具有深度感和逼真感的立体图像。由于受到采集系统、存储压缩及传输设备的影响,立体图像会不可避免地引入一系列的失真,而与单通道图像相比,立体图像需要同时保证两个通道的图像质量,因此对立体图像进行质量评价具有非常重要的意义。然而,目前缺乏有效的客观评价方法对立体图像质量进行评价。因此,建立有效的立体图像质量客观评价模型具有十分重要的意义。With the rapid development of image coding technology and stereoscopic display technology, stereoscopic image technology has received more and more attention and applications, and has become a current research hotspot. Stereoscopic image technology utilizes the binocular parallax principle of the human eye. Both eyes independently receive left and right viewpoint images from the same scene, and form binocular parallax through brain fusion, so as to enjoy a stereoscopic image with a sense of depth and realism. Due to the influence of acquisition system, storage compression and transmission equipment, stereoscopic images will inevitably introduce a series of distortions. Compared with single-channel images, stereoscopic images need to ensure the image quality of two channels at the same time. Quality evaluation is of great significance. However, there is currently no effective objective evaluation method to evaluate the stereoscopic image quality. Therefore, it is of great significance to establish an effective objective evaluation model for stereoscopic image quality.
目前,通常是直接将平面图像质量评价方法直接应用于评价立体图像质量,然而,对立体图像的左右视点图像进行融合产生立体感的过程并不是简单的左右视点图像叠加的过程,还难以用简单的数学方法来表示,因此,如何从立体图像中提取出有效的特征信息来对双目立体融合进行模拟,如何根据人眼的视觉掩蔽特性和人眼的双目能量强度的响应特性对客观评价结果进行调制,使得客观评价结果更加感觉符合人类视觉系统,都是在对立体图像进行客观质量评价过程中需要研究解决的问题。At present, the planar image quality evaluation method is usually directly applied to the evaluation of the stereoscopic image quality. However, the process of fusing the left and right viewpoint images of the stereoscopic image to produce a stereoscopic effect is not a simple process of superimposing the left and right viewpoint images, and it is difficult to use a simple method. Therefore, how to extract effective feature information from stereo images to simulate binocular stereo fusion, and how to objectively evaluate binocular stereo fusion based on the visual masking characteristics of the human eye and the response characteristics of the binocular energy intensity of the human eye Modulating the results to make the objective evaluation results more in line with the human visual system is a problem that needs to be studied and solved in the process of objective quality evaluation of stereoscopic images.
发明内容Contents of the invention
本发明所要解决的技术问题是提供一种基于能量图的立体图像质量客观评价方法,其能够有效提高客观评价结果与主观感知的相关性。The technical problem to be solved by the present invention is to provide an objective evaluation method for stereoscopic image quality based on an energy map, which can effectively improve the correlation between objective evaluation results and subjective perception.
本发明解决上述技术问题所采用的技术方案为:一种基于能量图的立体图像质量客观评价方法,其特征在于它的处理过程为:首先,根据原始的无失真的立体图像的左视点图像和右视点图像中的每个像素点在不同尺度和方向的偶对称频率响应和奇对称频率响应,及原始的无失真的立体图像的左视点图像与右视点图像之间的视差图像中的每个像素点的像素值,获取原始的无失真的立体图像在不同尺度和方向的能量图,并根据待评价的失真的立体图像的左视点图像和右视点图像中的每个像素点在不同尺度和方向的偶对称频率响应和奇对称频率响应,及原始的无失真的立体图像的左视点图像与右视点图像之间的视差图像中的每个像素点的像素值,获取待评价的失真的立体图像在不同尺度和方向的能量图;然后根据两个能量图获取待评价的失真的立体图像中的每个像素点的客观评价度量值;再根据待评价的失真的立体图像中的每个像素点的客观评价度量值和待评价的失真的立体图像的左视点图像的双目最小可察觉变化图像,获取待评价的失真的立体图像的用于反映双目视觉掩蔽效应的客观评价度量值,并根据待评价的失真的立体图像中的每个像素点的客观评价度量值和待评价的失真的立体图像在不同尺度和方向的能量图,获取待评价的失真的立体图像的用于反映双目能量强度的客观评价度量值;最后融合待评价的失真的立体图像的用于反映双目视觉掩蔽效应的客观评价度量值和用于反映双目能量强度的客观评价度量值,得到待评价的失真的立体图像的图像质量客观评价预测值。The technical solution adopted by the present invention to solve the above-mentioned technical problems is: an objective evaluation method of stereoscopic image quality based on energy map, which is characterized in that its processing process is as follows: first, according to the left viewpoint image and the original undistorted stereoscopic image The even symmetric frequency response and odd symmetric frequency response of each pixel in the right viewpoint image at different scales and directions, and each of the disparity images between the left viewpoint image and the right viewpoint image of the original undistorted stereo image The pixel value of the pixel, to obtain the energy map of the original undistorted stereo image at different scales and directions, and according to each pixel in the left view point image and right view point image of the distorted stereo image to be evaluated at different scales and The even symmetric frequency response and the odd symmetric frequency response of the direction, and the pixel value of each pixel in the disparity image between the left viewpoint image and the right viewpoint image of the original undistorted stereoscopic image, obtain the distorted stereoscopic image to be evaluated The energy map of the image at different scales and directions; then obtain the objective evaluation metric value of each pixel in the distorted stereo image to be evaluated according to the two energy maps; and then according to each pixel in the distorted stereo image to be evaluated The objective evaluation metric value of the point and the binocular minimum perceptible change image of the left viewpoint image of the distorted stereo image to be evaluated are obtained, and the objective evaluation metric value for reflecting the binocular visual masking effect of the distorted stereo image to be evaluated is obtained, And according to the objective evaluation metric value of each pixel in the distorted stereo image to be evaluated and the energy maps of the distorted stereo image to be evaluated at different scales and directions, obtain the distorted stereo image to be evaluated for reflecting the dual The objective evaluation metric value of the energy intensity of the eyes; the objective evaluation metric value used to reflect the binocular visual masking effect of the distorted stereo image to be evaluated and the objective evaluation metric value used to reflect the binocular energy intensity are finally obtained to obtain the Image quality objective evaluation predictors of distorted stereoscopic images.
它具体包括以下步骤:It specifically includes the following steps:
①令Sorg为原始的无失真的立体图像,令Sdis为待评价的失真的立体图像,将Sorg的左视点图像记为{Lorg(x,y)},将Sorg的右视点图像记为{Rorg(x,y)},将Sdis的左视点图像记为{Ldis(x,y)},将Sdis的右视点图像记为{Rdis(x,y)},其中,(x,y)表示左视点图像和右视点图像中的像素点的坐标位置,1≤x≤W,1≤y≤H,W表示左视点图像和右视点图像的宽度,H表示左视点图像和右视点图像的高度,Lorg(x,y)表示{Lorg(x,y)}中坐标位置为(x,y)的像素点的像素值,Rorg(x,y)表示{Rorg(x,y)}中坐标位置为(x,y)的像素点的像素值,Ldis(x,y)表示{Ldis(x,y)}中坐标位置为(x,y)的像素点的像素值,Rdis(x,y)表示{Rdis(x,y)}中坐标位置为(x,y)的像素点的像素值;①Let S org be the original undistorted stereo image, let S dis be the distorted stereo image to be evaluated, record the left viewpoint image of S org as {L org (x,y)}, and let the right viewpoint image of S org The image is recorded as {R org (x,y)}, the left view image of S dis is recorded as {L dis (x,y)}, and the right view image of S dis is recorded as {R dis (x,y)} , where (x, y) represents the coordinate position of the pixel in the left-viewpoint image and the right-viewpoint image, 1≤x≤W, 1≤y≤H, W represents the width of the left-viewpoint image and the right-viewpoint image, and H represents The height of the left view image and the right view image, L org (x, y) represents the pixel value of the pixel whose coordinate position is (x, y) in {L org (x, y)}, R org (x, y) Indicates the pixel value of the pixel whose coordinate position is (x, y) in {R org (x, y)}, and L dis (x, y) indicates that the coordinate position in {L dis ( x, y)} is (x, The pixel value of the pixel point of y), R dis (x, y) represents the pixel value of the pixel point whose coordinate position is (x, y) in {R dis (x, y)};
②利用人类立体视觉感知对背景光照和对比度的视觉掩蔽效应,提取出{Ldis(x,y)}的双目最小可察觉变化图像,记为其中,表示{Ldis(x,y)}的双目最小可察觉变化图像中坐标位置为(x,y)的像素点的像素值;②Using the visual masking effect of human stereo vision perception on background illumination and contrast, extract the binocular minimum perceivable change image of {L dis (x,y)}, denoted as in, Represents the binocular minimum perceptible change image of {L dis (x,y)} The pixel value of the pixel point whose middle coordinate position is (x, y);
③计算{Lorg(x,y)}、{Rorg(x,y)}、{Ldis(x,y)}、{Rdis(x,y)}中的每个像素点在不同尺度和方向的偶对称频率响应和奇对称频率响应;然后获取{Lorg(x,y)}、{Rorg(x,y)}、{Ldis(x,y)}、{Rdis(x,y)}中的每个像素点在不同尺度和方向的振幅和相位;再根据{Lorg(x,y)}和{Rorg(x,y)}中的每个像素点在不同尺度和方向的振幅和相位及{Lorg(x,y)}与{Rorg(x,y)}之间的视差图像中的每个像素点的像素值,计算Sorg在不同尺度和方向的能量图,记为并根据{Ldis(x,y)}和{Rdis(x,y)}中的每个像素点在不同尺度和方向的振幅和相位及{Lorg(x,y)}与{Rorg(x,y)}之间的视差图像中的每个像素点的像素值,计算Sdis在不同尺度和方向的能量图,记为其中,表示中坐标位置为(x,y)的像素点在不同尺度和方向的像素值,表示中坐标位置为(x,y)的像素点在不同尺度和方向的像素值,α表示滤波所采用的滤波器的尺度因子,1≤α≤4,θ表示滤波所采用的滤波器的方向因子,1≤θ≤4;③ Calculate each pixel in {L org (x,y)}, {R org (x,y)}, {L dis (x,y)}, {R dis (x,y)} at different scales and odd symmetric frequency responses in the and directions; then obtain {L org (x,y)}, {R org (x,y)}, {L dis (x,y)}, {R dis (x ,y)} in the amplitude and phase of each pixel in different scales and directions; then according to each pixel in {L org (x,y)} and {R org (x,y)} in different scales and the amplitude and phase of the direction and the pixel value of each pixel in the disparity image between {L org (x,y)} and {R org (x,y)}, calculate the S org in different scales and directions energy diagram, denoted as And according to the amplitude and phase of each pixel in {L dis (x,y)} and {R dis (x,y)} at different scales and directions and {L org (x,y)} and {R org The pixel value of each pixel in the parallax image between (x,y)}, calculate the energy map of S dis in different scales and directions, denoted as in, express The pixel values of the pixel at the middle coordinate position (x, y) in different scales and directions, express The pixel value of the pixel at the middle coordinate position (x, y) in different scales and directions, α represents the scale factor of the filter used in filtering, 1≤α≤4, θ represents the direction factor of the filter used in filtering , 1≤θ≤4;
④根据Sorg在不同尺度和方向的能量图及Sdis在不同尺度和方向的能量图计算Sdis中的每个像素点的客观评价度量值,将Sdis中坐标位置为(x,y)的像素点的客观评价度量值记为Q(x,y),
⑤根据Sdis中的每个像素点的客观评价度量值和{Ldis(x,y)}的双目最小可察觉变化图像利用人类视觉系统的双目视觉掩蔽效应,计算Sdis的用于反映双目视觉掩蔽效应的客观评价度量值,记为Qbm,
⑥根据Sdis中的每个像素点的客观评价度量值和Sdis在不同尺度和方向的能量图利用人类视觉系统对双目能量强度的响应特性,计算Sdis的用于反映双目能量强度的客观评价度量值,记为Qbe,
⑦对Sdis的用于反映双目视觉掩蔽效应的客观评价度量值Qbm和Sdis的用于反映双目能量强度的客观评价度量值Qbe进行融合,得到Sdis的图像质量客观评价预测值,记为Qfin,Qfin=(Qbm)γ(Qbe)β,其中,γ和β为权重参数。⑦Fuse the objective evaluation metric value Q bm of S dis to reflect the binocular visual masking effect and the objective evaluation metric value Q be of S dis to reflect binocular energy intensity to obtain the objective evaluation and prediction of image quality of S dis Value, denoted as Q fin , Q fin =(Q bm ) γ (Q be ) β , where γ and β are weight parameters.
所述的步骤②的具体过程为:The concrete process of described step 2. is:
②-1、计算{Ldis(x,y)}的亮度掩蔽效应的可视化阈值集合,记为{Tl(x,y)},其中,Tl(x,y)表示{Ldis(x,y)}中坐标位置为(x,y)的像素点的亮度掩蔽效应的可视化阈值,bgl(x,y)表示{Ldis(x,y)}中以坐标位置为(x,y)的像素点为中心的N×N邻域窗口内的所有像素点的亮度平均值,N≥1;②-1. Calculate the visual threshold set of the brightness masking effect of {L dis (x,y)}, denoted as {T l (x,y)}, Among them, T l (x, y) represents the visualization threshold of the brightness masking effect of the pixel whose coordinate position is (x, y) in {L dis (x, y)}, and bg l (x, y) represents {L dis In (x, y)}, the brightness average value of all pixels in the N×N neighborhood window centered on the pixel point whose coordinate position is (x, y), N≥1;
②-2、计算{Ldis(x,y)}的对比度掩蔽效应的可视化阈值集合,记为{Tc(x,y)},Tc(x,y)=K(bgl(x,y))+ehl(x,y),其中,Tc(x,y)表示{Ldis(x,y)}中坐标位置为(x,y)的像素点的对比度掩蔽效应的可视化阈值,ehl(x,y)表示对{Ldis(x,y)}中坐标位置为(x,y)的像素点分别进行水平方向和垂直方向边缘滤波后得到的平均梯度值,K(bgl(x,y))=-10-6×(0.7×bgl(x,y)2+32×bgl(x,y))+0.07;②-2. Calculate the visual threshold set of the contrast masking effect of {L dis (x,y)}, denoted as {T c (x,y)}, T c (x,y)=K(bg l (x, y))+eh l (x, y), where T c (x, y) represents the visual threshold of the contrast masking effect of the pixel whose coordinate position is (x, y) in {L dis (x, y)} , eh l (x, y) represents the average gradient value obtained by performing edge filtering in the horizontal direction and vertical direction on the pixel at the coordinate position (x, y) in {L dis (x, y)}, K(bg l (x,y))=-10 -6 ×(0.7×bg l (x,y) 2 +32×bg l (x,y))+0.07;
②-3、对{Ldis(x,y)}的亮度掩蔽效应的可视化阈值集合{Tl(x,y)}和对比度掩蔽效应的可视化阈值集合{Tc(x,y)}进行融合,得到{Ldis(x,y)}的双目最小可察觉变化图像,记为将中坐标位置为(x,y)的像素点的像素值记为
所述的步骤②-1中取N=5。In the step ②-1, N=5.
所述的步骤③的具体过程为:The concrete process of described step 3. is:
③-1、采用log-Garbor滤波器对{Lorg(x,y)}进行滤波处理,得到{Lorg(x,y)}中的每个像素点在不同尺度和方向的偶对称频率响应和奇对称频率响应,将{Lorg(x,y)}中坐标位置为(x,y)的像素点在不同尺度和方向的偶对称频率响应记为将{Lorg(x,y)}中坐标位置为(x,y)的像素点在不同尺度和方向的奇对称频率响应记为其中,α表示滤波所采用的滤波器的尺度因子,1≤α≤4,θ表示滤波所采用的滤波器的方向因子,1≤θ≤4;③-1. Use the log-Garbor filter to filter {L org (x, y)} to obtain the even symmetric frequency response of each pixel in {L org (x, y)} at different scales and directions and odd symmetric frequency response, the even symmetric frequency response of the pixel at coordinate position (x, y) in {L org (x, y)} in different scales and directions is recorded as The odd symmetric frequency response of the pixel at the coordinate position (x, y) in {L org (x, y)} in different scales and directions is recorded as Among them, α represents the scale factor of the filter used in filtering, 1≤α≤4, θ represents the direction factor of the filter used in filtering, 1≤θ≤4;
③-2、计算{Lorg(x,y)}中的每个像素点在不同尺度和方向的振幅和相位,将{Lorg(x,y)}中坐标位置为(x,y)的像素点在不同尺度和方向的振幅记为 将{Lorg(x,y)}中坐标位置为(x,y)的像素点在不同尺度和方向的相位记为
③-3、按照步骤③-1至步骤③-2获取{Lorg(x,y)}中的每个像素点在不同尺度和方向的振幅和相位的操作过程,以相同方式获取{Rorg(x,y)}、{Ldis(x,y)}、{Rdis(x,y)}中的每个像素点在不同尺度和方向的振幅和相位,将{Rorg(x,y)}中坐标位置为(x,y)的像素点在不同尺度和方向的振幅记为将{Rorg(x,y)}中坐标位置为(x,y)的像素点在不同尺度和方向的相位记为将{Ldis(x,y)}中坐标位置为(x,y)的像素点在不同尺度和方向的振幅记为将{Ldis(x,y)}中坐标位置为(x,y)的像素点在不同尺度和方向的相位记为将{Rdis(x,y)}中坐标位置为(x,y)的像素点在不同尺度和方向的振幅记为将{Rdis(x,y)}中坐标位置为(x,y)的像素点在不同尺度和方向的相位记为 ③-3. Follow steps ③-1 to ③-2 to obtain the amplitude and phase of each pixel in {L org (x,y)} in different scales and directions, and obtain {R org in the same way (x,y)}, {L dis (x,y)}, {R dis (x,y)} the amplitude and phase of each pixel in different scales and directions, will be {R org (x,y )} in the coordinate position (x, y) of the pixel at different scales and directions is recorded as The phases of the pixel at the coordinate position (x, y) in {R org (x, y)} in different scales and directions are recorded as The amplitudes of the pixels at the coordinate position (x, y) in {L dis (x, y)} in different scales and directions are recorded as The phases of the pixel at the coordinate position (x, y) in {L dis (x, y)} in different scales and directions are recorded as The amplitudes of the pixels at the coordinate position (x, y) in {R dis (x, y)} in different scales and directions are recorded as The phases of the pixel at the coordinate position (x, y) in {R dis (x, y)} in different scales and directions are recorded as
③-4、采用块匹配法计算{Lorg(x,y)}与{Rorg(x,y)}之间的视差图像,记为其中,表示中坐标位置为(x,y)的像素点的像素值;③-4. Calculate the parallax image between {L org (x, y)} and {R org (x, y)} by block matching method, denoted as in, express The pixel value of the pixel point whose middle coordinate position is (x, y);
③-5、根据{Lorg(x,y)}和{Rorg(x,y)}中的每个像素点在不同尺度和方向的振幅和相位及{Lorg(x,y)}与{Rorg(x,y)}之间的视差图像中的每个像素点的像素值,计算Sorg在不同尺度和方向的能量图,记为将中坐标位置为(x,y)的像素点在不同尺度和方向的像素值记为
③-6、根据{Ldis(x,y)}和{Rdis(x,y)}中的每个像素点在不同尺度和方向的振幅和相位及{Lorg(x,y)}与{Rorg(x,y)}之间的视差图像中的每个像素点的像素值,计算Sdis在不同尺度和方向的能量图,记为将中坐标位置为(x,y)的像素点在不同尺度和方向的像素值记为
所述的步骤④中取T1为16。 T1 is 16 in the described step ④.
所述的步骤⑦中取γ=0.7755,β=0.0505。In the step ⑦, γ=0.7755 and β=0.0505 are taken.
与现有技术相比,本发明的优点在于:Compared with the prior art, the present invention has the advantages of:
1)本发明方法通过分别计算原始的无失真的立体图像在不同尺度和方向的能量图和待评价的失真的立体图像在不同尺度和方向的能量图,得到待评价的失真的立体图像中的每个像素点的客观评价度量值,使得评价结果更加感觉符合人类视觉系统。1) The method of the present invention calculates the energy maps of the original undistorted stereo image at different scales and directions and the energy maps of the distorted stereo image to be evaluated at different scales and directions, and obtains the distorted stereo image to be evaluated. The objective evaluation metric value of each pixel makes the evaluation result feel more in line with the human visual system.
2)本发明方法根据人眼的立体视觉特性得到双目最小可察觉变化图像,对待评价的失真的立体图像中的每个像素点的客观评价度量值进行融合,使得评价结果能够反映双目视觉掩蔽效应,从而有效地提高了客观评价结果与主观感知的相关性。2) The method of the present invention obtains binocular minimum perceptible change images according to the stereoscopic vision characteristics of human eyes, and fuses the objective evaluation value of each pixel in the distorted stereoscopic image to be evaluated, so that the evaluation results can reflect binocular vision Masking effect, thus effectively improving the correlation between objective evaluation results and subjective perception.
3)本发明方法根据不同尺度和方向的能量图,对待评价的失真的立体图像中的每个像素点的客观评价度量值进行融合,使得评价结果能够反映人类视觉系统对双目能量强度的响应特性,从而有效地提高了客观评价结果与主观感知的相关性。3) According to the energy maps of different scales and directions, the method of the present invention fuses the objective evaluation measurement value of each pixel in the distorted stereo image to be evaluated, so that the evaluation result can reflect the response of the human visual system to the binocular energy intensity characteristics, thus effectively improving the correlation between objective evaluation results and subjective perception.
附图说明Description of drawings
图1为本发明方法的总体实现框图;Fig. 1 is the overall realization block diagram of the inventive method;
图2a为Akko(尺寸为640×480)立体图像的左视点图像;Figure 2a is the left viewpoint image of the Akko (size 640×480) stereoscopic image;
图2b为Akko(尺寸为640×480)立体图像的右视点图像;Figure 2b is the right view point image of Akko (size 640×480) stereoscopic image;
图3a为Altmoabit(尺寸为1024×768)立体图像的左视点图像;Figure 3a is the left viewpoint image of Altmoabit (size 1024×768) stereoscopic image;
图3b为Altmoabit(尺寸为1024×768)立体图像的右视点图像;Figure 3b is the right viewpoint image of the Altmoabit (size 1024×768) stereo image;
图4a为Balloons(尺寸为1024×768)立体图像的左视点图像;Figure 4a is the left viewpoint image of the stereoscopic image of Balloons (size 1024×768);
图4b为Balloons(尺寸为1024×768)立体图像的右视点图像;Figure 4b is the right view point image of the stereoscopic image of Balloons (size 1024×768);
图5a为Doorflower(尺寸为1024×768)立体图像的左视点图像;Figure 5a is the left viewpoint image of the stereoscopic image of Doorflower (size 1024×768);
图5b为Doorflower(尺寸为1024×768)立体图像的右视点图像;Figure 5b is the right view point image of the stereoscopic image of Doorflower (size 1024×768);
图6a为Kendo(尺寸为1024×768)立体图像的左视点图像;Figure 6a is the left viewpoint image of the Kendo (size 1024×768) stereoscopic image;
图6b为Kendo(尺寸为1024×768)立体图像的右视点图像;Figure 6b is the right view point image of the Kendo (size 1024×768) stereoscopic image;
图7a为LeaveLaptop(尺寸为1024×768)立体图像的左视点图像;Figure 7a is the left viewpoint image of the Stereoscopic image of LeaveLaptop (size 1024×768);
图7b为LeaveLaptop(尺寸为1024×768)立体图像的右视点图像;Figure 7b is the right view point image of the stereoscopic image of LeaveLaptop (size 1024×768);
图8a为Lovebierd1(尺寸为1024×768)立体图像的左视点图像;Figure 8a is the left viewpoint image of the stereoscopic image of Lovebierd1 (size 1024×768);
图8b为Lovebierd1(尺寸为1024×768)立体图像的右视点图像;Figure 8b is the right viewpoint image of the stereoscopic image of Lovebierd1 (size 1024×768);
图9a为Newspaper(尺寸为1024×768)立体图像的左视点图像;Figure 9a is the left viewpoint image of the stereoscopic image of Newspaper (size 1024×768);
图9b为Newspaper(尺寸为1024×768)立体图像的右视点图像;Figure 9b is the right view point image of the stereoscopic image of Newspaper (size 1024×768);
图10a为Puppy(尺寸为720×480)立体图像的左视点图像;Figure 10a is the left viewpoint image of the Puppy (size 720×480) stereoscopic image;
图10b为Puppy(尺寸为720×480)立体图像的右视点图像;Figure 10b is the right view point image of the Puppy (size 720×480) stereoscopic image;
图11a为Soccer2(尺寸为720×480)立体图像的左视点图像;Figure 11a is the left view point image of the Soccer2 (size is 720×480) stereoscopic image;
图11b为Soccer2(尺寸为720×480)立体图像的右视点图像;Figure 11b is the right view point image of the Soccer2 (size is 720×480) stereoscopic image;
图12a为Horse(尺寸为720×480)立体图像的左视点图像;Figure 12a is the left viewpoint image of the stereo image of Horse (size 720×480);
图12b为Horse(尺寸为720×480)立体图像的右视点图像;Figure 12b is the right view point image of the stereoscopic image of Horse (size 720×480);
图13a为Xmas(尺寸为640×480)立体图像的左视点图像;Figure 13a is the left viewpoint image of the Xmas (640×480 in size) stereoscopic image;
图13b为Xmas(尺寸为640×480)立体图像的右视点图像;Fig. 13b is the right view point image of the Xmas (size is 640×480) stereoscopic image;
图14为每幅失真的立体图像的图像质量客观评价预测值与平均主观评分差值的散点图。FIG. 14 is a scatter diagram of the difference between the predicted image quality objective evaluation value and the average subjective evaluation value of each distorted stereoscopic image.
具体实施方式Detailed ways
以下结合附图实施例对本发明作进一步详细描述。The present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments.
本发明提出的一种基于能量图的立体图像质量客观评价方法,其总体实现框图如图1所示,它的处理过程为:首先,根据原始的无失真的立体图像的左视点图像和右视点图像中的每个像素点在不同尺度和方向的偶对称频率响应和奇对称频率响应,及原始的无失真的立体图像的左视点图像与右视点图像之间的视差图像中的每个像素点的像素值,获取原始的无失真的立体图像在不同尺度和方向的能量图,并根据待评价的失真的立体图像的左视点图像和右视点图像中的每个像素点在不同尺度和方向的偶对称频率响应和奇对称频率响应,及原始的无失真的立体图像的左视点图像与右视点图像之间的视差图像中的每个像素点的像素值,获取待评价的失真的立体图像在不同尺度和方向的能量图;然后根据两个能量图获取待评价的失真的立体图像中的每个像素点的客观评价度量值;再根据待评价的失真的立体图像中的每个像素点的客观评价度量值和待评价的失真的立体图像的左视点图像的双目最小可察觉变化图像,获取待评价的失真的立体图像的用于反映双目视觉掩蔽效应的客观评价度量值,并根据待评价的失真的立体图像中的每个像素点的客观评价度量值和待评价的失真的立体图像在不同尺度和方向的能量图,获取待评价的失真的立体图像的用于反映双目能量强度的客观评价度量值;最后融合待评价的失真的立体图像的用于反映双目视觉掩蔽效应的客观评价度量值和用于反映双目能量强度的客观评价度量值,得到待评价的失真的立体图像的图像质量客观评价预测值。它具体包括以下步骤:A kind of stereoscopic image quality objective evaluation method based on energy map proposed by the present invention, its overall realization block diagram is shown in Figure 1, and its processing process is: first, according to the left viewpoint image and the right viewpoint of the original undistorted stereoscopic image The even symmetric frequency response and odd symmetric frequency response of each pixel in the image at different scales and directions, and each pixel in the disparity image between the left view point image and the right view point image of the original undistorted stereoscopic image The pixel value of the original undistorted stereo image at different scales and directions is obtained, and according to the value of each pixel in the left view point image and right view point image of the distorted stereo image to be evaluated at different scales and directions The even symmetric frequency response and the odd symmetric frequency response, and the pixel value of each pixel in the disparity image between the left view point image and the right view point image of the original undistorted stereo image, obtain the distorted stereo image to be evaluated in Energy maps of different scales and directions; then obtain the objective evaluation metric value of each pixel in the distorted stereo image to be evaluated according to the two energy maps; and then obtain the objective evaluation metric value of each pixel in the distorted stereo image to be evaluated The objective evaluation metric value and the binocular minimum perceptible change image of the left viewpoint image of the distorted stereo image to be evaluated are obtained, and the objective evaluation metric value for reflecting the binocular visual masking effect of the distorted stereo image to be evaluated is obtained, and according to The objective evaluation metric value of each pixel in the distorted stereo image to be evaluated and the energy map of the distorted stereo image to be evaluated at different scales and directions, and the binocular energy of the distorted stereo image to be evaluated is obtained The objective evaluation metric value of the intensity; finally, the objective evaluation metric value used to reflect the binocular visual masking effect of the distorted stereo image to be evaluated and the objective evaluation metric value used to reflect the binocular energy intensity are fused to obtain the distortion to be evaluated Stereoscopic image quality objective evaluation predictor value. It specifically includes the following steps:
①令Sorg为原始的无失真的立体图像,令Sdis为待评价的失真的立体图像,将Sorg的左视点图像记为{Lorg(x,y)},将Sorg的右视点图像记为{Rorg(x,y)},将Sdis的左视点图像记为{Ldis(x,y)},将Sdis的右视点图像记为{Rdis(x,y)},其中,(x,y)表示左视点图像和右视点图像中的像素点的坐标位置,1≤x≤W,1≤y≤H,W表示左视点图像和右视点图像的宽度,H表示左视点图像和右视点图像的高度,Lorg(x,y)表示{Lorg(x,y)}中坐标位置为(x,y)的像素点的像素值,Rorg(x,y)表示{Rorg(x,y)}中坐标位置为(x,y)的像素点的像素值,Ldis(x,y)表示{Ldis(x,y)}中坐标位置为(x,y)的像素点的像素值,Rdis(x,y)表示{Rdis(x,y)}中坐标位置为(x,y)的像素点的像素值。①Let S org be the original undistorted stereo image, let S dis be the distorted stereo image to be evaluated, record the left viewpoint image of S org as {L org (x,y)}, and let the right viewpoint image of S org The image is recorded as {R org (x,y)}, the left view image of S dis is recorded as {L dis (x,y)}, and the right view image of S dis is recorded as {R dis (x,y)} , where (x, y) represents the coordinate position of the pixel in the left-viewpoint image and the right-viewpoint image, 1≤x≤W, 1≤y≤H, W represents the width of the left-viewpoint image and the right-viewpoint image, and H represents The height of the left view image and the right view image, L org (x, y) represents the pixel value of the pixel whose coordinate position is (x, y) in {L org (x, y)}, R org (x, y) Indicates the pixel value of the pixel whose coordinate position is (x, y) in {R org (x, y)}, and L dis (x, y) indicates that the coordinate position in {L dis (x, y)} is (x, y) y), and R dis (x, y) represents the pixel value of the pixel whose coordinate position is (x, y) in {R dis (x, y)}.
②人类视觉特性表明,人眼对图像中变化较小的属性或噪声是不可感知的,除非该属性或噪声的变化强度超过某一阈值,该阈值就是最小可察觉失真(Just noticeabledifference,JND)。然而人眼的视觉掩蔽效应是一种局部效应,其受背景照度、纹理复杂度等因素的影响,背景越亮,纹理越复杂,界限值就越高。因此本发明利用人类立体视觉感知对背景光照和对比度的视觉掩蔽效应,提取出{Ldis(x,y)}的双目最小可察觉变化图像,记为其中,表示{Ldis(x,y)}的双目最小可察觉变化图像中坐标位置为(x,y)的像素点的像素值。②The characteristics of human vision show that the human eye is imperceptible to the attribute or noise with small changes in the image, unless the change intensity of the attribute or noise exceeds a certain threshold, which is the minimum noticeable difference (Just noticeable difference, JND). However, the visual masking effect of the human eye is a local effect, which is affected by factors such as background illumination and texture complexity. The brighter the background, the more complex the texture, the higher the threshold value. Therefore, the present invention utilizes the visual masking effect of human stereo vision perception on background illumination and contrast to extract the binocular minimum perceptible change image of {L dis (x, y)}, denoted as in, Represents the binocular minimum perceptible change image of {L dis (x,y)} The pixel value of the pixel whose middle coordinate position is (x, y).
在此具体实施例中,步骤②的具体过程为:In this specific embodiment, the concrete process of step 2. is:
②-1、计算{Ldis(x,y)}的亮度掩蔽效应的可视化阈值集合,记为{Tl(x,y)},其中,Tl(x,y)表示{Ldis(x,y)}中坐标位置为(x,y)的像素点的亮度掩蔽效应的可视化阈值,bgl(x,y)表示{Ldis(x,y)}中以坐标位置为(x,y)的像素点为中心的N×N邻域窗口内的所有像素点的亮度平均值,N≥1,在本实施例中,取N=5。②-1. Calculate the visual threshold set of the brightness masking effect of {L dis (x,y)}, denoted as {T l (x,y)}, Among them, T l (x, y) represents the visualization threshold of the brightness masking effect of the pixel whose coordinate position is (x, y) in {L dis (x, y)}, and bg l (x, y) represents {L dis In (x, y)}, the brightness average value of all pixels in the N×N neighborhood window centered on the pixel point whose coordinate position is (x, y), N≥1, in this embodiment, N =5.
②-2、计算{Ldis(x,y)}的对比度掩蔽效应的可视化阈值集合,记为{Tc(x,y)},Tc(x,y)=K(bgl(x,y))+ehl(x,y),其中,Tc(x,y)表示{Ldis(x,y)}中坐标位置为(x,y)的像素点的对比度掩蔽效应的可视化阈值,ehl(x,y)表示对{Ldis(x,y)}中坐标位置为(x,y)的像素点分别进行水平方向和垂直方向边缘滤波后得到的平均梯度值,K(bgl(x,y))=-10-6×(0.7×bgl(x,y)2+32×bgl(x,y))+0.07。②-2. Calculate the visual threshold set of the contrast masking effect of {L dis (x,y)}, denoted as {T c (x,y)}, T c (x,y)=K(bg l (x, y))+eh l (x, y), where T c (x, y) represents the visual threshold of the contrast masking effect of the pixel whose coordinate position is (x, y) in {L dis (x, y)} , eh l (x, y) represents the average gradient value obtained by performing edge filtering in the horizontal direction and vertical direction on the pixel at the coordinate position (x, y) in {L dis (x, y)}, K(bg l (x,y))=-10 -6 ×(0.7×bg l (x,y) 2 +32×bg l (x,y))+0.07.
②-3、对{Ldis(x,y)}的亮度掩蔽效应的可视化阈值集合{Tl(x,y)}和对比度掩蔽效应的可视化阈值集合{Tc(x,y)}进行融合,得到{Ldis(x,y)}的双目最小可察觉变化图像,记为将中坐标位置为(x,y)的像素点的像素值记为
③计算{Lorg(x,y)}、{Rorg(x,y)}、{Ldis(x,y)}、{Rdis(x,y)}中的每个像素点在不同尺度和方向的偶对称频率响应和奇对称频率响应;然后获取{Lorg(x,y)}、{Rorg(x,y)}、{Ldis(x,y)}、{Rdis(x,y)}中的每个像素点在不同尺度和方向的振幅和相位;再根据{Lorg(x,y)}和{Rorg(x,y)}中的每个像素点在不同尺度和方向的振幅和相位及{Lorg(x,y)}与{Rorg(x,y)}之间的视差图像中的每个像素点的像素值,计算Sorg在不同尺度和方向的能量图,记为并根据{Ldis(x,y)}和{Rdis(x,y)}中的每个像素点在不同尺度和方向的振幅和相位及{Lorg(x,y)}与{Rorg(x,y)}之间的视差图像中的每个像素点的像素值,计算Sdis在不同尺度和方向的能量图,记为其中,表示中坐标位置为(x,y)的像素点在不同尺度和方向的像素值,表示中坐标位置为(x,y)的像素点在不同尺度和方向的像素值,α表示滤波所采用的滤波器的尺度因子,1≤α≤4,θ表示滤波所采用的滤波器的方向因子,1≤θ≤4。③ Calculate each pixel in {L org (x,y)}, {R org (x,y)}, {L dis (x,y)}, {R dis (x,y)} at different scales and odd symmetric frequency responses in the and directions; then obtain {L org (x,y)}, {R org (x,y)}, {L dis (x,y)}, {R dis (x ,y)} in the amplitude and phase of each pixel in different scales and directions; then according to each pixel in {L org (x,y)} and {R org (x,y)} in different scales and the amplitude and phase of the direction and the pixel value of each pixel in the disparity image between {L org (x,y)} and {R org (x,y)}, calculate the S org in different scales and directions energy diagram, denoted as And according to the amplitude and phase of each pixel in {L dis (x,y)} and {R dis (x,y)} at different scales and directions and {L org (x,y)} and {R org The pixel value of each pixel in the parallax image between (x,y)}, calculate the energy map of S dis in different scales and directions, denoted as in, express The pixel values of the pixel at the middle coordinate position (x, y) in different scales and directions, express The pixel value of the pixel at the middle coordinate position (x, y) in different scales and directions, α represents the scale factor of the filter used in filtering, 1≤α≤4, θ represents the direction factor of the filter used in filtering , 1≤θ≤4.
在此具体实施例中,步骤③的具体过程为:In this specific embodiment, the concrete process of step 3. is:
③-1、采用log-Garbor滤波器对{Lorg(x,y)}进行滤波处理,得到{Lorg(x,y)}中的每个像素点在不同尺度和方向的偶对称频率响应和奇对称频率响应,将{Lorg(x,y)}中坐标位置为(x,y)的像素点在不同尺度和方向的偶对称频率响应记为将{Lorg(x,y)}中坐标位置为(x,y)的像素点在不同尺度和方向的奇对称频率响应记为其中,α表示滤波所采用的滤波器的尺度因子,1≤α≤4,θ表示滤波所采用的滤波器的方向因子,1≤θ≤4。③-1. Use the log-Garbor filter to filter {L org (x, y)} to obtain the even symmetric frequency response of each pixel in {L org (x, y)} at different scales and directions and odd symmetric frequency response, the even symmetric frequency response of the pixel at coordinate position (x, y) in {L org (x, y)} in different scales and directions is recorded as The odd symmetric frequency response of the pixel at the coordinate position (x, y) in {L org (x, y)} in different scales and directions is recorded as Wherein, α represents the scale factor of the filter used for filtering, 1≤α≤4, and θ represents the direction factor of the filter used for filtering, 1≤θ≤4.
③-2、计算{Lorg(x,y)}中的每个像素点在不同尺度和方向的振幅和相位,将{Lorg(x,y)}中坐标位置为(x,y)的像素点在不同尺度和方向的振幅记为 将{Lorg(x,y)}中坐标位置为(x,y)的像素点在不同尺度和方向的相位记为
③-3、按照步骤③-1至步骤③-2获取{Lorg(x,y)}中的每个像素点在不同尺度和方向的振幅和相位的操作过程,以相同方式获取{Rorg(x,y)}、{Ldis(x,y)}、{Rdis(x,y)}中的每个像素点在不同尺度和方向的振幅和相位,将{Rorg(x,y)}中坐标位置为(x,y)的像素点在不同尺度和方向的振幅记为将{Rorg(x,y)}中坐标位置为(x,y)的像素点在不同尺度和方向的相位记为将{Ldis(x,y)}中坐标位置为(x,y)的像素点在不同尺度和方向的振幅记为将{Ldis(x,y)}中坐标位置为(x,y)的像素点在不同尺度和方向的相位记为将{Rdis(x,y)}中坐标位置为(x,y)的像素点在不同尺度和方向的振幅记为将{Rdis(x,y)}中坐标位置为(x,y)的像素点在不同尺度和方向的相位记为例如:获取{Ldis(x,y)}中坐标位置为(x,y)的像素点在不同尺度和方向的振幅和相位的过程为:a、采用log-Garbor滤波器对{Ldis(x,y)}进行滤波处理,得到{Ldis(x,y)}中的每个像素点在不同尺度和方向的偶对称频率响应和奇对称频率响应,将{Ldis(x,y)}中坐标位置为(x,y)的像素点在不同尺度和方向的偶对称频率响应记为将{Ldis(x,y)}中坐标位置为(x,y)的像素点在不同尺度和方向的奇对称频率响应记为其中,α表示滤波所采用的滤波器的尺度因子,1≤α≤4,θ表示滤波所采用的滤波器的方向因子,1≤θ≤4;计算{Ldis(x,y)}中的每个像素点在不同尺度和方向的振幅和相位,将{Ldis(x,y)}中坐标位置为(x,y)的像素点在不同尺度和方向的振幅记为
③-4、采用块匹配法计算{Lorg(x,y)}与{Rorg(x,y)}之间的视差图像,记为其中,表示中坐标位置为(x,y)的像素点的像素值。③-4. Calculate the parallax image between {L org (x, y)} and {R org (x, y)} by block matching method, denoted as in, express The pixel value of the pixel whose middle coordinate position is (x, y).
③-5、根据{Lorg(x,y)}和{Rorg(x,y)}中的每个像素点在不同尺度和方向的振幅和相位及{Lorg(x,y)}与{Rorg(x,y)}之间的视差图像中的每个像素点的像素值,计算Sorg在不同尺度和方向的能量图,记为将中坐标位置为(x,y)的像素点在不同尺度和方向的像素值记为
③-6、根据{Ldis(x,y)}和{Rdis(x,y)}中的每个像素点在不同尺度和方向的振幅和相位及{Lorg(x,y)}与{Rorg(x,y)}之间的视差图像中的每个像素点的像素值,计算Sdis在不同尺度和方向的能量图,记为将中坐标位置为(x,y)的像素点在不同尺度和方向的像素值记为
④根据Sorg在不同尺度和方向的能量图及Sdis在不同尺度和方向的能量图计算Sdis中的每个像素点的客观评价度量值,将Sdis中的所有像素点的客观评价度量值用集合表示为{Q(x,y)},将Sdis中坐标位置为(x,y)的像素点的客观评价度量值记为Q(x,y),
⑤人类视觉系统特性表明,人眼会对双目可察觉变化值较小的区域的失真比较敏感。因此本发明根据Sdis中的每个像素点的客观评价度量值和{Ldis(x,y)}的双目最小可察觉变化图像利用人类视觉系统的双目视觉掩蔽效应,计算Sdis的用于反映双目视觉掩蔽效应的客观评价度量值,记为Qbm,其中,Ω表示像素域范围。⑤ The characteristics of the human visual system show that the human eye is more sensitive to the distortion of the area where the binocular detectable change value is small. Therefore, the present invention is based on the objective evaluation metric value of each pixel in S dis and the binocular minimum perceptible change image of {L dis (x, y)} Using the binocular visual masking effect of the human visual system, calculate the objective evaluation metric value of S dis to reflect the binocular visual masking effect, denoted as Q bm , Among them, Ω represents the pixel domain range.
⑥人类视觉系统特性表明,人眼会对双目能量强度较大的区域产生较强的响应。因此本发明根据Sdis中的每个像素点的客观评价度量值和Sdis在不同尺度和方向的能量图利用人类视觉系统对双目能量强度的响应特性,计算Sdis的用于反映双目能量强度的客观评价度量值,记为Qbe,
⑦对Sdis的用于反映双目视觉掩蔽效应的客观评价度量值Qbm和Sdis的用于反映双目能量强度的客观评价度量值Qbe进行融合,得到Sdis的图像质量客观评价预测值,记为Qfin,Qfin=(Qbm)γ(Qbe)β,其中,γ和β为权重参数,在本实施例中,取γ=0.7755,β=0.0505。⑦Fuse the objective evaluation metric value Q bm of S dis to reflect the binocular visual masking effect and the objective evaluation metric value Q be of S dis to reflect binocular energy intensity to obtain the objective evaluation and prediction of image quality of S dis The value is denoted as Q fin , Q fin =(Q bm ) γ (Q be ) β , where γ and β are weight parameters, and in this embodiment, γ=0.7755 and β=0.0505.
在本实施例中,利用图2a和图2b、图3a和图3b、图4a和图4b、图5a和图5b、图6a和图6b、图7a和图7b、图8a和图8b、图9a和图9b、图10a和图10b、图11a和图11b、图12a和图12b、图13a和图13b所示的12幅无失真的立体图像建立其在不同程度的JPEG压缩、JPEG2000压缩、高斯模糊、白噪声和H.264编码失真情况下的312幅失真的立体图像来分析通过本发明方法得到的失真的立体图像Sdis的图像质量客观评价预测值与平均主观评分差值之间的相关性,其中JPEG压缩的失真的立体图像共60幅,JPEG2000压缩的失真的立体图像共60幅,高斯模糊(Gaussian Blur)的失真的立体图像共60幅,白噪声(White Noise)的失真的立体图像共60幅,H.264编码的失真的立体图像共72幅。并利用现有的主观质量评价方法分别获取312幅失真的立体图像的平均主观评分差值,记为DMOS,DMOS=100-MOS,其中,MOS表示主观评分均值,DMOS∈[0,100]。In this embodiment, using Figure 2a and Figure 2b, Figure 3a and Figure 3b, Figure 4a and Figure 4b, Figure 5a and Figure 5b, Figure 6a and Figure 6b, Figure 7a and Figure 7b, Figure 8a and Figure 8b, Figure 9a and 9b, FIG. 10a and FIG. 10b, FIG. 11a and FIG. 11b, FIG. Gaussian blur, white noise and 312 distorted stereo images under the condition of H.264 encoding distortion analyze the difference between the image quality objective evaluation prediction value and the average subjective rating difference of the distorted stereo image S dis obtained by the method of the present invention Correlation, including 60 distorted stereoscopic images compressed by JPEG, 60 distorted stereoscopic images compressed by JPEG2000, 60 distorted stereoscopic images by Gaussian Blur, and 60 distorted stereoscopic images by White Noise There are 60 stereoscopic images, and 72 distorted stereoscopic images encoded by H.264. And use the existing subjective quality evaluation method to obtain the average subjective score difference of 312 distorted stereo images, which is recorded as DMOS, DMOS=100-MOS, where MOS represents the mean subjective score, DMOS∈[0,100].
在本实施例中,利用评估图像质量评价方法的4个常用客观参量作为评价指标,即非线性回归条件下的Pearson相关系数(Pearson linear correlation coefficient,PLCC)、Spearman相关系数(Spearman rank order correlation coefficient,SROCC)、Kendall相关系数(Kendall rank-order correlation coefficient,KROCC)、均方误差(root mean squarederror,RMSE),PLCC和RMSE反映失真的立体图像评价客观模型的准确性,SROCC和KROCC反映其单调性。将按本发明方法计算得到的失真的立体图像的图像质量客观评价预测值做五参数Logistic函数非线性拟合,PLCC、SROCC和KROCC值越高,RMSE值越低说明客观评价方法与平均主观评分差值相关性越好。反映立体图像客观评价模型性能的PLCC、SROCC、KROCC和RMSE系数如表1所示,从表1所列的数据可知,按本发明方法得到的失真的立体图像的最终的图像质量客观评价预测值与平均主观评分差值之间的相关性是很高的,充分表明了客观评价结果与人眼主观感知的结果较为一致,足以说明本发明方法的有效性。In this embodiment, four commonly used objective parameters for evaluating image quality evaluation methods are used as evaluation indicators, namely Pearson correlation coefficient (Pearson linear correlation coefficient, PLCC) and Spearman correlation coefficient (Spearman rank order correlation coefficient) under nonlinear regression conditions. , SROCC), Kendall rank-order correlation coefficient (KROCC), mean square error (root mean squared error, RMSE), PLCC and RMSE reflect the accuracy of the distorted stereo image evaluation objective model, SROCC and KROCC reflect its monotony sex. The five-parameter Logistic function nonlinear fitting is done on the image quality objective evaluation prediction value of the distorted stereoscopic image calculated by the method of the present invention, the higher the PLCC, SROCC and KROCC values, the lower the RMSE value shows that the objective evaluation method and the average subjective rating The better the difference correlation. Reflecting the PLCC, SROCC, KROCC and RMSE coefficients of the stereoscopic image objective evaluation model performance as shown in table 1, from the data listed in table 1, we can know that the final image quality objective evaluation prediction value of the distorted stereoscopic image obtained by the method of the present invention The correlation with the average subjective score difference is very high, which fully shows that the objective evaluation result is relatively consistent with the subjective perception result of human eyes, and is sufficient to illustrate the effectiveness of the method of the present invention.
图14给出了312幅失真的立体图像的图像质量客观评价预测值与平均主观评分差值的散点图,散点越集中,说明客观评价结果与主观感知的一致性越好。从图14中可以看出,采用本发明方法得到的散点图比较集中,与主观评价数据之间的吻合度较高。Figure 14 shows the scatter diagram of the difference between the predicted value of the image quality objective evaluation and the average subjective evaluation of 312 distorted stereoscopic images. The more concentrated the scatter points, the better the consistency between the objective evaluation results and the subjective perception. It can be seen from FIG. 14 that the scatter diagram obtained by the method of the present invention is relatively concentrated, and has a high degree of agreement with the subjective evaluation data.
表1利用本发明方法得到的失真的立体图像的图像质量客观评价预测值与主观评分之间的相关性Table 1 Utilizes the correlation between the image quality objective evaluation prediction value and the subjective rating of the distorted stereoscopic image obtained by the method of the present invention
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210493072.5A CN102999911B (en) | 2012-11-27 | 2012-11-27 | Three-dimensional image quality objective evaluation method based on energy diagrams |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210493072.5A CN102999911B (en) | 2012-11-27 | 2012-11-27 | Three-dimensional image quality objective evaluation method based on energy diagrams |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102999911A CN102999911A (en) | 2013-03-27 |
CN102999911B true CN102999911B (en) | 2015-06-03 |
Family
ID=47928445
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210493072.5A Expired - Fee Related CN102999911B (en) | 2012-11-27 | 2012-11-27 | Three-dimensional image quality objective evaluation method based on energy diagrams |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102999911B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106683072B (en) * | 2015-11-09 | 2020-02-21 | 上海交通大学 | A PUP map-based 3D image comfort quality evaluation method and system |
CN105828061B (en) * | 2016-05-11 | 2017-09-29 | 宁波大学 | A kind of virtual view quality evaluating method of view-based access control model masking effect |
CN109285146B (en) * | 2018-08-30 | 2021-12-10 | 南京邮电大学 | Full-reference image quality evaluation method based on just noticeable distortion |
JP7168848B2 (en) * | 2018-11-21 | 2022-11-10 | 日本電信電話株式会社 | Evaluation device, evaluation method, and program. |
CN112353365B (en) * | 2021-01-14 | 2021-03-23 | 广州市诺以德医疗科技发展有限公司 | Binocular dynamic energy stereoscopic vision detection system and detection method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102142145A (en) * | 2011-03-22 | 2011-08-03 | 宁波大学 | Image quality objective evaluation method based on human eye visual characteristics |
CN102547368A (en) * | 2011-12-16 | 2012-07-04 | 宁波大学 | Objective evaluation method for quality of stereo images |
CN102663747A (en) * | 2012-03-23 | 2012-09-12 | 宁波大学 | Stereo image objectivity quality evaluation method based on visual perception |
-
2012
- 2012-11-27 CN CN201210493072.5A patent/CN102999911B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102142145A (en) * | 2011-03-22 | 2011-08-03 | 宁波大学 | Image quality objective evaluation method based on human eye visual characteristics |
CN102547368A (en) * | 2011-12-16 | 2012-07-04 | 宁波大学 | Objective evaluation method for quality of stereo images |
CN102663747A (en) * | 2012-03-23 | 2012-09-12 | 宁波大学 | Stereo image objectivity quality evaluation method based on visual perception |
Non-Patent Citations (2)
Title |
---|
《Research on Stereoscopic Images Quality Assessment Methods》;Wujie Zhou et al;《International Conference of China Communication and Information Technology》;20101001;273-279 * |
《一种基于最小可察觉失真的立体图像质量客观评价方法》;顾珊波等;《光电子·激光》;20120531;第23卷(第5期);999-1004 * |
Also Published As
Publication number | Publication date |
---|---|
CN102999911A (en) | 2013-03-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102708567B (en) | Visual perception-based three-dimensional image quality objective evaluation method | |
CN103413298B (en) | A kind of objective evaluation method for quality of stereo images of view-based access control model characteristic | |
CN102333233B (en) | Stereo image quality objective evaluation method based on visual perception | |
US8953873B2 (en) | Method for objectively evaluating quality of stereo image | |
CN102843572B (en) | Phase-based stereo image quality objective evaluation method | |
CN104243976B (en) | A kind of three-dimensional image objective quality evaluation method | |
CN104036501B (en) | A kind of objective evaluation method for quality of stereo images based on rarefaction representation | |
CN104394403B (en) | A kind of stereoscopic video quality method for objectively evaluating towards compression artefacts | |
CN102903107B (en) | Three-dimensional picture quality objective evaluation method based on feature fusion | |
CN102999911B (en) | Three-dimensional image quality objective evaluation method based on energy diagrams | |
CN105979253A (en) | Generalized regression neural network based non-reference stereoscopic image quality evaluation method | |
CN104954778B (en) | An Objective Evaluation Method of Stereo Image Quality Based on Perceptual Feature Set | |
CN104240248B (en) | Method for objectively evaluating quality of three-dimensional image without reference | |
CN103136748B (en) | The objective evaluation method for quality of stereo images of a kind of feature based figure | |
CN103200420B (en) | Three-dimensional picture quality objective evaluation method based on three-dimensional visual attention | |
CN104408716A (en) | Three-dimensional image quality objective evaluation method based on visual fidelity | |
CN103369348B (en) | Three-dimensional image quality objective evaluation method based on regional importance classification | |
CN102999912B (en) | A kind of objective evaluation method for quality of stereo images based on distortion map | |
CN102737380B (en) | Stereo image quality objective evaluation method based on gradient structure tensor | |
CN103745457B (en) | A kind of three-dimensional image objective quality evaluation method | |
CN103841411B (en) | A kind of stereo image quality evaluation method based on binocular information processing | |
CN105898279B (en) | An Objective Evaluation Method of Stereoscopic Image Quality | |
CN103108209B (en) | Stereo image objective quality evaluation method based on integration of visual threshold value and passage | |
CN104820988B (en) | One kind is without with reference to objective evaluation method for quality of stereo images | |
CN105488792A (en) | No-reference stereo image quality evaluation method based on dictionary learning and machine learning |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20150603 Termination date: 20171127 |
|
CF01 | Termination of patent right due to non-payment of annual fee |