CN102982963B - Electromagnet power source and control method and digital controller thereof - Google Patents
Electromagnet power source and control method and digital controller thereof Download PDFInfo
- Publication number
- CN102982963B CN102982963B CN201210458128.3A CN201210458128A CN102982963B CN 102982963 B CN102982963 B CN 102982963B CN 201210458128 A CN201210458128 A CN 201210458128A CN 102982963 B CN102982963 B CN 102982963B
- Authority
- CN
- China
- Prior art keywords
- current signal
- component
- amplitude
- comparison result
- power supply
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 27
- 238000005070 sampling Methods 0.000 claims description 49
- 238000012545 processing Methods 0.000 claims description 16
- 238000004458 analytical method Methods 0.000 claims description 13
- 238000003672 processing method Methods 0.000 claims description 13
- 238000004364 calculation method Methods 0.000 claims description 6
- 239000002131 composite material Substances 0.000 claims description 3
- 230000002194 synthesizing effect Effects 0.000 claims 1
- 230000005284 excitation Effects 0.000 description 8
- 238000013461 design Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 239000000203 mixture Substances 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 238000012937 correction Methods 0.000 description 2
- 241000764238 Isis Species 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 238000005417 image-selected in vivo spectroscopy Methods 0.000 description 1
- 238000012739 integrated shape imaging system Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Landscapes
- Particle Accelerators (AREA)
Abstract
一种电磁铁电源,包括:数字控制器,基于预先设定的参考电流信号和相应于所述电磁铁电源的输出电流的感测电流信号,来生成控制电流信号;调制器,基于所述控制电流信号来生成功率器件控制信号;功率器件,根据所述功率器件控制信号从主供电源汲取电能以向电磁铁负载提供所述输出电流;以及电流传感器,设置在所述电磁铁电源的输出端处,以生成所述感测电流信号。一种用于控制所述电磁铁电源的方法和数字控制器。
An electromagnet power supply, comprising: a digital controller, based on a preset reference current signal and a sense current signal corresponding to the output current of the electromagnet power supply, to generate a control current signal; a modulator, based on the control The current signal is used to generate a power device control signal; the power device draws electric energy from the main power supply according to the power device control signal to provide the output current to the electromagnet load; and a current sensor is arranged at the output end of the electromagnet power supply to generate the sensing current signal. A method and digital controller for controlling the electromagnet power supply.
Description
技术领域technical field
本申请涉及电磁铁电源及其方法,尤其涉及电流精密控制的数字化动态电磁铁电源、以及用于电流精密控制数字化动态电磁铁电源的方法和数字控制器。The application relates to an electromagnet power supply and a method thereof, in particular to a digital dynamic electromagnet power supply with precise current control, a method and a digital controller for precise current control of a digital dynamic electromagnet power supply.
背景技术Background technique
随着数字控制技术的发展,加速器电磁铁电源正在向全数字化控制的方向发展。目前在建或已经建成的加速器静态电磁铁电源系统已基本实现全数字化控制。然而在重复频率10Hz及以上的动态电磁铁电源中,尚未见到采用全数字化控制电源技术的报道。With the development of digital control technology, the accelerator electromagnet power supply is developing towards the direction of full digital control. The static electromagnet power supply system of the accelerator, which is currently under construction or has been completed, has basically realized full digital control. However, in the dynamic electromagnet power supply with a repetition frequency of 10 Hz and above, there is no report on the use of fully digital control power supply technology.
据调查,目前重复频率10Hz及以上的加速器动态电磁铁励磁电源均采用基于模拟电路的控制技术。例如日本J-PARK快循环同步加速器(RCS)、英国ISIS RCS环的主电磁铁分别使用的25Hz和50Hz的动态励磁电源,国际上多台同步辐射光源的增强器主电磁铁也使用10Hz的动态电源。According to the investigation, at present, the excitation power supply of the dynamic electromagnet of the accelerator with a repetition frequency of 10 Hz and above adopts the control technology based on the analog circuit. For example, the main electromagnets of Japan's J-PARK fast-cycle synchrotron (RCS) and the British ISIS RCS ring use 25Hz and 50Hz dynamic excitation power supplies, and the main electromagnets of many synchrotron light sources in the world also use 10Hz dynamic excitation power. power supply.
由于加速器电源负载是大惯性环节的电磁铁,其时间常数大,同时由于对输出跟踪精度、电压纹波和电流高稳定度的特殊要求,以及后级高频率波电路,造成了闭环稳定输出的比例积分微分(PID)调节器校正的困难。Since the load of the accelerator power supply is an electromagnet with a large inertia link, its time constant is large. At the same time, due to the special requirements for output tracking accuracy, voltage ripple and high current stability, as well as the high-frequency wave circuit of the subsequent stage, the closed-loop stable output is caused. Difficulties in correcting proportional-integral-derivative (PID) regulators.
对于10Hz及以上重复频率的动态电源,现有加速器都采用了基于怀特谐振电路的拓扑结构。由于电源自身的基于模拟电路的PID闭环控制器无法满足电源动态电流的精密跟踪,均采用独立于电源系统的一套昂贵的远程控制系统来实现对动态输出电流的精确控制。这样的控制系统一般基于VME总线(即VersaModule Eurocard总线,一种通用的计算机总线)的体系结构,或者包括对高精度模拟数字转换器(ADC)和数字模拟转换器(DAC)的精密控制以及复杂的算法和接口设计,或者包括需要温度精密控制的幅度和相位检测及闭环控制的模拟电路,不仅软件驱动和接口设计及硬件设计复杂,而且整个系统非常昂贵。For dynamic power supplies with a repetition rate of 10 Hz and above, existing accelerators have adopted a topology based on White resonant circuits. Since the PID closed-loop controller of the power supply itself based on the analog circuit cannot meet the precise tracking of the dynamic current of the power supply, an expensive remote control system independent of the power supply system is used to achieve precise control of the dynamic output current. Such a control system is generally based on the VME bus (VersaModule Eurocard bus, a general-purpose computer bus) architecture, or includes precise control of high-precision analog-to-digital converters (ADC) and digital-to-analog converters (DAC) Algorithm and interface design, or analog circuits including amplitude and phase detection and closed-loop control that require precise temperature control, not only the software driver and interface design and hardware design are complicated, but the entire system is very expensive.
发明内容Contents of the invention
为了解决上述技术问题之一,本申请提供了一种电磁铁电源,包括:数字控制器,基于预先设定的参考电流信号和相应于所述电磁铁电源的输出电流的感测电流信号,来生成控制电流信号;调制器,基于所述控制电流信号来生成功率器件控制信号;功率器件,根据所述功率器件控制信号从主供电源汲取电能以向电磁铁负载提供所述输出电流;以及电流传感器,设置在所述电磁铁电源的输出端处,以生成所述感测电流信号。其中,所述数字控制器包括:模拟数字转换器,基于预先设定的采样频率对所述感测电流信号进行采样,获得感测电流信号采样;离散傅立叶分析器,基于所述参考电流信号的基波分量频率和所述采样频率对所述感测电流信号采样进行离散傅立叶分析处理,获得相应的反馈直流分量幅值、反馈基波分量幅值和反馈基波分量相位;第一比较器,将所述参考电流信号的直流分量幅值与所述反馈直流分量幅值进行比较,获得第一比较结果;第二比较器,将所述参考电流信号的基波分量幅值与所述反馈基波分量幅值进行比较,获得第二比较结果;第三比较器,将所述参考电流信号的基波分量相位与所述反馈基波分量相位进行比较,获得第三比较结果;第一数字比例积分微分控制器,根据所述第一比较结果生成修正直流分量幅值;第二数字比例积分微分控制器,根据所述第二比较结果生成修正基波分量幅值;第三数字比例积分微分控制器,根据所述第三比较结果生成修正基波分量相位;坐标旋转数字计算合成器,基于所述基波分量频率和所述采样频率将所述修正直流分量幅值、所述修正基波分量幅值和所述修正基波分量相位合成为合成参考电流信号;第四比较器,将所述合成参考电流信号与所述感测电流信号采样进行比较,获得第四比较结果;以及第四数字比例积分微分控制器,根据所述第四比较结果生成所述控制电流信号。In order to solve one of the above technical problems, the present application provides an electromagnet power supply, including: a digital controller, based on a preset reference current signal and a sense current signal corresponding to the output current of the electromagnet power supply, to generating a control current signal; a modulator generating a power device control signal based on the control current signal; a power device drawing electrical energy from a main power supply according to the power device control signal to provide the output current to an electromagnet load; and a current A sensor is arranged at the output end of the electromagnet power supply to generate the sensing current signal. Wherein, the digital controller includes: an analog-to-digital converter, which samples the sense current signal based on a preset sampling frequency to obtain a sense current signal sample; a discrete Fourier analyzer, based on the reference current signal The frequency of the fundamental component frequency and the sampling frequency perform discrete Fourier analysis on the sampling of the sensing current signal to obtain the corresponding feedback DC component amplitude, feedback fundamental component amplitude and feedback fundamental component phase; the first comparator, Comparing the amplitude of the DC component of the reference current signal with the amplitude of the feedback DC component to obtain a first comparison result; the second comparator compares the amplitude of the fundamental component of the reference current signal with the amplitude of the feedback fundamental Wave component amplitudes are compared to obtain a second comparison result; the third comparator compares the phase of the fundamental component of the reference current signal with the phase of the feedback fundamental component to obtain a third comparison result; the first digital ratio Integral-derivative controller, which generates a modified DC component amplitude according to the first comparison result; a second digital proportional-integral-derivative controller, which generates a modified fundamental wave component amplitude according to the second comparison result; a third digital proportional-integral-derivative control A device that generates a corrected fundamental wave component phase according to the third comparison result; a coordinate rotation digital calculation synthesizer that converts the corrected DC component amplitude, the corrected fundamental wave component based on the fundamental component frequency and the sampling frequency The amplitude and the phase of the modified fundamental wave component are synthesized into a synthesized reference current signal; a fourth comparator compares the synthesized reference current signal with the sensed current signal sample to obtain a fourth comparison result; and a fourth digital A proportional-integral-differential controller, configured to generate the control current signal according to the fourth comparison result.
所述电磁铁电源还包括显示设备,用于显示所述数字控制器所处理的参数。The solenoid power supply also includes a display device for displaying the parameters processed by the digital controller.
所述电磁铁电源还包括滤波电路,设置在所述功率器件的输出处所述功率器件与所述电流传感器之间,用于滤除高频信号。The electromagnet power supply also includes a filter circuit, which is arranged between the power device and the current sensor at the output of the power device, and is used for filtering high-frequency signals.
所述电磁铁电源中所述调制器与所述数字控制器整合在一起,通过数字信号处理的方法,在现场可编程门阵列(Field Programmable Gate Array,即FPGA)数字信号处理芯片中实现,采用单精度浮点数的处理方式。The modulator in the electromagnet power supply is integrated with the digital controller, and implemented in a field programmable gate array (Field Programmable Gate Array, FPGA) digital signal processing chip through a digital signal processing method, using How to handle single-precision floating-point numbers.
所述电磁铁电源中所述数字控制器包含的离散傅立叶分析器,在进行数字信号处理时采用双精度浮点数的处理方式。The discrete Fourier analyzer included in the digital controller in the electromagnet power supply adopts a double-precision floating-point number processing method when performing digital signal processing.
所述电磁铁电源中所述模拟数字转换器是16bit,100KHz及以上的模拟数字转换器。The analog-to-digital converter in the electromagnet power supply is a 16-bit, 100KHz and above analog-to-digital converter.
所述电磁铁电源中所述第一数字比例积分微分控制器、所述第二数字比例积分微分控制器、所述第三数字比例积分微分控制器的工作采样频率为所述基波分量频率。The working sampling frequency of the first digital proportional integral differential controller, the second digital proportional integral differential controller and the third digital proportional integral differential controller in the electromagnet power supply is the frequency of the fundamental wave component.
本申请还提供了一种控制电磁铁电源的方法,包括如下步骤:获得与所述电磁铁电源的输出电流相对应的感测电流信号;基于预先设定的采样频率对所述感测电流信号进行采样处理,获得感测电流信号采样;基于参考电流信号的基波分量频率和所述采样频率对所述感测电流信号采样进行离散傅立叶分析处理,获得相应的反馈直流分量幅值、反馈基波分量幅值和反馈基波分量相位;将所述参考电流信号的直流分量幅值与所述反馈直流分量幅值进行比较以获得第一比较结果,将所述参考电流信号的基波分量幅值与所述反馈基波分量幅值进行比较以获得第二比较结果,将所述参考电流信号的基波分量相位与所述反馈基波分量相位进行比较以获得第三比较结果;根据所述第一比较结果生成修正直流分量幅值,根据所述第二比较结果生成修正基波分量幅值,根据所述第三比较结果生成修正基波分量相位;基于所述基波分量频率和所述采样频率将所述修正直流分量幅值、所述修正基波分量幅值和所述修正基波分量相位合成为合成参考电流信号;将所述合成参考电流信号与所述感测电流信号采样进行比较,获得第四比较结果;以及根据所述第四比较结果生成控制电流信号,根据所述控制电流信号控制所述电磁铁电源的所述输出电流。The present application also provides a method for controlling an electromagnet power supply, comprising the steps of: obtaining a sensing current signal corresponding to the output current of the electromagnet power supply; and analyzing the sensing current signal based on a preset sampling frequency Perform sampling processing to obtain sensing current signal sampling; perform discrete Fourier analysis processing on the sensing current signal sampling based on the fundamental component frequency of the reference current signal and the sampling frequency, and obtain the corresponding feedback DC component amplitude, feedback fundamental wave component amplitude and feedback fundamental wave component phase; the DC component amplitude of the reference current signal is compared with the feedback DC component amplitude to obtain a first comparison result, and the fundamental wave component amplitude of the reference current signal is value is compared with the amplitude of the feedback fundamental wave component to obtain a second comparison result, and the phase of the fundamental wave component of the reference current signal is compared with the phase of the feedback fundamental wave component to obtain a third comparison result; according to the The first comparison result generates the corrected DC component amplitude, generates the corrected fundamental component amplitude according to the second comparison result, and generates the corrected fundamental component phase according to the third comparison result; based on the fundamental component frequency and the The sampling frequency synthesizes the amplitude of the corrected DC component, the amplitude of the corrected fundamental component, and the phase of the corrected fundamental component into a synthetic reference current signal; sampling the synthetic reference current signal and the sensing current signal comparing to obtain a fourth comparison result; and generating a control current signal according to the fourth comparison result, and controlling the output current of the electromagnet power supply according to the control current signal.
所述方法中所述采样处理是用16bit,100KHz及以上的模拟数字转换器进行的。The sampling process in the method is carried out with a 16bit, 100KHz and above analog-to-digital converter.
所述方法中在所述根据所述第一比较结果生成所述修正直流分量幅值、根据所述第二比较结果生成所述修正基波分量幅值、根据所述第三比较结果生成所述修正基波分量相位、以及根据所述第四比较结果生成所述控制电流信号的步骤中,采用单精度浮点数的处理方式。In the method, the corrected DC component amplitude is generated according to the first comparison result, the corrected fundamental component amplitude is generated according to the second comparison result, and the corrected fundamental wave component amplitude is generated according to the third comparison result. In the steps of correcting the phase of the fundamental wave component and generating the control current signal according to the fourth comparison result, a single-precision floating-point number processing method is adopted.
所述方法中所述离散傅立叶分析处理采用双精度浮点数的处理方式。In the method, the discrete Fourier analysis process adopts a double-precision floating-point number processing method.
所述方法中所述各步骤划被分成多个分块,采用流水线处理。Each step in the method is divided into a plurality of blocks, and pipeline processing is adopted.
所述方法中在所划分的同一分块内,相同的模块分时复用。In the method, in the same divided block, the same modules are time-division multiplexed.
本申请还提供了一种数字控制器,用于在电磁铁电源中基于预先设定的参考电流信号和相应于所述电磁铁电源的输出电流的感测电流信号来生成控制电流信号,所述电磁铁电源还包括:调制器,基于所述控制电流信号来生成功率器件控制信号;功率器件,根据所述功率器件控制信号从主供电源汲取电能以向电磁铁负载提供所述输出电流;以及电流传感器,设置在所述电磁铁电源的输出端处,以生成所述感测电流信号,其中,所述数字控制器包括:模拟数字转换器,基于预先设定的采样频率对所述感测电流信号进行采样,获得感测电流信号采样;离散傅立叶分析器,基于所述参考电流信号的基波分量频率和所述采样频率对所述感测电流信号采样进行离散傅立叶分析处理,获得相应的反馈直流分量幅值、反馈基波分量幅值和反馈基波分量相位;第一比较器,将所述参考电流信号的直流分量幅值与所述反馈直流分量幅值进行比较,获得第一比较结果;第二比较器,将所述参考电流信号的基波分量幅值与所述反馈基波分量幅值进行比较,获得第二比较结果;第三比较器,将所述参考电流信号的基波分量相位与所述反馈基波分量相位进行比较,获得第三比较结果;第一数字比例积分微分控制器,根据所述第一比较结果生成修正直流分量幅值;第二数字比例积分微分控制器,根据所述第二比较结果生成修正基波分量幅值;第三数字比例积分微分控制器,根据所述第三比较结果生成修正基波分量相位;坐标旋转数字计算合成器,基于所述基波分量频率和所述采样频率将所述修正直流分量幅值、所述修正基波分量幅值和所述修正基波分量相位合成为合成参考电流信号;第四比较器,将所述合成参考电流信号与所述感测电流信号采样进行比较,获得第四比较结果;以及第四数字比例积分微分控制器,根据所述第四比较结果生成所述控制电流信号。The present application also provides a digital controller for generating a control current signal in an electromagnet power supply based on a preset reference current signal and a sense current signal corresponding to the output current of the electromagnet power supply, the The electromagnet power supply also includes: a modulator for generating a power device control signal based on the control current signal; a power device for drawing electric energy from a main power supply according to the power device control signal to provide the output current to the electromagnet load; and A current sensor is arranged at the output terminal of the electromagnet power supply to generate the sensed current signal, wherein the digital controller includes: an analog-to-digital converter, which senses the sensed current signal based on a preset sampling frequency The current signal is sampled to obtain the sensing current signal sampling; the discrete Fourier analyzer performs discrete Fourier analysis processing on the sensing current signal sampling based on the fundamental component frequency of the reference current signal and the sampling frequency to obtain the corresponding The amplitude of the feedback DC component, the amplitude of the feedback fundamental wave component, and the phase of the feedback fundamental wave component; the first comparator compares the amplitude of the DC component of the reference current signal with the amplitude of the feedback DC component to obtain a first comparison Result; the second comparator compares the amplitude of the fundamental component of the reference current signal with the amplitude of the feedback fundamental component to obtain a second comparison result; the third comparator compares the amplitude of the fundamental component of the reference current signal The phase of the wave component is compared with the phase of the feedback fundamental wave component to obtain a third comparison result; the first digital proportional-integral-derivative controller generates a corrected DC component amplitude according to the first comparison result; the second digital proportional-integral-differential control A controller, which generates a revised fundamental wave component amplitude according to the second comparison result; a third digital proportional-integral-derivative controller, which generates a revised fundamental wave component phase according to the third comparison result; a coordinate rotation digital calculation synthesizer, based on the The fundamental component frequency and the sampling frequency synthesize the corrected DC component amplitude, the corrected fundamental component amplitude and the corrected fundamental component phase into a composite reference current signal; the fourth comparator combines the composite The reference current signal is compared with the sensing current signal sample to obtain a fourth comparison result; and a fourth digital proportional-integral-derivative controller is configured to generate the control current signal according to the fourth comparison result.
根据本申请的技术方案,在数字化动态电磁铁励磁电源的内部,不仅实现电流闭环的数字化控制,而且通过对电磁铁电源参考波形的处理,即可实现动态电磁铁电源输出电流的精确控制。而且不需要更改电磁铁电源主体的硬件结构,也不需要为动态电磁铁电源设计独立的需要温度精确控制的带快速给定接口的远程控制系统,从而大大降低了动态电磁铁电源远程控制系统的成本,简化了动态电磁铁电源控制的体系结构。According to the technical solution of the application, in the digital dynamic electromagnet excitation power supply, not only the digital control of the current closed loop is realized, but also the precise control of the output current of the dynamic electromagnet power supply can be realized by processing the reference waveform of the electromagnet power supply. Moreover, there is no need to change the hardware structure of the main body of the electromagnet power supply, and it is not necessary to design an independent remote control system for the dynamic electromagnet power supply that requires precise temperature control with a fast given interface, thereby greatly reducing the cost of the dynamic electromagnet power supply remote control system. cost, and simplifies the architecture for dynamic solenoid power control.
附图说明Description of drawings
下面将参照所附附图来描述本申请的实施例,其中:Embodiments of the application will be described below with reference to the accompanying drawings, in which:
图1示例性示出了本申请的电流精密控制的数字化动态电磁铁电源的组成的方块图;Fig. 1 exemplarily shows the block diagram of the composition of the digitized dynamic electromagnet power supply of current precision control of the present application;
图2示例性示出了图1中所示的本申请的电流精密控制的数字化动态电磁铁电源中的数字控制器10的组成的原理图;以及Fig. 2 exemplarily shows the schematic diagram of the composition of the digital controller 10 in the digitized dynamic electromagnet power supply of the current precision control of the present application shown in Fig. 1; And
图3示例性示出了本申请的用于电流精密控制数字化动态电磁铁电源的方法的流程图。FIG. 3 exemplarily shows a flow chart of the method for precise current control of a digitized dynamic electromagnet power supply according to the present application.
具体实施方式Detailed ways
下面将结合图1至图3详细描述本申请。需要注意的是,在以下描述的本申请的附图中,具有相同附图标记的元件或模块在系统中具有相同的功能;作为连接导线或信号路径的线段之间如果存在交叉点,那么交叉点上带有黑点“·”则表示该交叉点是连接点或信号分支点,交叉点上不带有黑点“·”则表示该交叉点不是连接点或信号分支点而仅仅是相互穿越;线圈所示为磁铁负载示意图,不代表磁铁负载的任何参数。The present application will be described in detail below with reference to FIGS. 1 to 3 . It should be noted that in the drawings of the application described below, elements or modules with the same reference numerals have the same function in the system; A black dot "·" on the dot indicates that the intersection is a connection point or a signal branch point, and an intersection without a black dot "·" indicates that the intersection is not a connection point or a signal branch point but only passes through each other ;The coil shown is a schematic diagram of the magnet load and does not represent any parameter of the magnet load.
图1示例性示出了本申请的电流精密控制的数字化动态电磁铁电源的组成的方块图。如图1中所示,本申请的电流精密控制的数字化动态电磁铁电源1以下简称电磁铁电源1,包括:数字控制器10,基于预先设定的参考电流信号i和相应于电磁铁电源1的输出电流IL的感测电流信号iL,来生成控制电流信号iC;调制器20,基于控制电流信号iC来生成功率器件控制信号S;功率器件30,根据功率器件控制信号S从主供电源汲取电能以向电磁铁负载L提供输出电流IL;以及电流传感器50,设置在电磁铁电源1的输出端O处,以生成相应于电磁铁电源1的输出电流IL的感测电流信号iL。如图1中所示,电磁铁电源1的输出电流IL从电磁铁电源1的输出端O处被电磁铁负载L汲取后流入地G。采用本申请的数字闭环控制的动态电磁铁电源,能够实现动态电源输出电流的精确控制。Fig. 1 schematically shows a block diagram of the composition of the digitized dynamic electromagnet power supply with precise current control of the present application. As shown in Fig. 1, the digitized dynamic electromagnet power supply 1 of the current precision control of the present application is hereinafter referred to as the electromagnet power supply 1, comprising: a digital controller 10, based on a preset reference current signal i and corresponding to the electromagnet power supply 1 The sensing current signal i L of the output current IL to generate the control current signal i C ; the modulator 20 generates the power device control signal S based on the control current signal i C ; the power device 30 generates the power device control signal S according to the power device control signal S from the main power supply draws electrical energy to provide an output current I L to the electromagnet load L; and a current sensor 50 disposed at the output terminal O of the electromagnet power supply 1 to generate a sense corresponding to the output current IL of the electromagnet power supply 1 current signal i L . As shown in FIG. 1 , the output current I L of the electromagnet power supply 1 is drawn from the output terminal O of the electromagnet power supply 1 by the electromagnet load L and flows into the ground G. The digital closed-loop controlled dynamic electromagnet power supply of the present application can realize precise control of the output current of the dynamic power supply.
作为本申请的另一实施例,本申请的电磁铁电源1还可以包括显示设备,显示数字控制器10所处理的各种参数。As another embodiment of the present application, the electromagnet power supply 1 of the present application may also include a display device to display various parameters processed by the digital controller 10 .
作为本申请的另一实施例,本申请的电磁铁电源1还可以包括滤波电路40,设置在功率器件30的输出处,即功率器件30与电流传感器50之间,用于滤除高频信号,以降低高频信号对电流传感器50的影响。As another embodiment of the present application, the electromagnet power supply 1 of the present application may also include a filter circuit 40, which is arranged at the output of the power device 30, that is, between the power device 30 and the current sensor 50, for filtering out high-frequency signals , so as to reduce the influence of the high frequency signal on the current sensor 50 .
作为本申请的另一实施例,本申请的电磁铁电源1中的调制器20和数字控制器10整合在一起,通过数字信号处理的方法,在FPGA数字信号处理芯片中实现,采用单精度浮点数的处理方式。As another embodiment of the present application, the modulator 20 and the digital controller 10 in the electromagnet power supply 1 of the present application are integrated together, and implemented in an FPGA digital signal processing chip through a digital signal processing method, using single-precision floating How points are handled.
另外,本申请的调制器20例如可以是公知的各种用于驱动功率元件的驱动器,本申请的功率器件30例如是公知的各种用于控制电流的功率元件,本申请的滤波电路40例如是公知的各种用于滤除高频信号的滤波电路,本申请的电流传感器50例如是公知的各种用于感测电流的精密电流传感器,因此不再对它们进行更详细的描述。In addition, the modulator 20 of the present application may be various known drivers for driving power elements, the power device 30 of the present application is, for example, various known power elements for controlling current, and the filter circuit 40 of the present application is, for example, It is a variety of well-known filter circuits for filtering out high-frequency signals, and the current sensor 50 of the present application is, for example, a variety of well-known precision current sensors for sensing current, so they will not be described in more detail.
本申请采用数字信号处理的方法,来实现如加速器数字化动态励磁电源之类的电磁铁电源的输出电流IL的精密控制。期望的理想情况下的输出电流IL=IDC-IAC×cosω0t,其中ω0=2πf0,f0为电磁铁电源的动态工作频率,IDC、IAC分别为电磁铁电源的输出电流IL的直流分量和交流分量幅值。本申请的电磁铁电源和方法适用于要求跟踪特性好,如电压纹波、电流稳定度等输出参量技术指标高的大功率惯性负载的动态激励源。This application adopts the method of digital signal processing to realize the precise control of the output current I L of the electromagnet power supply such as the accelerator digitized dynamic excitation power supply. The expected ideal output current I L =I DC -I AC ×cosω 0 t, where ω 0 =2πf 0 , f 0 is the dynamic operating frequency of the electromagnet power supply, I DC and I AC are the electromagnet power supply The magnitude of the DC component and the AC component of the output current IL . The electromagnet power supply and method of the present application are suitable for dynamic excitation sources of high-power inertial loads that require good tracking characteristics, such as voltage ripple, current stability and other output parameter technical indicators.
本申请通过加入特殊设计的数字闭环控制器即下面将要在图2中详细描述的数字控制器10,在动态电磁铁电源内部即可实现对其输出电流的精确控制,例如跟踪精度优于千分之一。In this application, by adding a specially designed digital closed-loop controller, that is, the digital controller 10 described in detail below in FIG. one.
图2示例性示出了图1中所示的本申请的电流精密控制的数字化动态电磁铁电源中的数字控制器10的组成的原理图。如图2中所示,本申请的电流精密控制的数字化动态电磁铁电源中的数字控制器10以下简称数字控制器10,包括:ADC140,基于预先设定的采样频率fS对相应于电磁铁电源1的输出电流IL的感测电流信号iL进行采样,获得相应的感测电流信号采样iL’;离散傅立叶(DFT)分析器120,基于预先设定的基波分量频率f0和所述预先设定的采样频率fS对感测电流信号采样iL’进行离散傅立叶分析,获得相应的反馈直流分量幅值iD’、反馈基波分量幅值iA’和反馈基波分量相位P’;比较器101,将预先设定的参考电流信号i的直流分量幅值iD与相应的反馈直流分量幅值iD’进行比较,获得相应的比较结果ΔiD;比较器102,将预先设定的参考电流信号i的基波分量幅值iA与相应的反馈基波分量幅值iA’进行比较,获得相应的比较结果ΔiA;比较器103,将预先设定的参考电流信号i的基波分量相位P与相应的反馈基波分量相位P’进行比较,获得相应的比较结果ΔP;数字PID控制器111,根据比较结果ΔiD生成相应的修正直流分量幅值iD”;数字PID控制器112,根据比较结果ΔiA生成相应的修正基波分量幅值iA”;数字PID控制器113,根据比较结果ΔP生成相应的修正基波分量相位P”;坐标旋转数字计算(CORDIC)合成器130,基于所述预先设定的基波分量频率f0和所述预先设定的采样频率fS将修正直流分量幅值iD”、修正基波分量幅值iA”和修正基波分量相位P”合成为新的合成参考电流信号i’;比较器104,将合成参考电流信号i’与感测电流信号采样iL’进行比较,获得比较结果Δi’;数字PID控制器114,根据比较结果Δi’生成用于控制电磁铁电源1的输出电流IL的控制电流信号iC。其中,基波分量频率f0是预先设定的参考电流信号i的基波分量的频率,也即期望的理想情况下的电磁铁电源的输出电流IL的动态工作频率。另外,ADC140的采样频率fS的时钟与CORDIC合成器130为输出新参考波形即合成参考电流信号i’所基于的采样频率fS,、以及离散傅立叶(DFT)分析器120所基于的采样频率fS的时钟应当为同源同频率的时钟。FIG. 2 exemplarily shows a schematic diagram of the composition of the digital controller 10 in the digitized dynamic electromagnet power supply for precise current control of the present application shown in FIG. 1 . As shown in Fig. 2, the digital controller 10 in the digitized dynamic electromagnet power supply of the current precision control of the present application is hereinafter referred to as the digital controller 10, comprises: ADC140, based on preset sampling frequency f S pair corresponding electromagnet Sampling the sensing current signal i L of the output current IL of the power supply 1 to obtain the corresponding sensing current signal sampling i L '; the discrete Fourier (DFT) analyzer 120, based on the preset fundamental component frequency f 0 and The preset sampling frequency f S performs discrete Fourier analysis on the sensing current signal sampling i L ', and obtains the corresponding feedback DC component amplitude i D ', feedback fundamental wave component amplitude i A ' and feedback fundamental wave component phase P'; comparator 101, compares the amplitude i D of the DC component of the preset reference current signal i with the corresponding amplitude i D ' of the feedback DC component, and obtains a corresponding comparison result Δi D ; the comparator 102, Comparing the amplitude i A of the fundamental wave component of the preset reference current signal i with the amplitude i A ' of the corresponding feedback fundamental wave component to obtain the corresponding comparison result Δi A ; the comparator 103 uses the preset reference The fundamental wave component phase P of the current signal i is compared with the corresponding feedback fundamental wave component phase P' to obtain the corresponding comparison result ΔP; the digital PID controller 111 generates the corresponding corrected DC component amplitude i D according to the comparison result Δi D "; digital PID controller 112, according to the comparison result Δi A to generate the corresponding correction fundamental wave component amplitude i A "; digital PID controller 113, according to the comparison result ΔP to generate the corresponding correction fundamental wave component phase P"; coordinate rotation digital Calculation (CORDIC) synthesizer 130, based on the preset fundamental component frequency f 0 and the preset sampling frequency f S , will correct the DC component amplitude i D ″, correct the fundamental component amplitude i A " and the modified fundamental component phase P" are synthesized into a new synthesized reference current signal i'; the comparator 104 compares the synthesized reference current signal i' with the sensing current signal sampling i L ', and obtains a comparison result Δi'; digital The PID controller 114 generates a control current signal i C for controlling the output current I L of the electromagnet power supply 1 according to the comparison result Δi′. Wherein, the fundamental component frequency f 0 is the preset frequency of the fundamental component of the reference current signal i, that is, the desired dynamic operating frequency of the output current I L of the electromagnet power supply under ideal conditions. In addition, the clock of the sampling frequency f S of the ADC 140 is related to the sampling frequency f S based on which the CORDIC synthesizer 130 outputs a new reference waveform, that is, the synthetic reference current signal i′, and the sampling frequency based on the discrete Fourier (DFT) analyzer 120 The clock of f S should be a clock of the same source and frequency.
例如,本申请的ADC140是通过16bit,100KHz及以上的高分辨率高速的ADC,来对相应于电磁铁电源1的输出电流IL的感测电流信号iL进行采样。通过对ADC140采样得到的电流反馈值即感测电流信号采样iL’进行DFT分析,得到相应的反馈直流分量幅值iD’、反馈基波分量幅值iA’和反馈基波分量相位P’。精确控制ADC140的每个采样周期即采样频率信号、以及基波频率f0,有助于确保DFT分析的反馈直流分量幅值iD’、反馈基波分量幅值iA’和反馈基波分量相位P’的准确,从而确保实现动态电源输出电流IL的精确控制。For example, the ADC 140 of the present application samples the sensing current signal i L corresponding to the output current IL of the electromagnet power supply 1 through a 16-bit, 100 KHz and above high-resolution and high-speed ADC. By performing DFT analysis on the current feedback value sampled by ADC140, that is, the sensing current signal sampling i L ', the corresponding feedback DC component amplitude i D ', feedback fundamental wave component amplitude i A ' and feedback fundamental wave component phase P '. Precise control of each sampling period of ADC140, that is, the sampling frequency signal and the fundamental frequency f 0 , helps to ensure the feedback DC component amplitude i D ', the feedback fundamental component amplitude i A ' and the feedback fundamental component in DFT analysis The accuracy of the phase P' ensures the precise control of the output current I L of the dynamic power supply.
如图1和图2中所示,本申请通过采用3个数字PID控制器111至数字PID控制器113,分别实现了对电磁铁电源1的输出电流IL的直流幅值、基波幅值及基波相位的精确闭环控制。预先设定的参考电流信号i的直流幅值iD、基波幅值iA及基波相位P的设定值对应于电磁铁的理想励磁曲线,即理想的带直流偏置的正弦励磁电流设定值。电磁铁电源1的输出电流IL的直流幅值、基波幅值及基波相位分别对应于DFT分析器120输出的反馈直流分量幅值iD’、反馈基波分量幅值iA’和反馈基波分量相位P’。然后通过3个数字PID控制器111至数字PID控制器113分别产生修正后的修正直流分量幅值iD”、修正基波分量幅值iA”和修正基波分量相位P”。然后通过CORDIC合成器130的坐标旋转数字计算方法合成出新的电流参考曲线即参考电流信号i’。然后比较器104将参考电流信号i’与ADC140采样得到的感测电流信号采样iL’直接进行比较。比较器104的输出通过另一个电流闭环控制的数字PID控制器114进行变换,数字PID控制器的输出即控制电流信号iC被电磁铁电源1中的调制器20变换成作用在电源功率器件30上的功率器件控制信号S。电磁铁电源1中的功率器件30根据功率器件控制信号S调整自身的开关或导通情况来控制电磁铁电源1的输出电流IL,从而实现了对电磁铁电源1的输出电流IL的精确控制。As shown in Fig. 1 and Fig. 2, the present application realizes the DC amplitude and the fundamental amplitude of the output current IL of the electromagnet power supply 1 respectively by adopting three digital PID controllers 111 to 113. And precise closed-loop control of the fundamental phase. The preset value of the DC amplitude i D , the fundamental amplitude i A and the fundamental phase P of the reference current signal i correspond to the ideal excitation curve of the electromagnet, that is, the ideal sinusoidal excitation current with DC bias set value. The DC amplitude, fundamental wave amplitude and fundamental wave phase of the output current I L of the electromagnet power supply 1 correspond to the feedback DC component amplitude i D ', feedback fundamental wave component amplitude i A ' and Feedback fundamental component phase P'. Then the three digital PID controllers 111 to 113 respectively generate the corrected DC component amplitude i D ”, the corrected fundamental wave component amplitude i A ” and the corrected fundamental wave component phase P”. Then the CORDIC The coordinate rotation digital calculation method of the synthesizer 130 synthesizes a new current reference curve, that is, the reference current signal i'. Then the comparator 104 directly compares the reference current signal i' with the sensing current signal sample i L ' sampled by the ADC140. The output of the comparator 104 is converted by another digital PID controller 114 of current closed-loop control, and the output of the digital PID controller, namely the control current signal i C , is converted by the modulator 20 in the electromagnet power supply 1 to act on the power device 30 The power device control signal S on the power device 1. The power device 30 in the electromagnet power supply 1 adjusts its own switch or conduction according to the power device control signal S to control the output current I L of the electromagnet power supply 1, thereby realizing the electromagnet power supply 1 for precise control of the output current IL .
作为本申请的另一个实施例,本申请的3个数字PID控制器111至数字PID控制器113的工作采样频率可以为基波分量频率f0。As another embodiment of the present application, the working sampling frequency of the three digital PID controllers 111 to 113 of the present application may be the fundamental component frequency f 0 .
作为本申请的另一个实施例,本申请的DFT分析器120在进行数字信号处理时,为了确保DFT输出的精确,可以采用双精度浮点数的处理方式。As another embodiment of the present application, when the DFT analyzer 120 of the present application performs digital signal processing, in order to ensure the accuracy of the DFT output, a double-precision floating-point number processing method may be used.
作为本申请的另一个实施例,本申请的数字PID控制器可以采用单精度浮点数的处理方式。As another embodiment of the present application, the digital PID controller of the present application may adopt a single-precision floating-point number processing manner.
与结合图1和图2所描述的本申请的电流精密控制的数字化动态电磁铁电源相对应,图3示例性示出了本申请的用于电流精密控制数字化动态电磁铁电源的方法的流程图。Corresponding to the digitized dynamic electromagnet power supply with precise current control of the present application described in conjunction with FIGS. .
如图3中所示,本申请的用于电流精密控制数字化动态电磁铁电源的方法包括如下步骤:As shown in Fig. 3, the method for current precision control digitized dynamic electromagnet power supply of the present application includes the following steps:
步骤S200,电磁铁电源1的输出端O处设置的电流传感器50获得与电磁铁电源1的输出电流IL相对应的感测电流信号iL。Step S200 , the current sensor 50 provided at the output terminal O of the electromagnet power supply 1 obtains a sensing current signal i L corresponding to the output current I L of the electromagnet power supply 1 .
步骤S210,数字控制器10中的ADC140基于预先设定的采样频率fS对感测电流信号iL进行采样,获得相应的感测电流信号采样iL’。In step S210, the ADC 140 in the digital controller 10 samples the sensing current signal i L based on a preset sampling frequency f S to obtain a corresponding sensing current signal sample i L ′.
步骤S220,数字控制器10中的DFT分析器120,基于预先设定的基波分量频率f0和所述预先设定的采样频率fS对感测电流信号采样iL’进行DFT分析,获得相应的反馈直流分量幅值iD’、反馈基波分量幅值iA’和反馈基波分量相位P’。Step S220, the DFT analyzer 120 in the digital controller 10 performs DFT analysis on the sensing current signal sample i L ' based on the preset fundamental component frequency f 0 and the preset sampling frequency f S to obtain Corresponding feedback DC component amplitude i D ', feedback fundamental wave component amplitude i A ' and feedback fundamental wave component phase P'.
步骤S230,数字控制器10中的比较器101、比较器102和比较器103分别将参考电流信号i的直流分量幅值iD、基波分量幅值iA和基波分量相位P与相应的反馈直流分量幅值iD’、反馈基波分量幅值iA’和反馈基波分量相位P’进行比较,获得相应的比较结果ΔiD、ΔiA和ΔP。Step S230, the comparator 101, the comparator 102 and the comparator 103 in the digital controller 10 respectively compare the DC component amplitude i D , the fundamental wave component amplitude i A and the fundamental wave component phase P of the reference current signal i with the corresponding The feedback DC component amplitude i D ', the feedback fundamental wave component amplitude i A ' and the feedback fundamental wave component phase P' are compared to obtain corresponding comparison results Δi D , Δi A and ΔP.
步骤S240,数字控制器10中的数字PID控制器111、数字PID控制器112和数字PID控制器113分别根据比较结果ΔiD、ΔiA和ΔP生成相应的修正直流分量幅值iD”、修正基波分量幅值iA”和修正基波分量相位P”。Step S240, the digital PID controller 111, the digital PID controller 112 and the digital PID controller 113 in the digital controller 10 respectively generate corresponding corrected DC component amplitudes i D ″, corrected Fundamental wave component amplitude i A ” and corrected fundamental wave component phase P”.
步骤S250,数字控制器10中的CORDIC合成器130基于所述预先设定的基波分量频率f0和所述预先设定的采样频率fS将修正直流分量幅值iD”、修正基波分量幅值iA”和修正基波分量相位P”合成为新的合成参考电流信号i’。 In step S250, the CORDIC synthesizer 130 in the digital controller 10 will modify the DC component amplitude i D ″ , the fundamental wave The component amplitude i A ″ and the corrected fundamental wave component phase P” are synthesized into a new synthesized reference current signal i'.
步骤S260,数字控制器10中的比较器104将合成参考电流信号i’与感测电流信号采样iL’进行比较,获得比较结果Δi’。In step S260, the comparator 104 in the digital controller 10 compares the synthesized reference current signal i' with the sensing current signal sample i L ', and obtains a comparison result Δi'.
步骤S270,数字控制器10中的数字PID控制器114根据比较结果Δi’生成控制电流信号iC。In step S270, the digital PID controller 114 in the digital controller 10 generates a control current signal i C according to the comparison result Δi'.
步骤S280,电磁铁电源1中的调制器20根据控制电流信号iC生成功率器件控制信号S。In step S280, the modulator 20 in the electromagnet power supply 1 generates a power device control signal S according to the control current signal i C.
步骤S290,电磁铁电源1中的功率器件30根据功率器件控制信号S控制电磁铁电源1的输出电流IL。In step S290, the power device 30 in the electromagnet power supply 1 controls the output current I L of the electromagnet power supply 1 according to the power device control signal S.
在步骤S290完成之后,返回到步骤S200。After step S290 is completed, return to step S200.
其中,在步骤S240和步骤S270中,数字控制器10中的数字PID控制器111、数字PID控制器112和数字PID控制器113分别根据比较结果ΔiD、ΔiA和ΔP生成相应的修正直流分量幅值iD”、修正基波分量幅值iA”和修正基波分量相位P”,以及数字控制器10中的数字PID控制器114根据比较结果Δi’生成控制电流信号iC等处理均可采用单精度浮点数的处理方式。在步骤S220中,离散傅立叶分析可采用双精度浮点数的处理方式。Wherein, in step S240 and step S270, the digital PID controller 111, the digital PID controller 112 and the digital PID controller 113 in the digital controller 10 respectively generate corresponding corrected DC components according to the comparison results Δi D , Δi A and ΔP amplitude i D ”, corrected fundamental wave component amplitude i A ” and corrected fundamental wave component phase P”, and the digital PID controller 114 in the digital controller 10 generates the control current signal i C according to the comparison result Δi′. A processing method of single-precision floating-point numbers may be used. In step S220, the discrete Fourier analysis may use a processing method of double-precision floating-point numbers.
作为本申请的另一个实施例,为了在有限的FPGA资源内实现复杂的数字算法,可以将整个本申请的用于电流精密控制数字化动态电磁铁电源的方法分成多个分块,例如将上述步骤S200至步骤S290划分成多个分块,采用流水线处理以提高运算速度。As another embodiment of the present application, in order to realize complex digital algorithms within limited FPGA resources, the method for current precision control of the digital dynamic electromagnet power supply of the entire application can be divided into multiple blocks, for example, the above steps S200 to step S290 are divided into multiple blocks, and pipeline processing is adopted to improve the operation speed.
作为本申请的另一个实施例,此外,在所划分的同一分块内,相同的模块分时复用,可以节约FPGA的逻辑资源。As another embodiment of the present application, in addition, within the same divided block, the same modules are time-division multiplexed, which can save FPGA logic resources.
通过结合图1至图3对本申请的电流精密控制的数字化动态电磁铁电源及其方法的描述,可以看到,根据本申请的技术方案,在数字化动态电磁铁励磁电源的内部,不仅实现电流闭环的数字化控制,而且通过对电磁铁电源参考波形的处理,即可实现动态电磁铁电源输出电流的精确控制。而且不需要更改电磁铁电源主体的硬件结构,也不需要为动态电磁铁电源设计独立的需要温度精确控制的带快速给定接口的远程控制系统,从而大大降低了动态电磁铁电源远程控制系统的成本,简化了动态电磁铁电源控制的体系结构。Through the description of the digital dynamic electromagnet power supply and its method for precise current control of the present application in conjunction with FIGS. The digital control of the electromagnet power supply, and through the processing of the reference waveform of the electromagnet power supply, the precise control of the output current of the dynamic electromagnet power supply can be realized. Moreover, there is no need to change the hardware structure of the main body of the electromagnet power supply, and it is not necessary to design an independent remote control system for the dynamic electromagnet power supply that requires precise temperature control with a fast given interface, thereby greatly reducing the cost of the dynamic electromagnet power supply remote control system. cost, and simplifies the architecture for dynamic solenoid power control.
虽然已参照典型实施例描述了本申请,但应当理解,所用的术语是说明和示例性、而非限制性的术语。由于本申请能够以多种形式具体实施,所以应当理解,上述实施例不限于任何前述的细节,而应在随附权利要求所限定的范围内广泛地解释,因此落入权利要求或其等同范围内的全部变化和改型都应为随附权利要求所涵盖。While the present application has been described with reference to exemplary embodiments, it is understood that the words which have been used are words of description and illustration, rather than of limitation. As the present application can be embodied in many forms, it should be understood that the above-described embodiments are not limited to any of the foregoing details, but are to be construed broadly within the scope of the appended claims, and therefore fall within the claims or their equivalents All changes and modifications within are intended to be covered by the appended claims.
Claims (14)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210458128.3A CN102982963B (en) | 2012-11-14 | 2012-11-14 | Electromagnet power source and control method and digital controller thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210458128.3A CN102982963B (en) | 2012-11-14 | 2012-11-14 | Electromagnet power source and control method and digital controller thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102982963A CN102982963A (en) | 2013-03-20 |
CN102982963B true CN102982963B (en) | 2015-06-24 |
Family
ID=47856858
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210458128.3A Active CN102982963B (en) | 2012-11-14 | 2012-11-14 | Electromagnet power source and control method and digital controller thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102982963B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103246221A (en) * | 2013-05-27 | 2013-08-14 | 南京信息工程大学 | Self-induction closed-loop control system and control method of electromagnet |
CN110809896B (en) * | 2017-06-26 | 2022-09-02 | 赤多尼科两合股份有限公司 | Adapter and control method of adapter |
CN117388777A (en) * | 2021-07-02 | 2024-01-12 | 散裂中子源科学中心 | Excitation curve conversion system for pulse power I/B conversion with preset values |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102074968A (en) * | 2009-11-19 | 2011-05-25 | 上海岩芯电子科技有限公司 | Photovoltaic miniature grid-connected inverter control device and control method thereof |
CN102074965A (en) * | 2011-03-02 | 2011-05-25 | 英利能源(中国)有限公司 | Device and method for reactive power compensation and harmonic suppression of grid-connected potovoltaic system |
CN102322904A (en) * | 2011-06-11 | 2012-01-18 | 杭州电子科技大学 | Vortex shedding flow meter based on self-adaptive fast Fourier transformation |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012516133A (en) * | 2009-01-26 | 2012-07-12 | ジュネーブ クリーンテック インコーポレイテッド | Energy monitoring device, identification method and generation method |
-
2012
- 2012-11-14 CN CN201210458128.3A patent/CN102982963B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102074968A (en) * | 2009-11-19 | 2011-05-25 | 上海岩芯电子科技有限公司 | Photovoltaic miniature grid-connected inverter control device and control method thereof |
CN102074965A (en) * | 2011-03-02 | 2011-05-25 | 英利能源(中国)有限公司 | Device and method for reactive power compensation and harmonic suppression of grid-connected potovoltaic system |
CN102322904A (en) * | 2011-06-11 | 2012-01-18 | 杭州电子科技大学 | Vortex shedding flow meter based on self-adaptive fast Fourier transformation |
Also Published As
Publication number | Publication date |
---|---|
CN102982963A (en) | 2013-03-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Khajehoddin et al. | A resonant controller with high structural robustness for fixed-point digital implementations | |
Komurcugil et al. | An extended Lyapunov-function-based control strategy for single-phase UPS inverters | |
CN107154770B (en) | For controlling the electric system of motor | |
CN108490823B (en) | High-precision field drives stored program controlled | |
CN102982963B (en) | Electromagnet power source and control method and digital controller thereof | |
CN109660160B (en) | Switching duty ratio prediction torque control method | |
Lupon et al. | FPGA implementation of a PWM for a three-phase DC–AC multilevel active-clamped converter | |
Müller et al. | Using the Arduino Uno to teach digital control of power electronics | |
CN103812354A (en) | Broadband strong current generator power supply | |
Melin et al. | Study of the open-source Arduino DUE board as digital control platform for three-phase power converters | |
CN108809185A (en) | A kind of method and system of the Motor torque control of electric vehicle | |
Suru et al. | Implementation of rotor field orientation by voltage control on dSPACE system | |
CN111030169B (en) | Calculation method of power grid parameters under phase-locked condition and readable storage medium | |
Issa et al. | Integrated a variable frequency drive for a diesel-generating set using the Genset-synchro concept | |
Shimogawa et al. | A control system of new magnet power converter for J-PARC main ring upgrade | |
CN108321808A (en) | A kind of method and system for carrying out decoupling control to voltage source inverter | |
CN113176517B (en) | Micro-current compensation method and system for precise control | |
Szczepankowski et al. | A direct modulation for matrix converters based on the one-cycle atomic operation developed in verilog HDL | |
Salah et al. | Implementation of virtual instruments as a power quality analysis tool | |
Gupta et al. | An experimental investigation of scalar control-based induction motor drive using digital signal processor | |
Yu et al. | Research on model based design method of permanent magnet synchronous motor servo system based on FPGA | |
CN105813367B (en) | Method and device for obtaining high-precision time-varying magnetic field on alternating-current magnet | |
Luczak | DSP implementation of electric drive control system | |
CN103066948A (en) | Control method for given current waveforms of resonance excitation source | |
CN110365269A (en) | A kind of vector control method and device based on motor stator parameter off-line identification |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20190704 Address after: 523808 No. 1318 Building A1, Guangda West Valley, Songshan Lake High-tech Industrial Development Zone, Dongguan City, Guangdong Province Patentee after: DONGGUAN DONGYANGGUANG GAONENG MEDICAL EQUIPMENT Co.,Ltd. Address before: 100049 Beijing Shijingshan District 19 Yuquanlu Road No. 2 hospital Patentee before: INSTITUTE OF HIGH ENERGY PHYSICS, CHINESE ACADEMY OF SCIENCES |
|
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20231029 Address after: 100000 courtyard (b), No. 19, Yuquan Road, Shijingshan District, Beijing Patentee after: INSTITUTE OF HIGH ENERGY PHYSICS, CHINESE ACADEMY OF SCIENCES Address before: 523808 No. 1318 Building A1, Guangda West Valley, Songshan Lake High-tech Industrial Development Zone, Dongguan City, Guangdong Province Patentee before: DONGGUAN DONGYANGGUANG GAONENG MEDICAL EQUIPMENT Co.,Ltd. |