CN102945694B - ITO (indium tin oxide) base plate and preparation method of ITO base plate - Google Patents
ITO (indium tin oxide) base plate and preparation method of ITO base plate Download PDFInfo
- Publication number
- CN102945694B CN102945694B CN201210443960.6A CN201210443960A CN102945694B CN 102945694 B CN102945694 B CN 102945694B CN 201210443960 A CN201210443960 A CN 201210443960A CN 102945694 B CN102945694 B CN 102945694B
- Authority
- CN
- China
- Prior art keywords
- substrate
- film layer
- ito film
- ito
- preparation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 12
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 title description 2
- 239000000758 substrate Substances 0.000 claims abstract description 102
- 239000007789 gas Substances 0.000 claims description 33
- 239000012535 impurity Substances 0.000 claims description 28
- 238000000034 method Methods 0.000 claims description 25
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 22
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 19
- 239000001301 oxygen Substances 0.000 claims description 19
- 229910052760 oxygen Inorganic materials 0.000 claims description 19
- 239000013077 target material Substances 0.000 claims description 18
- 238000004544 sputter deposition Methods 0.000 claims description 17
- 229910006404 SnO 2 Inorganic materials 0.000 claims description 16
- 229920000139 polyethylene terephthalate Polymers 0.000 claims description 16
- 239000005020 polyethylene terephthalate Substances 0.000 claims description 16
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 15
- 229910052786 argon Inorganic materials 0.000 claims description 11
- 238000000151 deposition Methods 0.000 claims description 7
- 229920003229 poly(methyl methacrylate) Polymers 0.000 claims description 7
- 239000004417 polycarbonate Substances 0.000 claims description 7
- 239000004926 polymethyl methacrylate Substances 0.000 claims description 7
- 239000000463 material Substances 0.000 claims description 6
- 229920000515 polycarbonate Polymers 0.000 claims description 5
- -1 polyethylene terephthalate Polymers 0.000 claims description 5
- 238000005086 pumping Methods 0.000 claims description 3
- 238000004804 winding Methods 0.000 claims description 3
- 150000002500 ions Chemical class 0.000 abstract description 10
- 230000000737 periodic effect Effects 0.000 abstract description 4
- 239000010408 film Substances 0.000 description 119
- 239000010410 layer Substances 0.000 description 118
- 238000002834 transmittance Methods 0.000 description 15
- 239000013078 crystal Substances 0.000 description 9
- 239000010936 titanium Substances 0.000 description 7
- 239000003292 glue Substances 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 5
- 238000002441 X-ray diffraction Methods 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 108091006149 Electron carriers Proteins 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000001755 magnetron sputter deposition Methods 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 229910001882 dioxygen Inorganic materials 0.000 description 2
- 239000012994 photoredox catalyst Substances 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000003574 free electron Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
Landscapes
- Physical Vapour Deposition (AREA)
Abstract
本发明公开了一种ITO基板,包括基板和沉积在所述基板的一个表面的第一ITO膜层,所述第一ITO膜层为纳米结晶态。上述ITO基板包括基板和沉积在所述基板的一个表面的第一ITO膜层,第一ITO膜层为纳米结晶态。纳米结晶态的第一ITO膜层,其内部离子呈周期性排列,具有各向异性,而非晶态的ITO膜层,其内部离子的排列无周期性,具有各向同性。这种ITO基板的纳米结晶态的第一ITO膜层与传统的非晶态的ITO膜层相比,电阻率较低。本发明还提供一种上述ITO基板的制备方法。
The invention discloses an ITO substrate, which comprises a substrate and a first ITO film layer deposited on one surface of the substrate, and the first ITO film layer is in a nano-crystalline state. The above-mentioned ITO substrate includes a substrate and a first ITO film layer deposited on one surface of the substrate, and the first ITO film layer is in a nanocrystalline state. The first nanocrystalline ITO film layer has periodic arrangement of internal ions and is anisotropic, while the amorphous ITO film layer has no periodic arrangement of internal ions and isotropic. Compared with the traditional amorphous ITO film layer, the nanocrystalline first ITO film layer of the ITO substrate has a lower resistivity. The present invention also provides a preparation method of the above-mentioned ITO substrate.
Description
技术领域technical field
本发明涉及导电基板制备领域,特别是涉及一种ITO基板及其制备方法。The invention relates to the field of preparation of conductive substrates, in particular to an ITO substrate and a preparation method thereof.
背景技术Background technique
ITO(铟锡氧化物)薄膜是一种n型半导体材料,具有导电率高、可见光透光率高、机械硬度高和化学性质稳定等优点。因此,它在等离子显示器、液晶显示器、电致发光显示器、触摸屏、太阳能电池以及电子仪表的透明电极等领域有广泛的应用。ITO (indium tin oxide) thin film is an n-type semiconductor material, which has the advantages of high electrical conductivity, high transmittance of visible light, high mechanical hardness and stable chemical properties. Therefore, it has a wide range of applications in the fields of plasma displays, liquid crystal displays, electroluminescent displays, touch screens, solar cells, and transparent electrodes of electronic instruments.
传统的电容式触摸屏使用的ITO基板,通过在室温条件下采用磁控溅射镀膜的工艺在基板上沉积ITO膜层得到。然而,这种条件制备的ITO膜层为非晶态,从而使制得的ITO基板的ITO膜层的电阻率较高。The ITO substrate used in the traditional capacitive touch screen is obtained by depositing an ITO film layer on the substrate by using a magnetron sputtering coating process at room temperature. However, the ITO film layer prepared under this condition is amorphous, so that the resistivity of the ITO film layer of the prepared ITO substrate is relatively high.
发明内容Contents of the invention
基于此,有必要提供一种ITO膜层电阻率较低的ITO基板及其制备方法。Based on this, it is necessary to provide an ITO substrate with a lower resistivity of the ITO film layer and a preparation method thereof.
一种ITO基板,包括基板和沉积在所述基板的一个表面的第一ITO膜层,所述第一ITO膜层为纳米结晶态。An ITO substrate includes a substrate and a first ITO film layer deposited on one surface of the substrate, and the first ITO film layer is in a nanocrystalline state.
在一个实施例中,所述第一ITO膜层的厚度为20nm~40nm;In one embodiment, the thickness of the first ITO film layer is 20nm ~ 40nm;
所述基板的材质为聚甲基丙烯酸甲酯、聚对苯二甲酸乙二醇酯或聚碳酸酯。The material of the substrate is polymethyl methacrylate, polyethylene terephthalate or polycarbonate.
在一个实施例中,所述第一ITO膜层包含按照质量百分比1%~20%的SnO2,余量为In2O3;In one embodiment, the first ITO film layer contains 1% to 20% SnO 2 by mass percentage, and the balance is In 2 O 3 ;
或所述第一ITO膜层包含按照质量百分比0.3%~5%的TiO2,余量为In2O3。Or the first ITO film layer contains 0.3%-5% TiO 2 by mass percentage, and the balance is In 2 O 3 .
在一个实施例中,还包括沉积在所述基板的另一个表面的第二ITO膜层,所述第二ITO膜层为纳米结晶态;In one embodiment, it also includes a second ITO film layer deposited on the other surface of the substrate, and the second ITO film layer is in a nanocrystalline state;
所述第二ITO膜层包含按照质量百分比1%~20%的SnO2,余量为In2O3;或所述第二ITO膜层包含按照质量百分比0.3%~5%的TiO2,余量为In2O3。The second ITO film layer contains 1% to 20% by mass of SnO 2 , the balance being In 2 O 3 ; or the second ITO film layer contains 0.3% to 5% by mass of TiO 2 , the balance being The amount is In 2 O 3 .
一种ITO基板的制备方法,包括如下步骤:A preparation method for an ITO substrate, comprising the steps of:
提供基板和靶材;Provide substrates and targets;
采用等离子诱导的工艺,在基板温度为室温、溅射功率为4kW~8kW,氩气流量为300sccm~500sccm,氧气流量为1sccm~20sccm以及杂质气体的分压小于5×10-7torr的条件下,采用所述靶材在所述基板的一个表面沉积形成纳米结晶态的第一ITO膜层,得到所述ITO基板。Using plasma-induced process, the substrate temperature is room temperature, the sputtering power is 4kW~8kW, the flow rate of argon gas is 300sccm~500sccm, the flow rate of oxygen gas is 1sccm~20sccm, and the partial pressure of impurity gas is less than 5×10 -7 torr Depositing a first nanocrystalline ITO film layer on one surface of the substrate by using the target material to obtain the ITO substrate.
在一个实施例中,所述杂质气体的分压通过残留气体分析仪检测。In one embodiment, the partial pressure of the impurity gas is detected by a residual gas analyzer.
在一个实施例中,所述杂质气体的分压小于5×10-7torr的条件通过如下方法控制:In one embodiment, the condition that the partial pressure of the impurity gas is less than 5×10 -7 torr is controlled by the following method:
将所述基板置于真空设备内的收卷毂与放卷毂之间,使所述基板展开并来回转动,通过真空抽气设备脱掉所述基板表面吸附的所述杂质气体。The substrate is placed between the winding hub and the unwinding hub in the vacuum equipment, the substrate is unfolded and rotated back and forth, and the impurity gas adsorbed on the surface of the substrate is removed by the vacuum pumping equipment.
在一个实施例中,所述第一ITO膜层的厚度为20nm~40nm;In one embodiment, the thickness of the first ITO film layer is 20nm ~ 40nm;
所述基板的材质为聚甲基丙烯酸甲酯、聚对苯二甲酸乙二醇酯或聚碳酸酯。The material of the substrate is polymethyl methacrylate, polyethylene terephthalate or polycarbonate.
在一个实施例中,所述靶材包含按照质量百分比1%~20%的SnO2,余量为In2O3;In one embodiment, the target material contains 1%-20% SnO 2 by mass percentage, and the balance is In 2 O 3 ;
或所述靶材包含按照质量百分比0.3%~5%的TiO2,余量为In2O3。Or the target material contains 0.3%-5% TiO 2 by mass percentage, and the balance is In 2 O 3 .
在一个实施例中,还包括采用所述靶材在所述基板的另一个表面沉积形成纳米结晶态的第二ITO膜层的操作。In one embodiment, it further includes the operation of depositing a second ITO film layer in a nanocrystalline state on the other surface of the substrate by using the target material.
上述ITO基板包括基板和沉积在所述基板的一个表面的第一ITO膜层,第一ITO膜层为纳米结晶态。纳米结晶态的第一ITO膜层,其内部离子呈周期性排列,具有各向异性,而非晶态的ITO膜层,其内部离子的排列无周期性,具有各向同性。这种ITO基板的纳米结晶态的第一ITO膜层与传统的非晶态的ITO膜层相比,电阻率较低。The above-mentioned ITO substrate includes a substrate and a first ITO film layer deposited on one surface of the substrate, and the first ITO film layer is in a nanocrystalline state. The first nanocrystalline ITO film layer has periodic arrangement of internal ions and is anisotropic, while the amorphous ITO film layer has no periodic arrangement of internal ions and isotropic. Compared with the traditional amorphous ITO film layer, the nanocrystalline first ITO film layer of the ITO substrate has a lower resistivity.
附图说明Description of drawings
图1为一实施方式的ITO基板的结构示意图;Fig. 1 is the structural representation of the ITO substrate of an embodiment;
图2为如图1所示的ITO基板的制备方法的流程图;Fig. 2 is the flow chart of the preparation method of ITO substrate as shown in Fig. 1;
图3为实施例1制备的ITO基板的X射线衍射光谱图;Fig. 3 is the X-ray diffraction spectrogram of the ITO substrate that embodiment 1 prepares;
图4为对比例制备的ITO基板的X射线衍射光谱图。Fig. 4 is an X-ray diffraction spectrum diagram of an ITO substrate prepared in a comparative example.
具体实施方式Detailed ways
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。In order to facilitate the understanding of the present invention, the present invention will be described more fully below with reference to the associated drawings. Preferred embodiments of the invention are shown in the accompanying drawings. However, the present invention can be embodied in many different forms and is not limited to the embodiments described herein. On the contrary, these embodiments are provided to make the understanding of the disclosure of the present invention more thorough and comprehensive.
如图1所示的一实施方式的ITO基板,包括基板10和沉积在基板10的一个表面的第一ITO膜层20。第一ITO膜层20为纳米结晶态。As shown in FIG. 1 , an ITO substrate according to one embodiment includes a substrate 10 and a first ITO film layer 20 deposited on one surface of the substrate 10 . The first ITO film layer 20 is in a nano-crystalline state.
上述ITO基板包括基板10和沉积在基板10的一个表面的第一ITO膜层20,第一ITO膜层20为纳米结晶态。纳米结晶态的第一ITO膜层20,其内部离子呈周期性排列,具有各向异性,而非晶态的ITO膜层,其内部离子的排列无周期性,具有各向同性。这种ITO基板的纳米结晶态的第一ITO膜层20与传统的非晶态的ITO膜层相比,电阻率较低,具有较高的导电率。The above-mentioned ITO substrate includes a substrate 10 and a first ITO film layer 20 deposited on one surface of the substrate 10 , and the first ITO film layer 20 is in a nanocrystalline state. The first nano-crystalline ITO film layer 20 has anisotropic internal ions arranged periodically, while the amorphous ITO film layer has isotropic internal ion arrangement without periodicity. Compared with the traditional amorphous ITO film layer, the nanocrystalline first ITO film layer 20 of this ITO substrate has lower resistivity and higher conductivity.
第一ITO膜层20的厚度可以为20nm~40nm。第一ITO膜层20的厚度越薄,则具有较好的透光率,在本实施方式中,第一ITO膜层20的厚度为20nm~40nm时,第一ITO膜层20的面电阻不是很高,同时,透光率较高。在其他实施方式中,可以根据需要灵活选择第一ITO膜层20的厚度。The thickness of the first ITO film layer 20 may be 20nm-40nm. The thinner the thickness of the first ITO film layer 20, the better the light transmittance. In the present embodiment, when the thickness of the first ITO film layer 20 is 20nm ~ 40nm, the surface resistance of the first ITO film layer 20 is not Very high, at the same time, the light transmittance is high. In other embodiments, the thickness of the first ITO film layer 20 can be flexibly selected according to needs.
基板10的材质可以为聚甲基丙烯酸甲酯(polymethylmethacrylate,PMMA)、聚对苯二甲酸乙二醇酯(polyethylene terephthalate,PET)或聚碳酸酯(Polycarbonate,PC)。The material of the substrate 10 may be polymethylmethacrylate (polymethylmethacrylate, PMMA), polyethylene terephthalate (polyethylene terephthalate, PET) or polycarbonate (Polycarbonate, PC).
第一ITO膜层20包含按照质量百分比1%~20%的SnO2,余量为In2O3。或者第一ITO膜层20包含按照质量百分比0.3%~5%的TiO2,余量为In2O3。The first ITO film layer 20 contains 1%-20% by mass of SnO 2 , and the balance is In 2 O 3 . Alternatively, the first ITO film layer 20 contains 0.3%-5% TiO 2 by mass percentage, and the balance is In 2 O 3 .
TiO2中的Ti4+或者SnO2中的Sn4+能够取代In2O3晶格中In3+的位置,从而形成一个电子载流子,载流子浓度越大,第一ITO膜层的电阻率越低,但过大的Sn4+、或Ti4+离子的加入会形成载流子的散射中心,从而影响到了载流子的迁移率,反而使第一ITO膜层的电阻率提高。第一ITO膜层20包含按照质量百分比1%~20%的SnO2或质量百分比0.3%~5%的TiO2,余量为In2O3时,第一ITO膜层20的载流子浓度和迁移率都较高。在其他的本实施方式中,ITO基板还包括沉积在基板的另一个表面的第二ITO膜层,第二ITO膜层为纳米结晶态。Ti 4+ in TiO 2 or Sn 4+ in SnO 2 can replace the position of In 3+ in the In 2 O 3 lattice, thus forming an electron carrier. The greater the carrier concentration, the first ITO film layer The lower the resistivity, but the addition of too large Sn 4+ or Ti 4+ ions will form a carrier scattering center, thereby affecting the mobility of carriers, and instead make the resistivity of the first ITO film layer improve. The first ITO film layer 20 comprises SnO 2 according to mass percentage 1%~20% or TiO 2 mass percentage 0.3%~5%, when the balance is In 2 O 3 , the carrier concentration of the first ITO film layer 20 and high mobility. In other embodiments, the ITO substrate further includes a second ITO film layer deposited on the other surface of the substrate, and the second ITO film layer is in a nanocrystalline state.
第二ITO膜层包含按照质量百分比1%~20%的SnO2,余量为In2O3。或者第二ITO膜层包含按照质量百分比0.3%~5%的TiO2,余量为In2O3。The second ITO film layer contains 1%-20% of SnO 2 according to mass percentage, and the balance is In 2 O 3 . Or the second ITO film layer contains 0.3%-5% TiO 2 by mass percentage, and the balance is In 2 O 3 .
传统的ITO基板是单层镀膜结构,需要两张ITO膜层用光学胶贴合在一起使用,从而存在贴合不良以及增加光学胶成本的缺点。基板的两个表面分别沉积有第一ITO膜层和第二ITO膜层,具有电阻率低和透光率高等优点,而且还可以节约触摸屏的成本。The traditional ITO substrate has a single-layer coating structure, which requires two ITO film layers to be bonded together with optical glue, which has the disadvantages of poor bonding and increased cost of optical glue. The first ITO film layer and the second ITO film layer are respectively deposited on the two surfaces of the substrate, which has the advantages of low resistivity and high light transmittance, and can also save the cost of the touch screen.
第二ITO膜层的厚度可以为20nm~40nm。第二ITO膜层的厚度越薄,则具有较好的透光率,在本实施方式中,第二ITO膜层的厚度为20nm~40nm时,第二ITO膜层的面电阻不是很高,同时,透光率较高。在其他实施方式中,可以根据需要灵活选择第二ITO膜层的厚度。The thickness of the second ITO film layer may be 20nm-40nm. The thinner the thickness of the second ITO film layer, the better light transmittance, in the present embodiment, when the thickness of the second ITO film layer is 20nm~40nm, the surface resistance of the second ITO film layer is not very high, At the same time, the light transmittance is high. In other embodiments, the thickness of the second ITO film layer can be flexibly selected according to needs.
图2所示的上述ITO基板的制备方法,包括如下步骤:The preparation method of the above-mentioned ITO substrate shown in Fig. 2 comprises the steps:
S110、提供基板10和靶材。S110, providing a substrate 10 and a target.
基板的材质可以为PMMA、PET或PC。The material of the substrate can be PMMA, PET or PC.
S120、采用等离子诱导的工艺,在基板10温度为室温、溅射功率为4kW~8kW,氩气流量为300sccm~500sccm,氧气流量为1sccm~20sccm以及杂质气体的分压小于5×10-7torr的条件下,采用靶材在基板10的一个表面沉积形成纳米结晶态的第一ITO膜层20,得到ITO基板。氧气含量对第一ITO膜层20的电阻率和透光率的影响较大。第一ITO膜层20中氧空位是电子载流子的另外一个来源,第一ITO膜层20会随着氧空位的增加而降低电阻率,同样当增加到一定程度后氧空位对降低载流子的迁移率影响更大,使第一ITO膜层20的电阻率反而上升,第一ITO膜层电阻率20越低,透光率越高。同时,氧气含量过低,会生成黑色的低价化合物InO,影响第一ITO膜层20的透光率。S120, using a plasma-induced process, when the temperature of the substrate 10 is room temperature, the sputtering power is 4kW~8kW, the flow rate of argon gas is 300sccm~500sccm, the flow rate of oxygen gas is 1sccm~20sccm, and the partial pressure of the impurity gas is less than 5×10 -7 torr Under the condition of using the target material to deposit and form the first ITO film layer 20 in a nanocrystalline state on one surface of the substrate 10, an ITO substrate is obtained. The oxygen content has a great influence on the resistivity and light transmittance of the first ITO film layer 20 . Oxygen vacancies in the first ITO film layer 20 are another source of electron carriers, and the first ITO film layer 20 will reduce the resistivity with the increase of oxygen vacancies. The influence of the mobility of the electrons is greater, so that the resistivity of the first ITO film layer 20 increases instead, and the lower the resistivity 20 of the first ITO film layer, the higher the light transmittance. At the same time, if the oxygen content is too low, a black low-valent compound InO will be generated, which will affect the light transmittance of the first ITO film layer 20 .
在本实施方式中,氧气含量为1sccm~20sccm,制备得到的第一ITO膜层20具有适量的自由电子和氧空穴,面电阻较低。同时氧气含量适量,不会生产黑色的InO,得到的第一ITO膜层20具有较好的透光率。此外,氧气含量可以根据靶材的溅射功率和氩气的压力做适当的调整,使的制备得到的第一ITO膜层20在缩水之后电阻率最低。In this embodiment, the oxygen content is 1sccm-20sccm, and the prepared first ITO film layer 20 has an appropriate amount of free electrons and oxygen holes, and has a low surface resistance. At the same time, the oxygen content is appropriate, and black InO will not be produced, and the obtained first ITO film layer 20 has better light transmittance. In addition, the oxygen content can be properly adjusted according to the sputtering power of the target and the pressure of the argon gas, so that the prepared first ITO film layer 20 has the lowest resistivity after shrinking.
杂质气体的分压可以通过残留气体分析仪(Residual gas analyzer,RGA)检测。杂质气体可能是H2O和CO2等。如果通过RGA监控腔室内的H2O等杂质气体的分压大于×10-7torr,则可以将基板置于真空设备内的收卷毂与放卷毂之间,使基板展开并来回转动,通过真空抽气设备脱掉基板表面吸附的杂质气体,减小杂质气体对第一ITO膜层20的污染。The partial pressure of the impurity gas can be detected by a residual gas analyzer (Residual gas analyzer, RGA). The impurity gases may be H2O and CO2 etc. If the partial pressure of H 2 O and other impurity gases in the chamber monitored by RGA is greater than ×10 -7 torr, the substrate can be placed between the winding hub and the unwinding hub in the vacuum equipment, so that the substrate is unfolded and rotated back and forth, The impurity gas adsorbed on the surface of the substrate is removed by vacuum pumping equipment, so as to reduce the pollution of the impurity gas to the first ITO film layer 20 .
第一ITO膜层20的厚度可以为20nm~40nm。第一ITO膜层20的厚度越薄,则具有较好的透光率,在本实施方式中,第一ITO膜层20的厚度可以为20nm~40nm,第一ITO膜层20的面电阻也不是很高,同时,透光率较高。在其他实施方式中,可以根据需要,调节第一ITO膜层20的沉积速率和沉积的时间来制备所需厚度的第一ITO膜层20。靶材包含按照质量百分比1%~20%的SnO2,余量为In2O3。或者靶材包含按照质量百分比0.3%~5%的TiO2,余量为In2O3。The thickness of the first ITO film layer 20 may be 20nm-40nm. The thinner the thickness of the first ITO film layer 20, the better the light transmittance. In this embodiment, the thickness of the first ITO film layer 20 can be 20nm ~ 40nm, and the surface resistance of the first ITO film layer 20 is also Not very high, at the same time, the light transmittance is high. In other embodiments, the deposition rate and deposition time of the first ITO film layer 20 can be adjusted according to needs to prepare the first ITO film layer 20 with a required thickness. The target material contains 1%-20% of SnO 2 by mass percentage, and the balance is In 2 O 3 . Alternatively, the target material contains 0.3%-5% TiO 2 by mass percentage, and the balance is In 2 O 3 .
靶材中的SnO2或TiO2被溅射到基板10表面时,TiO2中的Ti4+或者SnO2中的Sn4+能够取代In2O3晶格中In3+的位置,In2O3中的In3+是正三价,而Sn4+或Ti4+是正四价,从而形成一个电子载流子,载流子浓度越大,膜层的电阻率越低,但过大的Sn4+、或Ti4+离子的加入会形成载流子的散射中心,从而影响到了载流子的迁移率,反而使第一ITO膜层的电阻率提高。第一ITO膜层20包含按照质量百分比1%~20%的SnO2或质量百分比0.3%~5%的TiO2,余量为In2O3时,第一ITO膜层20的载流子浓度和迁移率都较高。When SnO 2 or TiO 2 in the target is sputtered onto the surface of the substrate 10, Ti 4+ in TiO 2 or Sn 4+ in SnO 2 can replace the position of In 3+ in the In 2 O 3 lattice, In 2 In 3+ in O 3 is positive trivalent, while Sn 4+ or Ti 4+ is positive tetravalent, thus forming an electron carrier, the greater the carrier concentration, the lower the resistivity of the film, but too large The addition of Sn 4+ or Ti 4+ ions will form a carrier scattering center, thereby affecting the mobility of the carriers, and instead increasing the resistivity of the first ITO film layer. The first ITO film layer 20 comprises SnO 2 according to mass percentage 1%~20% or TiO 2 mass percentage 0.3%~5%, when the balance is In 2 O 3 , the carrier concentration of the first ITO film layer 20 and high mobility.
S120还可以包括采用靶材在基板的另一个表面沉积形成纳米结晶态的第二ITO膜层的操作。S120 may also include an operation of depositing a second nanocrystalline ITO film layer on the other surface of the substrate by using a target material.
传统的ITO基板是单层镀膜结构,需要两张ITO膜层用光学胶贴合在一起使用,从而存在贴合不良以及增加光学胶成本的缺点。基板的两个表面分别沉积有第一ITO膜层20和第二ITO膜层,具有电阻率低和透光率高等优点,而且还可以节约触摸屏的成本。The traditional ITO substrate has a single-layer coating structure, which requires two ITO film layers to be bonded together with optical glue, which has the disadvantages of poor bonding and increased cost of optical glue. The first ITO film layer 20 and the second ITO film layer are respectively deposited on the two surfaces of the substrate, which has the advantages of low resistivity and high light transmittance, and can also save the cost of the touch screen.
第一ITO膜层20的导电率和第一ITO膜层20的载流子浓度以及载流子迁移速率成正比。第一ITO膜层20的载流子浓度与第一ITO膜层20中的Sn4+含量、Ti4+含量和O2-含量有关,为了得到较高的载流子浓度可以通过控制靶材中的锡或钛的含量以及等离子诱导的工艺中的氧气含量来实现。载流子迁移速率与第一ITO膜层20的结晶状态、晶格结构和晶格缺陷有关。氧气在等离子源产生的O2-可以进入到第一ITO膜层20中的间隙,补充到In3+间的氧空穴位置,使In2O3的结晶更加完整,可以得到较高的载流子迁移速率,降低电子在晶体内的复合机率,从而降低第一ITO膜层20的电阻率。The electrical conductivity of the first ITO film layer 20 is directly proportional to the carrier concentration and the carrier transfer rate of the first ITO film layer 20 . The carrier concentration of the first ITO film layer 20 is related to the Sn 4+ content, Ti 4+ content and O 2- content in the first ITO film layer 20, in order to obtain a higher carrier concentration can be controlled by the target The content of tin or titanium in and the oxygen content in the plasma-induced process are achieved. The carrier mobility rate is related to the crystallization state, lattice structure and lattice defects of the first ITO film layer 20 . The O 2- generated by the oxygen in the plasma source can enter the gap in the first ITO film layer 20 and supplement the oxygen hole positions between the In 3+ , so that the crystallization of In 2 O 3 is more complete, and a higher loading capacity can be obtained. The carrier mobility rate reduces the recombination probability of electrons in the crystal, thereby reducing the resistivity of the first ITO film layer 20 .
传统的ITO基板的制备采用的是室温下磁控溅射镀膜的工艺,在室温的条件下制备的ITO是非晶态,这样ITO膜层的电阻率会很高。要实现面电阻为150Ω/□,需要沉积厚度为80nm的ITO膜层,ITO基板的透光率为70%左右。The traditional ITO substrate is prepared using the process of magnetron sputtering coating at room temperature, and the ITO prepared at room temperature is amorphous, so the resistivity of the ITO film layer will be very high. To achieve a surface resistance of 150Ω/□, an ITO film layer with a thickness of 80nm needs to be deposited, and the light transmittance of the ITO substrate is about 70%.
采用等离子诱导的工艺条件,在室温下沉积形成的纳米结晶态第一ITO膜层,能够提高第一ITO膜层的导电性能,降低第一ITO膜层的电阻率。要实现面电阻为150Ω/□,需要沉积的第一ITO膜层的厚度为20nm~40nm左右,同时透光率可以提高到84%以上。The first nanocrystalline ITO film layer deposited at room temperature by adopting plasma-induced process conditions can improve the conductivity of the first ITO film layer and reduce the resistivity of the first ITO film layer. To achieve a surface resistance of 150Ω/□, the thickness of the deposited first ITO film layer needs to be about 20nm~40nm, and the light transmittance can be increased to more than 84%.
上述方法采用等离子体诱导的工艺条件,在基板的一个表面沉积形成了纳米结晶态的第一ITO膜层。纳米结晶态的第一ITO膜层,其内部离子呈周期性排列,具有各向异性。而非晶态的ITO膜层,其内部离子的排列无周期性,具有各向同性。这种ITO基板的纳米结晶态的第一ITO膜层与传统的非晶态的ITO膜层相比,电阻率较低,具有较高的导电率。同时,上述方法可以在基板的另一个表面也沉积形成有纳米结晶态的第二ITO膜层,相比于传统的用两张ITO膜层采用光学胶贴合在一起,可以减低触摸屏的生产成本。The above method adopts plasma-induced process conditions to deposit and form the first nanocrystalline ITO film layer on one surface of the substrate. In the first nano-crystalline ITO film layer, the internal ions are arranged periodically and have anisotropy. The amorphous ITO film layer has no periodicity in the arrangement of its internal ions and is isotropic. Compared with the traditional amorphous ITO film layer, the nanocrystalline first ITO film layer of the ITO substrate has lower resistivity and higher electrical conductivity. At the same time, the above method can also deposit and form a second ITO film layer in a nanocrystalline state on the other surface of the substrate. Compared with the traditional method of using two ITO film layers to be bonded together with optical glue, the production cost of the touch screen can be reduced. .
下面为具体实施例部分。The following is the specific embodiment part.
实施例1Example 1
将厚度为125μm的PET基板进行等离子体清洁后,除去表面杂质。The PET substrate with a thickness of 125 μm was plasma-cleaned to remove surface impurities.
以包括质量百分比为12%的SnO2和余量的In2O3的靶材作为阴极。A target material comprising 12% by mass of SnO 2 and the balance of In 2 O 3 is used as the cathode.
采用等离子诱导的工艺条件,在基板温度为室温,氧气流量为13sccm,杂质气体的分压为4×10-7torr,氩气流量为400sccm和溅射功率为6kW的条件下,在PET基板的一个表面溅射形成厚度为35nm的第一ITO膜层,得到ITO基板,其面电阻为170Ω/□,ITO膜层的电阻率为595μΩ·cm。Using plasma-induced process conditions, the substrate temperature is room temperature, the oxygen flow rate is 13sccm, the partial pressure of impurity gas is 4×10 -7 torr, the argon flow rate is 400sccm and the sputtering power is 6kW. A first ITO film layer with a thickness of 35 nm was formed by sputtering on one surface to obtain an ITO substrate with a surface resistance of 170Ω/□ and a resistivity of the ITO film layer of 595 μΩ·cm.
实施例2Example 2
将厚度为125μm的PET基板进行等离子体清洁后,除去表面杂质。The PET substrate with a thickness of 125 μm was plasma-cleaned to remove surface impurities.
以包括质量百分比为1%的SnO2和余量的In2O3的靶材作为阴极。A target material including 1% SnO 2 and the balance In 2 O 3 is used as the cathode.
采用等离子诱导的工艺条件,在基板温度为室温,氧气含量为1sccm,杂质气体分压为3×10-7torr,氩气用量为300sccm和溅射功率为4kW的条件下,在PET基板的一个表面溅射形成厚度为30nm的第一ITO膜层,其面电阻为300Ω/□,ITO膜层的电阻率为900μΩ·cm。Using plasma-induced process conditions, under the conditions that the substrate temperature is room temperature, the oxygen content is 1 sccm, the impurity gas partial pressure is 3×10 -7 torr, the argon gas consumption is 300 sccm and the sputtering power is 4kW, a The first ITO film layer with a thickness of 30 nm was formed by sputtering on the surface, its surface resistance was 300Ω/□, and the resistivity of the ITO film layer was 900 μΩ·cm.
然后按照制备第一ITO膜层的方法在PET基板的另一个表面溅射形成厚度为30nm的第二ITO膜层,制备得到ITO基板。Then, a second ITO film layer with a thickness of 30 nm was formed by sputtering on the other surface of the PET substrate according to the method for preparing the first ITO film layer, and an ITO substrate was prepared.
实施例3Example 3
将厚度为125μm的PET基板进行等离子体清洁后,除去表面杂质。The PET substrate with a thickness of 125 μm was plasma-cleaned to remove surface impurities.
以包括质量百分比为20%的SnO2和余量的In2O3的靶材作为阴极。A target material comprising 20% by mass of SnO 2 and the balance of In 2 O 3 is used as the cathode.
采用等离子诱导的工艺条件,在基板温度为室温,氧气含量为20sccm,杂质其他的分压为3×10-7torr,氩气用量为500sccm和溅射功率为8kW的条件下,在PET基板的一个表面溅射形成厚度为40nm的ITO膜层,得到ITO基板,其面电阻为180Ω/□,ITO膜层的电阻率为720μΩ·cm。Using plasma-induced process conditions, the temperature of the substrate is room temperature, the oxygen content is 20 sccm, the partial pressure of other impurities is 3×10 -7 torr, the amount of argon gas is 500 sccm and the sputtering power is 8kW. One surface was sputtered to form an ITO film layer with a thickness of 40nm to obtain an ITO substrate with a surface resistance of 180Ω/□ and a resistivity of the ITO film layer of 720μΩ·cm.
实施例4Example 4
将厚度为125μm的PET基板进行等离子体清洁后,除去表面杂质。The PET substrate with a thickness of 125 μm was plasma-cleaned to remove surface impurities.
以包括质量百分比为0.3%的TiO2和余量的In2O3的靶材作为阴极。A target material comprising 0.3% by mass of TiO 2 and the balance of In 2 O 3 is used as the cathode.
采用等离子诱导的工艺条件,在基板温度为室温,氧气含量为6sccm,杂质气体分压为4×10-7torr,氩气用量为500sccm和溅射功率为6kW的条件下,在PET基板的一个表面溅射形成厚度为36nm的第一ITO膜层,其面电阻为160Ω/□,ITO膜层的电阻率为540μΩ·cm。Using plasma-induced process conditions, under the conditions that the substrate temperature is room temperature, the oxygen content is 6 sccm, the impurity gas partial pressure is 4×10 -7 torr, the argon gas consumption is 500 sccm and the sputtering power is 6 kW, a The first ITO film layer with a thickness of 36 nm was formed by sputtering on the surface, its surface resistance was 160Ω/□, and the resistivity of the ITO film layer was 540 μΩ·cm.
实施例5Example 5
将厚度为125μm的PET基板进行等离子体清洁后,除去表面杂质。The PET substrate with a thickness of 125 μm was plasma-cleaned to remove surface impurities.
以包括质量百分比为5%的TiO2和余量的In2O3的靶材作为阴极。A target material comprising 5% by mass of TiO 2 and the balance of In 2 O 3 is used as the cathode.
采用等离子诱导的工艺条件,在基板温度为室温,氧气含量为6sccm,杂质气体分压为4×10-7torr,氩气用量为400sccm和溅射功率为6kW的条件下,在PET基板的一个表面溅射形成厚度为28nm的第一ITO膜层,其面电阻为160Ω/□,ITO膜层的电阻率为784μΩ·cm。Using the plasma-induced process conditions, under the conditions that the substrate temperature is room temperature, the oxygen content is 6 sccm, the impurity gas partial pressure is 4×10 -7 torr, the argon gas consumption is 400 sccm and the sputtering power is 6 kW, a The first ITO film layer with a thickness of 28 nm was formed by sputtering on the surface, its surface resistance was 160Ω/□, and the resistivity of the ITO film layer was 784 μΩ·cm.
实施例6Example 6
将厚度为125μm的PET基板进行等离子体清洁后,除去表面杂质。The PET substrate with a thickness of 125 μm was plasma-cleaned to remove surface impurities.
以包括质量百分比为2.3%的TiO2和余量的In2O3的靶材作为阴极。A target material comprising 2.3% by mass of TiO 2 and the balance of In 2 O 3 is used as the cathode.
采用等离子诱导的工艺条件,在基板温度为室温,氧气含量为6sccm,杂质气体分压为4×10-7torr,氩气用量为500sccm和溅射功率为5kW的条件下,在PET基板的一个表面溅射形成厚度为20nm的第一ITO膜层,其面电阻为400Ω/□,ITO膜层的电阻率为800μΩ·cm。Using the plasma-induced process conditions, under the conditions that the substrate temperature is room temperature, the oxygen content is 6 sccm, the impurity gas partial pressure is 4×10 -7 torr, the argon gas consumption is 500 sccm and the sputtering power is 5 kW, a The first ITO film layer with a thickness of 20 nm was formed by sputtering on the surface, its surface resistance was 400Ω/□, and the resistivity of the ITO film layer was 800 μΩ·cm.
对比例comparative example
将厚度为125μm的PET基板进行等离子体清洁后,除去表面杂质。The PET substrate with a thickness of 125 μm was plasma-cleaned to remove surface impurities.
以包括质量百分比为10%的SnO2和余量的In2O3的靶材作为阴极。A target material comprising 10% by mass of SnO 2 and the balance of In 2 O 3 is used as the cathode.
在室温下,在氧气含量为12sccm,杂质气体分压为2×10-6torr,氩气用量为500sccm和溅射功率为8KW的条件下,在PET基板的一个表面溅射形成厚度为80nm的第一ITO膜层,其面电阻为150Ω/□,ITO膜层的电阻率为1200μΩ·cm。At room temperature, under the conditions that the oxygen content is 12 sccm, the impurity gas partial pressure is 2×10 -6 torr, the argon gas consumption is 500 sccm and the sputtering power is 8KW, a layer with a thickness of 80 nm is sputtered on one surface of a PET substrate. The surface resistance of the first ITO film layer is 150Ω/□, and the resistivity of the ITO film layer is 1200 μΩ·cm.
图3和图4分别为按照实施例1的制备方法得到的ITO基板的X射线衍射光谱图和对比例制备的ITO基板的X射线衍射光谱图。如图3所示,在30°、35.5°和51°处的衍射峰为In2O3晶体的衍射峰。相应的,30°的衍射峰归属于In2O3晶体[222]晶面的衍射,35.5°的衍射峰归属于In2O3晶体[400]晶面的衍射,51°的衍射峰归属于In2O3晶体[440]晶面的衍射。而图4中没有出现In2O3晶体的衍射峰,制备得到的ITO膜层为非晶态。因此,在室温下采用等离子诱导的工艺条件制备得到的第一ITO膜层具有纳米晶体结构,而在室温下采用传统的磁控溅射方法制备的ITO膜层为非晶态。采用等离子诱导的工艺条件制备的这种ITO基板的纳米结晶态的第一ITO膜层与传统的非晶态的ITO膜层相比,电阻率较低,具有较高的导电率。Figure 3 and Figure 4 are respectively the X-ray diffraction spectrum of the ITO substrate obtained according to the preparation method of Example 1 and the X-ray diffraction spectrum of the ITO substrate prepared in the comparative example. As shown in Figure 3, the diffraction peaks at 30°, 35.5° and 51° are the diffraction peaks of In 2 O 3 crystal. Correspondingly, the diffraction peak at 30° is attributed to the diffraction of the [222] crystal plane of In 2 O 3 crystal, the diffraction peak of 35.5° is attributed to the diffraction of the [400] crystal plane of In 2 O 3 crystal, and the diffraction peak of 51° is attributed to Diffraction from the [440] crystal plane of an In 2 O 3 crystal. However, no diffraction peaks of In 2 O 3 crystals appear in FIG. 4 , and the prepared ITO film is amorphous. Therefore, the first ITO film layer prepared by plasma-induced process conditions at room temperature has a nanocrystalline structure, while the ITO film layer prepared by traditional magnetron sputtering method at room temperature is amorphous. Compared with the traditional amorphous ITO film layer, the nanocrystalline first ITO film layer of the ITO substrate prepared by plasma-induced process conditions has lower resistivity and higher electrical conductivity.
以上所述实施例仅表达了本发明的一种或几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。The above-mentioned embodiments only represent one or several implementations of the present invention, and the description thereof is relatively specific and detailed, but should not be construed as limiting the patent scope of the present invention. It should be pointed out that those skilled in the art can make several modifications and improvements without departing from the concept of the present invention, and these all belong to the protection scope of the present invention. Therefore, the protection scope of the patent for the present invention should be based on the appended claims.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210443960.6A CN102945694B (en) | 2012-11-08 | 2012-11-08 | ITO (indium tin oxide) base plate and preparation method of ITO base plate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210443960.6A CN102945694B (en) | 2012-11-08 | 2012-11-08 | ITO (indium tin oxide) base plate and preparation method of ITO base plate |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102945694A CN102945694A (en) | 2013-02-27 |
CN102945694B true CN102945694B (en) | 2015-05-20 |
Family
ID=47728629
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210443960.6A Expired - Fee Related CN102945694B (en) | 2012-11-08 | 2012-11-08 | ITO (indium tin oxide) base plate and preparation method of ITO base plate |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102945694B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106854754B (en) * | 2016-12-16 | 2019-04-26 | 桂林电子科技大学 | A kind of preparation method of 400 main peak crystal plane highly preferred orientation ITO film |
CN112965148A (en) * | 2021-04-15 | 2021-06-15 | 信阳舜宇光学有限公司 | Optical material with ITO film layer and manufacturing method thereof |
CN114835485A (en) * | 2022-04-20 | 2022-08-02 | 柳州华锡有色设计研究院有限责任公司 | Method for deeply reducing resistivity of ITO target by accurately proportioning oxygen and argon |
WO2025027401A1 (en) * | 2023-07-28 | 2025-02-06 | 3Sun S.R.L. | Multi-junction photovoltaic cells |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102102187A (en) * | 2009-12-17 | 2011-06-22 | 中环股份有限公司 | Method for preparing transparent conductive films with crystalline structures |
CN102409294A (en) * | 2011-12-05 | 2012-04-11 | 深圳市华星光电技术有限公司 | Glass substrate film sputtering target material and preparation method thereof |
CN102666909A (en) * | 2009-11-19 | 2012-09-12 | 株式会社爱发科 | Manufacturing method and device for transparent conductive film, sputtering target and transparent conductive film |
CN202878837U (en) * | 2012-11-08 | 2013-04-17 | 深圳南玻显示器件科技有限公司 | ITO (indium-tin oxide) substrate |
-
2012
- 2012-11-08 CN CN201210443960.6A patent/CN102945694B/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102666909A (en) * | 2009-11-19 | 2012-09-12 | 株式会社爱发科 | Manufacturing method and device for transparent conductive film, sputtering target and transparent conductive film |
CN102102187A (en) * | 2009-12-17 | 2011-06-22 | 中环股份有限公司 | Method for preparing transparent conductive films with crystalline structures |
CN102409294A (en) * | 2011-12-05 | 2012-04-11 | 深圳市华星光电技术有限公司 | Glass substrate film sputtering target material and preparation method thereof |
CN202878837U (en) * | 2012-11-08 | 2013-04-17 | 深圳南玻显示器件科技有限公司 | ITO (indium-tin oxide) substrate |
Also Published As
Publication number | Publication date |
---|---|
CN102945694A (en) | 2013-02-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4670877B2 (en) | Zinc oxide based transparent conductive film laminate, transparent conductive substrate and device | |
KR101349357B1 (en) | Transparent conductive graphene films modified by metal oxides | |
CN102982861A (en) | Transparent conductive film layer for capacitive touch screen | |
CN102945694B (en) | ITO (indium tin oxide) base plate and preparation method of ITO base plate | |
CN105845196B (en) | Manganese tin-oxide class transparent conductive oxide and using its multi-layer transparent conductive film with and preparation method thereof | |
WO2004065656A1 (en) | Ito thin film, film-forming method of same, transparent conductive film and touch panel | |
US10395845B2 (en) | Flexible Ti—In—Zn—O transparent electrode for dye-sensitized solar cell, and metal-inserted three-layer transparent electrode with high conductivity using same and manufacturing method therefor | |
Wang et al. | Improved properties of Ti-doped ZnO thin films by hydrogen plasma treatment | |
Chuang | ITO films prepared by long-throw magnetron sputtering without oxygen partial pressure | |
CN102195006A (en) | Flexible electrode based on AZO/graphene/AZO structure and preparation method thereof | |
Cao et al. | Low-cost sn-doped indium oxide films with high mobility by reactive plasma deposition for silicon heterojunction solar cells | |
CN114231903B (en) | Niobium oxide/silver nanowire double-layer structure flexible transparent conductive film and preparation method thereof | |
Nandy et al. | Ultra smooth NiO thin films on flexible plastic (PET) substrate at room temperature by RF magnetron sputtering and effect of oxygen partial pressure on their properties | |
CN103203912B (en) | A kind of new A ZO coated glass and preparation technology thereof | |
Jung et al. | Effects of intermediate metal layer on the properties of Ga–Al doped ZnO/metal/Ga–Al doped ZnO multilayers deposited on polymer substrate | |
CN102255052A (en) | Azo-compound (AZO)/carbon nanotube/AZO structure-based flexible electrode and preparation method thereof | |
Poonthong et al. | Performance Analysis of Ti‐Doped In2O3 Thin Films Prepared by Various Doping Concentrations Using RF Magnetron Sputtering for Light‐Emitting Device | |
CN101834009A (en) | A low-indium-doped zinc oxide transparent conductive film and preparation method thereof | |
CN202878837U (en) | ITO (indium-tin oxide) substrate | |
CN106024110A (en) | Strontium stannate-based flexible transparent conductive electrode and preparation method thereof | |
Voisin et al. | Titanium doped ITO thin films produced by sputtering method | |
JP5881995B2 (en) | Transparent conductive film and method for producing the same | |
KR20160093959A (en) | Method for fabricating the same, Organic Photovolaic comoprising the Indium Zinc Tin Oxide and method for fabricating the Organic Photovolaic | |
Yu et al. | The optical and electrical properties of ZnO/Ag/ZnO films on flexible substrate | |
JP7478721B2 (en) | Method for manufacturing a substrate with a transparent electrode |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20150520 |