CN102944519A - Optical system and method for measuring thermal physical property parameters of solid - Google Patents
Optical system and method for measuring thermal physical property parameters of solid Download PDFInfo
- Publication number
- CN102944519A CN102944519A CN2012104767475A CN201210476747A CN102944519A CN 102944519 A CN102944519 A CN 102944519A CN 2012104767475 A CN2012104767475 A CN 2012104767475A CN 201210476747 A CN201210476747 A CN 201210476747A CN 102944519 A CN102944519 A CN 102944519A
- Authority
- CN
- China
- Prior art keywords
- laser
- heating
- detection
- component
- signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 50
- 239000007787 solid Substances 0.000 title claims abstract description 32
- 238000000034 method Methods 0.000 title claims abstract description 27
- 230000000704 physical effect Effects 0.000 title description 2
- 238000010438 heat treatment Methods 0.000 claims abstract description 112
- 238000001514 detection method Methods 0.000 claims abstract description 88
- 238000012360 testing method Methods 0.000 claims abstract description 25
- 239000000523 sample Substances 0.000 claims description 65
- 230000010287 polarization Effects 0.000 claims description 27
- 230000008859 change Effects 0.000 claims description 7
- 239000000463 material Substances 0.000 claims description 7
- 238000012545 processing Methods 0.000 claims description 7
- 238000004364 calculation method Methods 0.000 claims description 5
- 238000001914 filtration Methods 0.000 claims description 4
- 238000005457 optimization Methods 0.000 claims description 4
- 239000004065 semiconductor Substances 0.000 claims description 4
- 239000011159 matrix material Substances 0.000 claims description 2
- 230000008569 process Effects 0.000 claims description 2
- 230000001678 irradiating effect Effects 0.000 claims 2
- 230000003247 decreasing effect Effects 0.000 claims 1
- 238000005086 pumping Methods 0.000 abstract description 9
- 238000005259 measurement Methods 0.000 abstract description 6
- 238000001028 reflection method Methods 0.000 abstract description 2
- 230000009286 beneficial effect Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000006073 displacement reaction Methods 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 239000008710 crystal-8 Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000009658 destructive testing Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 210000001624 hip Anatomy 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 230000007723 transport mechanism Effects 0.000 description 1
Images
Landscapes
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
Abstract
本发明提供了一种测量固体热物性参数的光学系统及方法。该光学系统包括:加热激光产生组件、探测激光产生组件、合束元件、分光元件、加热激光接收组件、样品测试组件和探测激光接收组件。本发明采用信号调制的光热反射法,属于频域方法,和超短脉冲激光抽运探测法等时域方法相比,没有机械运动部件,测量系统相对简单、光路调节更方便。
The invention provides an optical system and method for measuring the thermophysical parameters of a solid. The optical system includes: a heating laser generating component, a probing laser generating component, a beam combining element, a light splitting element, a heating laser receiving component, a sample testing component and a probing laser receiving component. The invention adopts signal-modulated photothermal reflection method, which belongs to frequency domain method. Compared with time domain methods such as ultrashort pulse laser pumping detection method, it has no mechanical moving parts, relatively simple measurement system and more convenient optical path adjustment.
Description
技术领域technical field
本发明涉及利用周期调制加热和连续激光探测的光热反射测量技术,尤其涉及一种测量固体热物性参数的光学系统及方法。The invention relates to a photothermal reflection measurement technology using periodic modulation heating and continuous laser detection, in particular to an optical system and method for measuring solid thermophysical parameters.
背景技术Background technique
薄膜材料已广泛地运用于微电子、光电子、微制造等领域,而这些微/纳器件在工作时将产生极高的热流密度,热堆积将直接影响到此类器件的工作效率以及可靠性。解决上述微/纳器件散热问题极为迫切,这需要对组成上述微/纳器件的薄膜材料热物理性质,尤其是热导率、界面热阻等进行准确表征,以便揭示其热输运机理。3ω法为常用的薄膜材料热物性测量方法,但是其需要在待测样品上焊接金属薄片/丝,属于有损检测技术。Thin film materials have been widely used in microelectronics, optoelectronics, micromanufacturing and other fields, and these micro/nano devices will generate extremely high heat flux density during operation, and heat accumulation will directly affect the working efficiency and reliability of such devices. It is extremely urgent to solve the heat dissipation problem of the above-mentioned micro/nano devices, which requires accurate characterization of the thermophysical properties of the thin film materials that make up the above-mentioned micro/nano devices, especially the thermal conductivity and interface thermal resistance, in order to reveal the heat transport mechanism. The 3ω method is a commonly used method for measuring thermal physical properties of thin film materials, but it needs to weld metal sheets/wires on the sample to be tested, which belongs to the destructive testing technology.
超短脉冲激光抽运探测法为一种新型的固体热物性参数测量方法。图1为现有技术测量固体热物性参数的光学系统的光路示意图。如图1所示,该光学系统包括:激光器1输出脉冲激光;第一波片2(二分之一波片)使激光偏振方向旋转;第一分光器件3将激光束分成偏振方向互相垂直的两束;电光调制器4对激光束调制;电光调制器驱动器5为电光调制器4发送调制信号;第一反射镜6接收并反射激光束;激光束通过第一聚焦透镜7、倍频晶体8和第二聚焦透镜9,产生二次谐波;第一滤光片10滤除非相干光;扩束器11将激光束直径扩大;第二反射镜12接收并反射激光束;电控位移平台14前后移动;激光束被平行光反射镜13反射后通过第二波片15(二分之一波片),激光偏振方向旋转;第二分光器件16将激光束分成偏振方向互相垂直的两束;激光束透过第三波片17(四分之一波片)垂直入射样品表面,并原路返回再次通过第三波片17,实现偏振方向90度改变;冷光镜18将不同波长的激光束合束;聚焦透镜19将激光辐照在固定调整架20上的样品表面;电光探测器23接收透过第二滤光片21和第三聚焦透镜22的激光束;电光探测器23的信号输至滤波放大器24。抽运光和探测光使用不同波长的飞秒脉冲激光,通过冷光镜合为一束激光,在抽运光与探测光到达探测器之前使用具有高选择透过性的滤光片滤除倍频后的抽运光,从而避免抽运光对信号的干扰,实现准确高效的测量;利用滤波放大器可有效滤除高频谐波的影响,有效提高信号的准确度。The ultrashort pulse laser pumping detection method is a new method for measuring the thermophysical parameters of solids. Fig. 1 is a schematic diagram of an optical path of an optical system for measuring thermophysical parameters of a solid in the prior art. As shown in Figure 1, the optical system includes: a
电控位移平台不同的移动距离对应探测光和和抽运光之间的不同的延迟时间,滤波放大器输出信号和电光调制器驱动器给出的调制信号比较,得到相位差信号,不同延迟时间下的相位差信号为实验所得的测量数据。Different moving distances of the electronically controlled displacement platform correspond to different delay times between the probe light and the pumping light. The output signal of the filter amplifier is compared with the modulation signal given by the electro-optic modulator driver to obtain a phase difference signal. The phase difference signal is measured data obtained from experiments.
然而,对于图1所示的测量固体热物性参数的光路系统来讲,其电控位移平台属于机械运动部件,精准控制较困难;并且由第一聚焦透镜、倍频晶体和第二聚焦透镜组成的倍频模块,共线对焦困难、倍频的效率不高。However, for the optical path system for measuring the thermophysical parameters of solids shown in Figure 1, the electronically controlled displacement platform is a mechanical moving part, and it is difficult to control it precisely; it is composed of a first focusing lens, a frequency doubling crystal and a second focusing lens The frequency doubling module is difficult to collinearly focus and the efficiency of frequency doubling is not high.
发明内容Contents of the invention
(一)要解决的技术问题(1) Technical problems to be solved
为解决上述的一个或多个问题,本发明提供了一种精准控制、调节方便的测量固体热物性参数的光学系统及方法。In order to solve one or more of the above problems, the present invention provides an optical system and method for measuring thermal and physical parameters of solids with precise control and convenient adjustment.
(二)技术方案(2) Technical solutions
根据本发明的一个方面,提供了一种测量固体热物性参数的光学系统。该系统包括:加热激光产生组件、探测激光产生组件、合束元件、分光元件、加热激光接收组件、样品测试组件和探测激光接收组件;其中,由加热激光产生组件产生频率调制的连续偏振的加热激光,由探测激光产生组件产生连续偏振的探测激光;该加热激光和探测激光经过合束元件后合束为位于A平面的合束激光;该合束激光入射分光元件,偏振方向在A平面的成分透射至样品测试组件,偏振方向垂直于该水平面的成分反射至加热激光接收组件;偏振方向在A平面的合束光成分经由样品测试组件后,照射至被测试样品表面;偏振方向在A平面的合束光成分中的加热激光将被测样品加热,加热后的被测样品对探测激光产生调制作用;由被测试样品表面反射的加热激光及调制后的探测激光的合束激光重新经由样品测试组件后由分光元件反射至探测激光接收组件;探测激光接收组件将入射合束激光中的加热激光成分滤除后,得到探测激光的信号;加热激光接收组件将入射合束激光中的探测激光成分滤除后,得到加热激光的信号。According to one aspect of the present invention, an optical system for measuring thermal and physical parameters of a solid is provided. The system includes: heating laser generating components, probing laser generating components, beam combining elements, beam splitting elements, heating laser receiving components, sample testing components and probing laser receiving components; wherein, the heating laser generating components generate frequency-modulated continuous polarization heating The laser beam is continuously polarized detection laser light generated by the detection laser generating component; the heating laser and the detection laser beam are combined into a beam combining laser located on the A plane after passing through the beam combining element; the beam combining laser is incident on the beam splitting element, and the polarization direction is in the The component is transmitted to the sample test component, and the component whose polarization direction is perpendicular to the horizontal plane is reflected to the heating laser receiving component; the combined beam component with the polarization direction in the A plane passes through the sample test component and irradiates the surface of the tested sample; the polarization direction is in the A plane The heating laser in the combined beam component heats the tested sample, and the heated tested sample modulates the detection laser; After testing the component, it is reflected by the light splitting element to the detection laser receiving component; the detection laser receiving component filters the heating laser component in the incident beam combination laser to obtain the signal of the detection laser; the heating laser receiving component converts the detection laser in the incident beam combination laser After the component is filtered out, the signal of the heating laser is obtained.
根据本发明的另一方面,还提供了一种利用上述的光学系统测量固体热物性参数的方法,包括:步骤A,利用光学系统获取不同的加热激光调制频率下,由探测激光接收组件产生探测激光信号和由加热激光接收组件产生加热激光的信号,该探测激光信号和加热激光信号中均包含功率信息和相位信息;步骤B,对不同的加热激光调制频率下,探测激光信号和加热激光信号进行相位差处理,得到相位差实验值;步骤C,给待拟合的固体热物性参数赋初始值;步骤D,在不同的加热激光调制频率下,根据理论模型公式,计算与相位差实验值对应频率下的相位差理论值;步骤E,对全部加热激光调制频率下的相位差实验值和对应的相位差理论值进行最小二乘计算,其最小二乘计算数值作为当次迭代结果;步骤F,记录当前迭代结果对应的热导率值、界面热导值;步骤G,判断本次迭代的结果是否小于前次迭代的结果,如果是,执行步骤H,否则,执行步骤I;步骤H,将本次迭代结果对应的固体热物性参数值作为变化检测输出数据,执行步骤J;步骤I,将前次迭代结果对应的固体热物性参数值作为变化检测输出数据,执行步骤J;步骤J,判断是否连续3次的迭代结果小于控制精度,如果是,执行步骤K,否则,执行步骤L;步骤K,停止迭代,将由步骤H或步骤I获得的固体热物性参数值输出,流程结束;步骤L,将由步骤H或步骤I获得的固体热物性参数值按照预设的步长增加或减小,由预设的优化函数确定其数值改变路径,执行步骤D。According to another aspect of the present invention, there is also provided a method for measuring the thermophysical parameters of a solid by using the above-mentioned optical system, including: step A, using the optical system to obtain different heating laser modulation frequencies, and using the detection laser receiving component to generate detection The laser signal and the heating laser signal generated by the heating laser receiving component, both the detection laser signal and the heating laser signal contain power information and phase information; step B, under different heating laser modulation frequencies, the detection laser signal and the heating laser signal Perform phase difference processing to obtain the experimental value of the phase difference; step C, assign initial values to the thermal physical parameters of the solid to be fitted; step D, under different heating laser modulation frequencies, according to the theoretical model formula, calculate the experimental value of the phase difference The theoretical value of the phase difference at the corresponding frequency; step E, the least square calculation is performed on the experimental value of the phase difference at all heating laser modulation frequencies and the corresponding theoretical value of the phase difference, and the least square calculation value is used as the current iteration result; step F, record the thermal conductivity value and interface thermal conductivity value corresponding to the current iteration result; Step G, judge whether the result of this iteration is smaller than the result of the previous iteration, if yes, perform step H, otherwise, perform step I; step H , using the solid thermophysical parameter value corresponding to the result of this iteration as the change detection output data, and performing step J; step I, using the solid thermophysical property parameter value corresponding to the previous iteration result as the change detection output data, performing step J; step J , judging whether the result of three consecutive iterations is less than the control accuracy, if yes, execute step K, otherwise, execute step L; step K, stop the iteration, output the solid thermophysical property parameter value obtained by step H or step I, and the process ends; Step L, increase or decrease the thermophysical parameter value of the solid obtained by step H or step I according to the preset step size, determine the value change path by the preset optimization function, and execute step D.
(三)有益效果(3) Beneficial effects
从上述技术方案可以看出,本发明测量固体热物性参数的光学系统及方法具有以下有益效果:采用信号调制的光热反射法,属于频域方法,和超短脉冲激光抽运探测法等时域方法相比,没有机械运动部件,测量系统相对简单、光路调节更方便。It can be seen from the above-mentioned technical scheme that the optical system and method for measuring the thermal and physical parameters of solids in the present invention have the following beneficial effects: the photothermal reflection method using signal modulation belongs to the frequency domain method, and the ultrashort pulse laser pumping detection method is equivalent Compared with the field method, there are no mechanical moving parts, the measurement system is relatively simple, and the optical path adjustment is more convenient.
附图说明Description of drawings
图1为现有技术测量固体热物性参数的光学系统的光路示意图;Fig. 1 is the optical path schematic diagram of the optical system of measuring solid thermophysical property parameter in the prior art;
图2为根据本发明实施例的测量固体热物性参数光学系统的光路示意图;2 is a schematic diagram of an optical path of an optical system for measuring thermal and physical parameters of a solid according to an embodiment of the present invention;
图3为根据本发明实施例的测量固体热物性参数方法的流程图。Fig. 3 is a flow chart of a method for measuring thermophysical parameters of a solid according to an embodiment of the present invention.
具体实施方式Detailed ways
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明进一步详细说明。In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be described in further detail below in conjunction with specific embodiments and with reference to the accompanying drawings.
需要说明的是,在附图或说明书描述中,相似或相同的部分都使用相同的图号。附图中未绘示或描述的实现方式,为所属技术领域中普通技术人员所知的形式。另外,虽然本文可提供包含特定值的参数的示范,但应了解,参数无需确切等于相应的值,而是可在可接受的误差容限或设计约束内近似于相应的值。此外,以下实施例中提到的方向用语,例如“上”、“下”、“前”、“后”、“左”、“右”等,仅是参考附图的方向。因此,使用的方向用语是用来说明并非用来限制本发明。It should be noted that, in the drawings or descriptions of the specification, similar or identical parts all use the same figure numbers. Implementations not shown or described in the accompanying drawings are forms known to those of ordinary skill in the art. Additionally, while illustrations of parameters including particular values may be provided herein, it should be understood that the parameters need not be exactly equal to the corresponding values, but rather may approximate the corresponding values within acceptable error margins or design constraints. In addition, the directional terms mentioned in the following embodiments, such as "upper", "lower", "front", "rear", "left", "right", etc., are only referring to the directions of the drawings. Accordingly, the directional terms are used to illustrate and not to limit the invention.
对于图1来说,其是现有技术测量固体热物性光学系统的附图,其图中所标记的图号仅供参考,不纳入本发明使用。为方便本领域技术人员对本发明理解,首先将本发明所涉及主要元件进行编号说明,具体如下所示:As for FIG. 1 , it is a drawing of an optical system for measuring solid thermophysical properties in the prior art, and the figure numbers marked in the figure are for reference only, and are not included in the present invention. For the convenience of those skilled in the art to understand the present invention, firstly, the main elements involved in the present invention are numbered and described, specifically as follows:
10-加热激光组件;20-探测激光组件;10-heating laser components; 20-detection laser components;
30-合束元件;40-分光元件;30-beam combining element; 40-light splitting element;
50-加热激光接收组件; 60-样品测试组件;50-heating laser receiving component; 60-sample testing component;
70-样品固定元件;80-探测激光接收组件;70-sample fixing element; 80-detection laser receiving component;
11-信号调制器; 12-第一激光器;11-signal modulator; 12-first laser;
13-第一波片; 14-第一反射镜;13-the first wave plate; 14-the first reflector;
21-第二激光器; 22-第二波片;21-the second laser; 22-the second wave plate;
23-第二反射镜; 51-第一滤光片;23-the second reflector; 51-the first optical filter;
52-第一光电探测器; 61-第三波片;52-the first photodetector; 61-the third wave plate;
62-物镜; 81-聚焦透镜;62-objective lens; 81-focusing lens;
82-第二滤光片; 83-第二光电探测器。82-the second optical filter; 83-the second photodetector.
在本发明的一个示例性实施例中,提供了一种测量固体热物性参数的光学系统。如图2所示,该系统包括:加热激光产生组件10、探测激光产生组件20、合束元件30、分光元件40、加热激光接收组件50、样品测试组件60、样品固定元件70、探测激光接收组件80和数据处理组件(未示出)。由加热激光产生组件10产生频率调制的连续偏振的加热激光,由探测激光产生组件20产生连续偏振的探测激光;该加热激光和探测激光经过合束元件30后合束为位于水平面的合束激光;该合束激光入射分光元件40,偏振方向在该水平面的成分透射至样品测试组件60,偏振方向垂直于该水平面的成分反射至加热激光接收组件50;偏振方向在该水平面的合束光成分经由样品测试组件60后,照射至样品固定元件70上的被测试样品表面,加热激光将被测样品加热,加热后的被测样品对探测激光产生调制作用;由样品固定元件70上的被测试样品表面反射的加热激光及调制后的探测激光的合束激光重新经由样品测试组件60后由分光元件40反射至探测激光接收组件80;探测激光接收组件80将入射的加热激光和探测激光中的加热激光成分滤除后,得到探测激光的信号;加热激光接收组件50将入射的加热激光和探测激光中的探测激光成分滤除后,得到加热激光的信号;数据处理组件由加热激光的调制频率、探测激光接收组件50产生探测激光信号和由加热激光接收组件80产生加热激光的信号,根据理论模型反推得到被测试样品的热物性参数。In an exemplary embodiment of the present invention, an optical system for measuring thermophysical parameters of a solid is provided. As shown in Figure 2, the system includes: a heating
以下分别对各个组件/元件进行详细说明。Each component/element will be described in detail below.
加热激光产生组件10Heating the
加热激光产生组件10用于产生经过信号调制的连续偏振的加热激光。如图1所示,该加热激光产生组件包括:信号调制器11,可以是数字信号发生器,用于调制第一激光器,其调制频率由外部计算机控制,调制频率范围由信号调制器11和数据处理组件共同决定,可以是50kHz到20MHz;第一激光器12,为半导体激光器,用于在信号调制器11的调制下,输出波长为830nm的连续偏振激光,其功率为170mW;第一波片13,为二分之一波片,用于调节第一激光器12输出的连续偏振激光的水平偏振成分和垂直偏振成分的比例;第一激光反射镜14,其反射率大于99%,其反射面与透过第一波片13的加热激光成45°角,用于将入射的加入激光偏转90°后,以45°角入射合束元件30。The heating
探测激光产生组件20Probe
探测激光产生组件20用于产生连续偏振的探测激光,该探测激光的波长不同于加热激光的波长,功率远小于加热激光功率。如图1所示,该加热激光产生组件20包括:第二激光器21,为半导体激光器,用于输出波长为635nm的探测激光,其功率6mW;第二波片22,为二分之一波片,用于调节第二激光器21输出的连续偏振激光的水平偏振成分和垂直偏振成分的比例;第二激光反射镜23,其反射率大于99%,其反射面与透过第二波片22的探测激光成45°角,用于将入射的探测激光偏转90°后,以45°角入射合束元件30。The probing
合束元件30
合束元件30为冷光镜,对于与其所在平面成45°角入射的830nm波长的加热激光全透射;对于与其所在平面成45°角入射的635nm波长的探测激光全反射,从而使加热激光和探测激光合束,实现共线加热探测。The beam-combining
分光元件40Light splitting element 40
分光元件40为分光棱镜。通过该分光棱镜,合束后的加热激光和探测激光中,偏振方向在该水平面的成分透射至样品测试组件,偏振方向垂直于该水平面的成分反射至加热激光接收组件;由样品表面反射的加热激光和探测激光反射至探测激光接收组件。The spectroscopic element 40 is a spectroscopic prism. Through the beam splitting prism, among the combined heating laser and probe laser, the component whose polarization direction is on the horizontal plane is transmitted to the sample testing component, and the component whose polarization direction is perpendicular to the horizontal plane is reflected to the heating laser receiving component; the heating reflected by the sample surface The laser light and the detection laser light are reflected to the detection laser receiving component.
加热激光接收组件50Heating the
加热激光接收组件50,用于将入射的加热激光和探测激光中的探测激光成分滤除后,得到加热激光的信号。该加热激光接收组件50包括:第一滤光片51和第一光电探测器52。其中:The heating
第一滤光片51,用于滤除入射合束激光中的探测激光成分,其对于635nm波长的探测激光的透过率为10-7至10-9。The first
第一光电探测器52,用于检测合束激光中加热激光的信号,其可以是高速PIN二极管、雪崩二极管、光电倍增管,或是电荷耦合器件,响应时间小于10ns。其中,该信号中可以包括:功率(幅值)、相位等信息。The
样品测试组件60
经分光元件40透射的加热激光和探测激光的合束激光经过样品测试组件60后与样品固定元件上的被测试样品表面作用,由样品表面反射的加热激光和探测激光经由样品测试组件60重新入射至分光元件40。The combined laser beam of the heating laser and the probing laser transmitted through the spectroscopic element 40 passes through the
该样品测试组件60包括:四分之一波片61和物镜62。其中物镜62采用消色差物镜,放大倍数100倍,焦距为2mm。入射的合束激光两次经过四分之一波片61后,其偏振方向改变90°。The
样品固定元件70
样品固定元件70为固定调整架,用于调整并固定被测试样品的方位,确保合束激光垂直入射被测试样品表面,反射的合束激光原路返回,入射至样品测试组件60。The
加热激光将被测样品加热,加热后的被测样品对探测激光产生调制作用;由样品固定元件70上的被测试样品表面反射的加热激光及调制后的探测激光的合束激光重新经由样品测试组件60后由分光元件40反射至探测激光接收组件80。The heating laser heats the test sample, and the heated test sample modulates the detection laser light; the combined laser beam of the heating laser reflected by the surface of the test sample on the
探测激光接收组件80Probe
探测激光接收组件80,用于将入射的加热激光和探测激光中的加热激光成分滤除后,得到探测激光的信号。该探测激光接收组件80包括:聚焦透镜81、第二滤光片82和第二光电探测器83。其中:The detection
聚焦透镜81,用于将入射的合束激光进行聚焦。根据要求的不同,该聚焦透镜81的焦距可以为10mm到300mm。The focusing
第二滤光片82,用于滤除聚焦后的合束激光中的加热激光成分,其对于830nm波长的加热激光的透过率为10-7至10-9。The second
第二光电探测器83,用于检测合束激光中探测激光的信号,其可以是高速PIN二极管、雪崩二极管、光电倍增管,或是电荷耦合器件,响应时间小于10ns。其中,该信号中可以包括:功率(幅值)、相位等信息。The
利用上述加热激光接收组件和探测激光接收组件获取的信号,即可计算获取固体热物性参数。和超短脉冲激光抽运探测法等时域方法相比,本发明测量固体热物性参数的光学系统没有机械运动部件,测量系统相对简单、光路调节更方便。Using the signals obtained by the above-mentioned heating laser receiving component and probing laser receiving component, the thermophysical parameters of the solid can be calculated and obtained. Compared with time-domain methods such as ultra-short pulse laser pumping detection method, the optical system for measuring the thermophysical parameters of the solid has no mechanical moving parts, the measurement system is relatively simple, and the optical path adjustment is more convenient.
基于上述光学系统,本发明还提供了一种测量固体热物性参数的方法,该方法根据在不同的信号调制器角频率下,由探测激光接收组件产生探测激光信号和由加热激光接收组件产生加热激光的信号的相位差,拟合得到被测试样品的热物性参数,包括热导率、材料间的界面热导等。Based on the above-mentioned optical system, the present invention also provides a method for measuring the thermophysical parameters of a solid. The method is based on the detection laser signal generated by the detection laser receiving component and the heating generated by the heating laser receiving component under different angular frequencies of the signal modulator. The phase difference of the laser signal is fitted to obtain the thermophysical parameters of the tested sample, including thermal conductivity and interface thermal conductivity between materials.
在本发明的一个示例性实施例中,如图3所示,该方法包括:In an exemplary embodiment of the present invention, as shown in Figure 3, the method includes:
步骤A,利用上述的光学系统,获取在不同的加热激光调制频率下由探测激光接收组件产生探测激光信号和由加热激光接收组件产生加热激光的信号,该探测激光信号和加热激光信号中均包含功率信息和相位信息;Step A, using the above-mentioned optical system to obtain the detection laser signal generated by the detection laser receiving component and the signal of the heating laser generated by the heating laser receiving component under different heating laser modulation frequencies, the detection laser signal and the heating laser signal both contain power information and phase information;
步骤B,在不同的加热激光调制频率下,对探测激光信号和加热激光信号进行相位差处理,得到相位差实验值;Step B, performing phase difference processing on the detection laser signal and the heating laser signal under different heating laser modulation frequencies to obtain the experimental value of the phase difference;
步骤C,给待拟合的热导率、界面热导赋初始值;Step C, assigning initial values to the thermal conductivity to be fitted and the interface thermal conductance;
步骤D,在不同的加热激光调制频率下,根据理论模型公式,计算与相位差实验值对应频率下的相位差理论值;Step D, at different heating laser modulation frequencies, according to the theoretical model formula, calculate the theoretical value of the phase difference at the frequency corresponding to the experimental value of the phase difference;
其中,Q0、Q1分别为加热激光和探测激光的功率,γ为被测试样品表面的光反射系数,l为积分变量,R0、R1分别为加热激光和探测激光产生时的束腰半径,ω为调制信号的角频率;φ为探测激光接收组件接收到的探测激光与加热激光接收组件接收到的加热激光之间的相位差理论值。C、D为2×2的材料热物性参数矩阵
若为某层,
若为界面,
其中,ρ、c、k、d分别为某层的密度、质量热容、热导率、厚度,G为界面热导,i为虚数单位,j为从激光入射端算起的层数。in, ρ, c, k, and d are the density, mass heat capacity, thermal conductivity, and thickness of a certain layer, respectively, G is the interface thermal conductivity, i is the imaginary number unit, and j is the number of layers counted from the laser incident end.
此外,关于上述材料热物性参数的具体含义,详见参考文献1【J.Zhuet al.J.Appl.Phys.108,094315(2010))】。In addition, for the specific meaning of the thermal physical parameters of the above materials, please refer to Reference 1 [J.Zhu et al.J.Appl.Phys.108, 094315(2010))].
步骤E,对全部加热激光调制频率下的相位差实验值和对应的相位差理论值进行最小二乘计算,其最小二乘计算数值作为当次迭代结果;Step E, performing a least squares calculation on the phase difference experimental values at all heating laser modulation frequencies and the corresponding phase difference theoretical value, and the least squares calculated value as the result of the current iteration;
步骤F,记录当前迭代结果对应的热导率值、界面热导值,即为当次最优数据;Step F, record the thermal conductivity value and interface thermal conductivity value corresponding to the current iteration result, which is the current optimal data;
步骤G,判断本次迭代的结果是否小于前次迭代的结果,如果是,执行步骤H,否则,执行步骤I;Step G, judging whether the result of this iteration is smaller than the result of the previous iteration, if yes, execute step H, otherwise, execute step I;
步骤H,将本次迭代结果对应的热导率值、界面热导值作为变化检测输出数据,执行步骤J;Step H, use the thermal conductivity value and interface thermal conductivity value corresponding to the iterative result as the change detection output data, and execute step J;
步骤I,将前次迭代结果对应的热导率值、界面热导值作为变化检测输出数据,执行步骤J;Step I, use the thermal conductivity value and interface thermal conductivity value corresponding to the previous iteration result as the change detection output data, and execute step J;
步骤J,判断是否连续3次的迭代结果小于控制精度(如10-6),如果是,执行步骤K,否则,执行步骤L;Step J, judging whether the result of three consecutive iterations is less than the control precision (such as 10 -6 ), if yes, execute step K, otherwise, execute step L;
步骤K,停止迭代,将由步骤H或步骤I获得的热导率值、界面热导值输出,流程结束;Step K, stop the iteration, output the thermal conductivity value and the interface thermal conductivity value obtained by step H or step I, and the process ends;
步骤L,将由步骤H或步骤I获得的热导率值、界面热导值按照预设的步长增加或减小,由预设的优化函数确定其数值改变路径,执行步骤D。Step L, increase or decrease the thermal conductivity value and interface thermal conductivity value obtained in step H or step I according to the preset step size, determine the value change path by the preset optimization function, and execute step D.
本步骤中,预设的步长可以为当前热导率值、界面热导值的0.5-5%;优化函数可以为lsqcurvefit函数、fminsearch函数或本领域内公知的其他函数。In this step, the preset step size can be 0.5-5% of the current thermal conductivity value and the interface thermal conductivity value; the optimization function can be lsqcurvefit function, fminsearch function or other functions known in the art.
需要说明的是,以上采用双参数拟合的方法同时获得了热导率值和界面热导值,当然,也可以在确定上述其中之一为定值的前提下,由单参数拟合的方式获得另一个的具体数值。根据上文的描述,本领域技术人员很容易想到相关的计算方法,此处不再重述。It should be noted that the above two-parameter fitting method obtains the thermal conductivity value and the interface thermal conductivity value at the same time. Of course, on the premise that one of the above-mentioned values is determined to be a fixed value, the single-parameter fitting method can also be used. Get another specific value. According to the above description, those skilled in the art can easily think of related calculation methods, which will not be repeated here.
需要说明的是,上述对各元件的定义并不仅限于实施方式中提到的各种具体结构或形状,本领域的普通技术人员可对其进行简单地熟知地替换,例如:It should be noted that the above definition of each element is not limited to the various specific structures or shapes mentioned in the embodiment, and those skilled in the art can simply replace them with familiar ones, for example:
(1)加热激光或探测激光还可以其他角度入射激光反射镜;(1) The heating laser or detection laser can also enter the laser reflector at other angles;
(2)系统的光路可以不在水平面,实施例中选择水平面只是为了便于调节;(2) The optical path of the system may not be on the horizontal plane, and the horizontal plane is selected in the embodiment just for the convenience of adjustment;
(3)聚焦透镜只是起到集中光束并入射至光电探测器感光区域的作用,在加热激光接收组件中,增加或去除聚焦透镜不影响测量结果;(3) The focusing lens only plays the role of concentrating the light beam and incident it into the photosensitive area of the photodetector. In the heating laser receiving component, adding or removing the focusing lens will not affect the measurement results;
(4)第一和第二光电探测器可以是高速PIN二极管、雪崩二极管、光电倍增管,或是电荷耦合器件。(4) The first and second photodetectors may be high-speed PIN diodes, avalanche diodes, photomultiplier tubes, or charge-coupled devices.
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The specific embodiments described above have further described the purpose, technical solutions and beneficial effects of the present invention in detail. It should be understood that the above descriptions are only specific embodiments of the present invention and are not intended to limit the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included within the protection scope of the present invention.
Claims (14)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210476747.5A CN102944519B (en) | 2012-11-20 | 2012-11-20 | Optical system and method for measuring thermal physical property parameters of solid |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210476747.5A CN102944519B (en) | 2012-11-20 | 2012-11-20 | Optical system and method for measuring thermal physical property parameters of solid |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102944519A true CN102944519A (en) | 2013-02-27 |
CN102944519B CN102944519B (en) | 2014-08-20 |
Family
ID=47727481
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210476747.5A Active CN102944519B (en) | 2012-11-20 | 2012-11-20 | Optical system and method for measuring thermal physical property parameters of solid |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102944519B (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104048915A (en) * | 2014-06-27 | 2014-09-17 | 无锡利弗莫尔仪器有限公司 | Real-time monitoring device and method of optical material and laser interaction process |
CN108107008A (en) * | 2017-12-11 | 2018-06-01 | 南京大学 | A kind of time domain heat reflection spectral measurement system |
CN110243759A (en) * | 2019-06-13 | 2019-09-17 | 中国科学院电工研究所 | Visible light heat reflection temperature measurement device |
CN110836876A (en) * | 2018-08-15 | 2020-02-25 | 浙江大学 | A super-resolution microscopy method and system based on saturation pump-stimulated emission detection |
CN113834783A (en) * | 2021-09-18 | 2021-12-24 | 王红珍 | Device and method for detecting semiconductor electronic device |
CN113885218A (en) * | 2021-09-27 | 2022-01-04 | 北京航空航天大学 | High-power laser heating method for alkali metal gas chamber for atomic inertia measurement |
CN114252476A (en) * | 2021-12-14 | 2022-03-29 | 华中科技大学 | Optical device and method for measuring in-plane thermal conductivity of submillimeter-level sample |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1632527A (en) * | 2004-12-28 | 2005-06-29 | 中国科学院上海光学精密机械研究所 | Method and device for measuring absorption of transparent and reflective film of thermal lens |
CN101832821A (en) * | 2010-04-02 | 2010-09-15 | 浙江理工大学 | Method and device for measuring laser wavelength based on bound wavelength |
CN203037569U (en) * | 2012-11-20 | 2013-07-03 | 中国科学院工程热物理研究所 | Optical system for measuring thermophysical parameter of solid |
-
2012
- 2012-11-20 CN CN201210476747.5A patent/CN102944519B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1632527A (en) * | 2004-12-28 | 2005-06-29 | 中国科学院上海光学精密机械研究所 | Method and device for measuring absorption of transparent and reflective film of thermal lens |
CN101832821A (en) * | 2010-04-02 | 2010-09-15 | 浙江理工大学 | Method and device for measuring laser wavelength based on bound wavelength |
CN203037569U (en) * | 2012-11-20 | 2013-07-03 | 中国科学院工程热物理研究所 | Optical system for measuring thermophysical parameter of solid |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104048915A (en) * | 2014-06-27 | 2014-09-17 | 无锡利弗莫尔仪器有限公司 | Real-time monitoring device and method of optical material and laser interaction process |
CN108107008A (en) * | 2017-12-11 | 2018-06-01 | 南京大学 | A kind of time domain heat reflection spectral measurement system |
CN110836876A (en) * | 2018-08-15 | 2020-02-25 | 浙江大学 | A super-resolution microscopy method and system based on saturation pump-stimulated emission detection |
CN110836876B (en) * | 2018-08-15 | 2021-05-14 | 浙江大学 | A super-resolution microscopy method and system based on saturation pump-stimulated emission detection |
CN110243759A (en) * | 2019-06-13 | 2019-09-17 | 中国科学院电工研究所 | Visible light heat reflection temperature measurement device |
CN110243759B (en) * | 2019-06-13 | 2021-07-09 | 中国科学院电工研究所 | Visible light heat reflection thermometer |
CN113834783A (en) * | 2021-09-18 | 2021-12-24 | 王红珍 | Device and method for detecting semiconductor electronic device |
CN113885218A (en) * | 2021-09-27 | 2022-01-04 | 北京航空航天大学 | High-power laser heating method for alkali metal gas chamber for atomic inertia measurement |
CN113885218B (en) * | 2021-09-27 | 2023-11-17 | 北京航空航天大学 | A high-power laser heating method for alkali metal gas chambers for atomic inertial measurement |
CN114252476A (en) * | 2021-12-14 | 2022-03-29 | 华中科技大学 | Optical device and method for measuring in-plane thermal conductivity of submillimeter-level sample |
Also Published As
Publication number | Publication date |
---|---|
CN102944519B (en) | 2014-08-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102944519B (en) | Optical system and method for measuring thermal physical property parameters of solid | |
CN102393370B (en) | Measuring device and measuring method for film photo-thermal property | |
CN102661917B (en) | Two-tone femtosecond laser collinear pumping detecting thermal reflection system | |
CN202583052U (en) | Double-color femtosecond laser collinear pumping detection heat reflection device | |
CN203037569U (en) | Optical system for measuring thermophysical parameter of solid | |
Wang et al. | All-optical photoacoustic microscopy based on plasmonic detection of broadband ultrasound | |
CN103308142B (en) | A kind of speed of ultrasonic travelling wave in liquid and method and device of frequency measured | |
CN109765210B (en) | Raman spectroscopy method and device for measuring spatiotemporal temperature distribution and temperature phase distribution | |
CN101446687B (en) | Collinear femto-second laser polarized pump detecting system | |
CN104237088B (en) | A kind of for monitoring photo-thermal interferometer and the monitoring method thereof of atmosphere particle concentration | |
CN108956537A (en) | A kind of Superfast time resolution transient state reflecting spectrograph | |
JPH10512958A (en) | Apparatus and method for time-resolved optical measurement | |
US20230184706A1 (en) | Optical device and measurement method for measuring in-plane thermal conductivity of sub-millimeter-scale sample | |
CN103698025A (en) | Domain wall-based nonlinear impulse autocorrelation measuring method and measuring device | |
CN103776550B (en) | Based on super continuous spectrums pulse laser measurement mechanism and the method for non-linear nano material | |
CN106092901A (en) | A kind of acoustical signal detector based on surface wave and reflecting light sonomicroscope | |
JP2003507698A (en) | Film thickness detection by excited acoustic pulse echo | |
CN101907513A (en) | Acousto-optic tunable filter diffraction performance weak light test system and method | |
CN103364090A (en) | Device and method for measuring propagation phase velocity of ultrashort pulse laser in media | |
CN201251545Y (en) | Phase-change thin-film micro-spectrum measurement device | |
CN101246057A (en) | Autocorrelator for Measuring Ultrashort Laser Pulse Width | |
CN205664955U (en) | Spatial distribution measurement system of extreme ultraviolet source collecting mirror temperature | |
CN112268861A (en) | Dual-wavelength femtosecond pumping detection heat reflection system | |
JP5086863B2 (en) | Thermophysical property evaluation equipment, measurement method for thermophysical property evaluation | |
CN101576483A (en) | Optical system and method for improving spatial resolution of laser film absorption measurement |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20201204 Address after: No.56, Huanghai Avenue, Lianyungang Economic and Technological Development Zone, Lianyungang City, Jiangsu Province 222000 Patentee after: JIANGSU CHINESE ACADEMY OF SCIENCES ENERGY POWER RESEARCH CENTER Patentee after: Institute of Engineering Thermophysics, Chinese Academy of Sciences Address before: 100080, No. 11 West Fourth Ring Road, Beijing, Haidian District Patentee before: Institute of Engineering Thermophysics, Chinese Academy of Sciences |
|
TR01 | Transfer of patent right |