[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN102933729A - 储氢合金及使用该储氢合金的氢传感器 - Google Patents

储氢合金及使用该储氢合金的氢传感器 Download PDF

Info

Publication number
CN102933729A
CN102933729A CN2011800280789A CN201180028078A CN102933729A CN 102933729 A CN102933729 A CN 102933729A CN 2011800280789 A CN2011800280789 A CN 2011800280789A CN 201180028078 A CN201180028078 A CN 201180028078A CN 102933729 A CN102933729 A CN 102933729A
Authority
CN
China
Prior art keywords
hydrogen
layer
catalyst layer
alloy
gold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2011800280789A
Other languages
English (en)
Inventor
内山直树
金井友美
原田和美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Atsumitec Co Ltd
Original Assignee
Atsumitec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atsumitec Co Ltd filed Critical Atsumitec Co Ltd
Publication of CN102933729A publication Critical patent/CN102933729A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0031Intermetallic compounds; Metal alloys; Treatment thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/29Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using visual detection
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0031Intermetallic compounds; Metal alloys; Treatment thereof
    • C01B3/0042Intermetallic compounds; Metal alloys; Treatment thereof only containing magnesium and nickel; Treatment thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0078Composite solid storage mediums, i.e. coherent or loose mixtures of different solid constituents, chemically or structurally heterogeneous solid masses, coated solids or solids having a chemically modified surface region
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C16/00Alloys based on zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • G01N21/783Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour for analysing gases
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036General constructional details of gas analysers, e.g. portable test equipment concerning the detector specially adapted to detect a particular component
    • G01N33/005H2
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N2021/7769Measurement method of reaction-produced change in sensor
    • G01N2021/7783Transmission, loss
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/21Hydrocarbon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/22Hydrogen, per se

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Plasma & Fusion (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

本发明提供一种氢传感器,其使用了包含Mg-Ni系合金和Zr-Ti系合金的储氢合金,该氢传感器具备:基板(2);设置在该基板(2)上、且包含所述Mg-Ni系合金和所述Zr-Ti系合金的氢反应层(3);以及设置在该氢反应层(3)上、用于促进所述Mg-Ni系合金的氢化的第1催化剂层(4)。

Description

储氢合金及使用该储氢合金的氢传感器
技术领域
本发明涉及用于吸留氢的储氢合金、以及使用该储氢合金的用于检测氛围气体中的氢气的氢传感器。
背景技术
在专利文献1中公开了一种储氢合金。如专利文献1所记载,使用燃料电池作为驱动电源时,用于形成其燃料的氢的使用是重要的。特别是,作为安全地使用氢的方法,优选将氢吸留在合金内,并进行了这样的储氢合金的研究。作为该合金,如专利文献1所记载,使用了Mg及Ni。
另一方面,开发了一种氢传感器,该氢传感器利用这样的储氢合金的特性,由镁/镍合金等在玻璃或丙烯酸树脂等基板的表面形成具有调光作用的薄膜层(薄膜),并利用钯等催化剂层(催化剂膜)的作用将该薄膜层迅速地氢化(使薄膜层的物性发生变化)。该氢传感器的特征在于,通过检测伴随着薄膜层的氢化产生的光学反射率(以下,有时表示为“反射率”或“光透射率”)的变化,可以检测出泄漏到氛围气体中的氢气,另外,由于薄膜层在常温下可逆地发生氢化,因此,具有可以安全且迅速地检测出泄漏的氢气的特征。
无论是以在各种电源中使用的目的而使用上述储氢合金,还是作为氢传感器使用,为了提高其性能,都希望缩短氢吸留或氢化后直至氢放出或脱氢化所需要的时间。特别是在使用氢急增合金制成氢传感器的情况下,为了反复迅速地使用,希望在检测到氢的有无后,立即用于在其它场所检测氢的有无。但是,对于上述专利文献1及其它研究中所述的储氢合金而言,大多是用于提高氢的吸留量及操作性,均没有涉及能够在短时间内实现完成氢放出或脱氢化。
现有技术文献
专利文献
专利文献1:日本特开2004-346418号公报
发明内容
发明所要解决的问题
本发明的目的在于提供一种储氢合金及使用该储氢合金的氢传感器,其可以在氢吸留或氢化后迅速地进行氢放出或脱氢化。
解决问题的方法
本发明的储氢合金的特征在于,其含有Mg-Ni系合金和Zr-Ti系合金。
优选的储氢合金仅由Mg-Ni合金和Zr-Ti-Mn合金构成。
另外,本发明涉及使用了储氢合金的氢传感器,其具备:基板;设置在该基板上、且包含上述Mg-Ni系合金和上述Zr-Ti系合金的氢反应层;以及,设置在该氢反应层上、用于促进上述Mg-Ni系合金的氢化的第1催化剂层。
优选上述氢反应层分散混合有上述Mg-Ni系合金和上述Zr-Ti系合金。
优选上述氢反应层具有由上述Mg-Ni系合金形成的调光层、以及由上述Zr-Ti系合金形成的用于促进上述Mg-Ni系合金的脱氢化的第2催化剂层。
优选上述第2催化剂层配置在上述调光层和上述基板之间。
优选上述第2催化剂层配置在上述调光层和上述第1催化剂层之间。
优选上述第2催化剂层配置在上述调光层和上述第1催化剂层之间、以及上述调光层和上述基板之间。
发明的效果
按照本发明,由于含有Zr-Ti系合金,因此,可以迅速地放出吸留在Mg-Ni系合金中的氢。即,可以加速脱氢化。
另外,按照本发明,通过实验确认了将Mg-Ni合金和Zr-Ti-Mn合金组合可以迅速地进行脱氢化。
另外,按照本发明,由于使用Mg-Ni系合金和Zr-Ti系合金作为与氢反应的氢反应层,因此,可以迅速地放出吸留在Mg-Ni系合金中的氢。即,可以加速脱氢化。因此,可以迅速地利用氢传感器进行检测氢的操作。
另外,按照本发明,在氢反应层分散混合有Mg-Ni系合金和Zr-Ti系合金的情况下,可以迅速地放出吸留在Mg-Ni系合金中的氢。即,可以加速脱氢化。因此,可以迅速地利用氢传感器进行检测氢的操作。
另外,按照本发明,通过由Mg-Ni系合金形成的调光层、以及使用Zr-Ti系合金形成的第2催化剂层形成氢反应层。第2催化剂层使用Zr-Ti系合金是为了促进Mg-Ni系合金中的脱氢化。由此,可以利用第2催化剂层迅速地放出吸留在调光层中的氢。即,可以加速脱氢化。因此,可以迅速地利用氢传感器进行检测氢的操作。
另外,按照本发明,将第2催化剂层配置在调光层和基板之间,并通过实验确认了此时可迅速地进行脱氢化。
另外,按照本发明,将第2催化剂层配置在调光层和第1催化剂层之间,并通过实验确认了此时可迅速地进行脱氢化。另外,第2催化剂层还可以用作缓冲层用来防止调光层在氢化及脱氢化的作用下反复发生膨胀及收缩而析出到表面。特别是,由于Mg迅速被氧化,因此,从防止该氧化的观点考虑,优选第2催化剂层。
另外,按照本发明,能够在第2催化剂层的作用下迅速进行调光层的脱氢化,同时可以防止反复进行氢化及脱氢化而使调光层咬入到第1催化剂层中,从而直接析出在表面。
附图说明
[图1]是本发明涉及的氢传感器的概略图。
[图2]是本发明涉及的另一氢传感器的概略图。
[图3]是本发明涉及的再一个氢传感器的概略图。
[图4]是本发明涉及的再一个氢传感器的概略图。
[图5]是示出实施例1的氢放出特性的曲线图。
[图6]是示出实施例1的氢放出特性的曲线图。
[图7]是示出实施例1的氢放出特性的曲线图。
[图8]是示出实施例2及3的氢放出特性的曲线图。
符号说明
1 氢传感器
2 基板
3 氢反应层
4 第1催化剂层
5 调光层
6 第2催化剂层
具体实施方式
如图1所示,本发明的氢传感器1具有基板2、氢反应层3、和第1催化剂层4。
基板2由透明的板材构成。例如为丙烯酸类、塑料、透明片、玻璃等。
氢反应层3包含Mg-Ni系合金,也可以进一步含有Zr-Ti系合金。Mg-Ni系合金是能够吸留和放出氢、并且能够在透明状态、镜子状态(金属状态)、或其中间状态之间进行转换的材料。还可以使用钇、镧等稀土薄膜、稀土金属与镁合金薄膜、镁的过渡金属合金薄膜、或者镁薄膜等来代替Mg-Ni系合金。Mg-Ni系合金由于材料成本便宜、且具有优异的光学特性等,因此特别优选。另一方面,氢反应层3被蒸镀在基板2上。该蒸镀可以采用溅射法、真空蒸镀法、电子束蒸镀法、化学气相沉积法(CVD)、镀敷法等来进行。
第1催化剂层4使用钯等。该第1催化剂层4被蒸镀在氢反应层3的表面。该蒸镀可以采用溅射法、真空蒸镀法、电子束蒸镀法、化学气相沉积法(CVD)、镀敷法等来进行。
通过以上构成,可以测定氢。即,通过暴露于含有氢的氛围气体中,发生氢反应层3的氢化(氢吸留),由金属状态变为透明状态。另一方面,通过暴露于不含氢但含有氧的氛围气体中,发生脱氢化(氢放出),由透明状态变为金属状态。
如上所述,氢反应层3含有Mg-Ni系合金及Zr-Ti系合金。其为本发明涉及的储氢合金。主要是Mg-Ni系合金来进行氢的吸留及放出,其中,通过含有Zr-Ti系合金,可以迅速地放出吸留在Mg-Ni系合金中的氢。即,可以加速脱氢化。特别是,如后面所叙述,通过实验确认了仅由Mg-Ni合金和Zr-Ti-Mn合金形成氢反应层3时,可迅速地进行脱氢化。
图1~图4所示的氢传感器1应用上述储氢合金作为氢反应层3。在图1中,Mg-Ni合金和Zr-Ti-Mn合金分散混合而形成了氢反应层3(实施例1)。该混合如下所述进行。首先,将基板2清洗后,将其放置于真空装置中进行真空排气。然后,将Mg-Ni和Zr-Ti-Mn的靶同时进行1分钟的溅射。通过直流溅射法对Mg-Ni施加100W的功率、对Zr-Ti-Mn施加30W的功率来进行溅射。
在图2中,由Mg-Ni合金和Zr-Ti-Mn合金形成各自的层,由Mg-Ni合金形成了调光层5、由Zr-Ti-Mn合金形成了第2催化剂层6。由上述调光层5和第2催化剂层6形成了氢反应层3。在图2中,第2催化剂层6配置在调光层5与基板2之间(实施例2)。在图3中,第2催化剂层6配置在调光层5与第1催化剂层4之间(实施例3)。在图4中,第2催化剂层6配置在调光层5与第1催化剂层4之间、以及调光层5与基板2之间(实施例4)。即,在图4中,形成了2层第2催化剂层6,并由该第2催化剂层6夹着调光层5。因此,只要在基板2与第1催化剂层4之间配置有Mg-Ni合金和Zr-Ti-Mn合金,则可以为任何结构。
以下,对于使用了本发明的氢传感器1的实验结果进行说明。以在基板2和第1催化剂层4之间仅配置Mg-Ni合金的氢传感器作为比较例,与本发明的氢传感器1进行脱氢化所涉及的时间的比较,进行了实验。
图5是将实施例1与比较例进行比较而得到的曲线图。纵轴表示光的透射率(%),横轴表示从供给氢开始的时间。氢的供给是以50ml/min的流量流通100%的氢来进行的。另外,实线是实施例1,点划线是比较例。如曲线图所示,供给氢后光的透射率立即上升,透明度提高。然后,经过给定时间之后,开始脱氢化,光的透射率返回到开始值。该返回到开始值的时间越快,可以说脱氢化所涉及的时间越短。比较例的脱氢化大约需要300秒钟,与此相对,实施例1大约在250秒钟结束。即,与配置了仅由Mg-Ni合金形成的氢反应层3的氢传感器相比,可知在基板2和第1催化剂层4之间配置了分散混合有Mg-Ni合金和Zr-Ti-Mn合金的氢反应层3而得到的氢传感器的脱氢化可迅速进行。需要说明的是,在实验中,第1催化剂层4的厚度为4nm、氢反应层3的厚度为22.3nm。此时的氢反应层3中Mg-Ni合金与Zr-Ti-Mn合金的体积比约为10:1。进行1分钟同时溅射使Mg-Ni合金和Zr-Ti-Mn合金混合、分散。因此,氢反应层即使分散混合有Mg-Ni系合金及Zr-Ti系合金,也可以迅速地放出吸留在Mg-Ni系合金中的氢。即,可以加速脱氢化。因此,可以迅速地通过氢传感器来进行检测氢的操作。需要说明的是,实施例1的光的透射率虽然下降,但只要能够用肉眼识别出传感器的透明度,则即使氢传感器的透射率稍有下降也没有问题。实施例1的透射率约为35%,在使用时完全没有问题。
需要说明的是,如图6所示,通过实验确认到:越是使Zr-Ti-Mn合金的含量增加(越是提高利用同时溅射对Zr-Ti-Mn赋予的功率(W)),脱氢化越快。如曲线图所示,所有的脱氢化均在250秒钟附近结束。作为保持该效果的范围,以体积比来说,至少可以确认到:相对于Mg-Ni合金为10,Zr-Ti-Mn合金为0.5~2.0。此外,如图7所示,通过实验还确认到:越是提高周围的温度,脱氢化的时间越快。如曲线图所示,所有情况均在250秒钟以内完成了脱氢化。具体而言,至少在25℃~50℃得到了确认。
图8是将实施例2及实施例3与比较例进行比较而得到的曲线图。在曲线图中,实线表示实施例2、虚线表示实施例3、点划线表示比较例。如曲线图所示,在任何一种情况下,光的透射率均为同等程度。而且,实施例2大约在270秒钟完成脱氢化、实施例3约在280秒钟完成脱氢化、比较例约在300秒钟完成脱氢化。即,分别设置由Mg-Ni系合金形成的调光层、和由Zr-Ti系合金形成的2的催化剂层,并将其设置在基板和第1催化剂层之间,这样得到的氢传感器可以迅速地放出吸留在调光层中的氢。换言之,可以加速脱氢化。因此,可以使用氢传感器迅速进行反复检测氢的操作。需要说明的是,在实验中,第1催化剂层4的厚度为4nm、调光层5为20nm、第2催化剂层6为1nm。虽然未图示,但即使将第2催化剂层6设为2nm,也得到了几乎同样的实验结果。因此,第2催化剂层配置在调光层与基板之间的情况下,通过实验可以确认到能够迅速地进行脱氢化。另外,第2催化剂层配置在调光层与第1催化剂层之间的情况下,也可以通过实验确认到可迅速地进行脱氢化。如果将第2催化剂层配置在调光层与第1催化剂层之间,则调光层可作为缓冲层使用,以防止在氢化及脱氢化的作用下反复膨胀及收缩而析出在表面。特别是,由于Mg迅速被氧化,从防止Mg的氧化的观点考虑,也优选将第2催化剂层配置在调光层与第1催化剂层之间。其它与图5相同。
对于实施例4而言,可以得到实施例2和实施例3两者的效果。即,与比较例相比,脱氢化所需要的时间变快,并且还可以具备缓冲层。
由以上的实验结果可以明确,包含Zr-Ti-Mn合金的氢传感器可加速脱氢化,特别是,从脱氢化的观点来看,最优选实施例1。
需要说明的是,本发明的氢传感器1利用了调光层5的转换功能,可以适用于例如以隐秘保护为目的的遮蔽物、利用了变换为镜子状态和透明状态的装饰物及玩具等氢检测目的以外的各种用途。

Claims (8)

1.一种储氢合金,其包含Mg-Ni系合金和Zr-Ti系合金。
2.根据权利要求1所述的储氢合金,其仅由Mg-Ni合金和Zr-Ti-Mn合金构成。
3.使用了权利要求1所述的储氢合金的氢传感器,其具备:
基板;
氢反应层,其设置在所述基板上,且包含所述Mg-Ni系合金和所述Zr-Ti系合金;以及
第1催化剂层,其设置在所述氢反应层上,用于促进所述Mg-Ni系合金的氢化。
4.根据权利要求3所述的氢传感器,其中,所述氢反应层分散混合有所述Mg-Ni系合金和所述Zr-Ti系合金。
5.根据权利要求3所述的氢传感器,其中,所述氢反应层具有:由所述Mg-Ni系合金形成的调光层、以及由所述Zr-Ti系合金形成的用于促进所述Mg-Ni系合金的脱氢化的第2催化剂层。
6.根据权利要求5所述的氢传感器,其中,所述第2催化剂层配置在所述调光层和所述基板之间。
7.根据权利要求5所述的氢传感器,其中,所述第2催化剂层配置在所述调光层和所述第1催化剂层之间。
8.根据权利要求5所述的氢传感器,其中,所述第2催化剂层配置在所述调光层和所述第1催化剂层之间、以及所述调光层和所述基板之间。
CN2011800280789A 2010-04-14 2011-02-21 储氢合金及使用该储氢合金的氢传感器 Pending CN102933729A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010-093135 2010-04-14
JP2010093135A JP5789357B2 (ja) 2010-04-14 2010-04-14 水素センサ
PCT/JP2011/053677 WO2011129148A1 (ja) 2010-04-14 2011-02-21 水素吸蔵合金及びこれを用いた水素センサ

Publications (1)

Publication Number Publication Date
CN102933729A true CN102933729A (zh) 2013-02-13

Family

ID=44798527

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011800280789A Pending CN102933729A (zh) 2010-04-14 2011-02-21 储氢合金及使用该储氢合金的氢传感器

Country Status (7)

Country Link
US (1) US8758691B2 (zh)
EP (1) EP2559778B1 (zh)
JP (1) JP5789357B2 (zh)
KR (1) KR101724782B1 (zh)
CN (1) CN102933729A (zh)
CA (1) CA2795051C (zh)
WO (1) WO2011129148A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104730114A (zh) * 2013-12-19 2015-06-24 中国科学院上海硅酸盐研究所 一种用于氢气传感器的镁合金薄膜及其制备方法
CN105372210A (zh) * 2014-08-19 2016-03-02 Abb技术有限公司 氢传感器、氢检测系统以及具有氢检测系统的电气装置
CN107615157A (zh) * 2015-05-21 2018-01-19 日东电工株式会社 调光薄膜及其制造方法、以及调光元件
CN108885380A (zh) * 2016-03-25 2018-11-23 日东电工株式会社 调光薄膜的制造方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9045335B2 (en) * 2010-08-18 2015-06-02 The Governors Of The University Of Alberta Kinetic stabilization of magnesium hydride
JP2013096528A (ja) * 2011-11-02 2013-05-20 Denso Corp 通信装置
JP5967568B2 (ja) * 2012-05-24 2016-08-10 国立研究開発法人産業技術総合研究所 水素吸放出合金、水素吸放出体、及び水素センサー。
JP6077906B2 (ja) 2013-03-28 2017-02-08 株式会社アツミテック スパッタリング装置
WO2016026803A1 (en) * 2014-08-19 2016-02-25 Abb Technology Ag Hydrogen sensor having a protection layer
JP6900156B2 (ja) * 2015-05-21 2021-07-07 日東電工株式会社 調光フィルムおよびその製造方法、ならびに調光素子
CN105060248A (zh) * 2015-07-17 2015-11-18 北京浩运金能科技有限公司 一种氢气净化装置
WO2018035090A1 (en) 2016-08-16 2018-02-22 Cardinal Cg Company Switchable hydride smart window
JP6697781B2 (ja) * 2016-09-23 2020-05-27 国立研究開発法人産業技術総合研究所 水素感知素子及び水素センサー
EP3517495B1 (en) 2016-09-23 2021-06-16 National Institute of Advanced Industrial Science and Technology Hydrogen storage body, gasochromic dimming element, hydrogen sensing element, and hydrogen sensor
KR102355307B1 (ko) * 2017-06-15 2022-01-24 가부시키가이샤 클린 플래닛 발열 장치 및 발열 방법
JP7217458B2 (ja) * 2019-02-20 2023-02-03 国立大学法人横浜国立大学 ナノ構造体アレイ、水素検出用素子及び水素検出装置
DE102020111959A1 (de) 2020-05-04 2021-11-04 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Verfahren und Messvorrichtung zur Untersuchung der Wasserstoffpermeabilität eines Untersuchungsgegenstands

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10259436A (ja) * 1997-03-21 1998-09-29 Toshiba Corp 水素吸蔵合金,その製造方法およびニッケル水素二次電池
US7404842B1 (en) * 2003-01-23 2008-07-29 Jesse Wainright Microfabricated hydrogen storage device and metal hydride fuel cell/battery
JP2008298724A (ja) * 2007-06-04 2008-12-11 Atsumi Tec:Kk 水素センサ
CN101449146A (zh) * 2006-03-17 2009-06-03 株式会社渥美精机 氢气检测装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6964826B2 (en) * 1999-04-12 2005-11-15 Ovonic Battery Company, Inc. Coated catalytic material with a metal phase in contact with a grain boundary oxide
JP4147462B2 (ja) * 2002-08-07 2008-09-10 トヨタ自動車株式会社 多層構造水素吸蔵体
JP2004346418A (ja) 2003-05-26 2004-12-09 Hitachi Cable Ltd 複合水素吸蔵合金、燃料電池用水素吸蔵タンク、多層構造体、および複合水素吸蔵合金の製造方法
JP2005326269A (ja) 2004-05-14 2005-11-24 Hitachi Cable Ltd ガス検知の方法およびガス検知装置
US20050186117A1 (en) * 2004-02-19 2005-08-25 Hiroyuki Uchiyama Gas detecting method and gas sensors

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10259436A (ja) * 1997-03-21 1998-09-29 Toshiba Corp 水素吸蔵合金,その製造方法およびニッケル水素二次電池
US7404842B1 (en) * 2003-01-23 2008-07-29 Jesse Wainright Microfabricated hydrogen storage device and metal hydride fuel cell/battery
CN101449146A (zh) * 2006-03-17 2009-06-03 株式会社渥美精机 氢气检测装置
JP2008298724A (ja) * 2007-06-04 2008-12-11 Atsumi Tec:Kk 水素センサ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
A. ZALUSKA等: "Nanocrystalline magnesium for hydrogen storage", 《JOURNAL OF ALLOYS AND COMPOUNDS》, vol. 288, 29 June 1999 (1999-06-29) *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104730114A (zh) * 2013-12-19 2015-06-24 中国科学院上海硅酸盐研究所 一种用于氢气传感器的镁合金薄膜及其制备方法
CN105372210A (zh) * 2014-08-19 2016-03-02 Abb技术有限公司 氢传感器、氢检测系统以及具有氢检测系统的电气装置
CN107615157A (zh) * 2015-05-21 2018-01-19 日东电工株式会社 调光薄膜及其制造方法、以及调光元件
CN107615157B (zh) * 2015-05-21 2021-01-08 日东电工株式会社 调光薄膜及其制造方法、以及调光元件
CN108885380A (zh) * 2016-03-25 2018-11-23 日东电工株式会社 调光薄膜的制造方法

Also Published As

Publication number Publication date
JP2011219841A (ja) 2011-11-04
US20130028791A1 (en) 2013-01-31
EP2559778A1 (en) 2013-02-20
US8758691B2 (en) 2014-06-24
KR101724782B1 (ko) 2017-04-18
KR20130032868A (ko) 2013-04-02
EP2559778A4 (en) 2013-12-18
WO2011129148A1 (ja) 2011-10-20
JP5789357B2 (ja) 2015-10-07
CA2795051A1 (en) 2011-10-20
EP2559778B1 (en) 2018-08-29
CA2795051C (en) 2019-01-08

Similar Documents

Publication Publication Date Title
CN102933729A (zh) 储氢合金及使用该储氢合金的氢传感器
EP2762968B1 (en) Reflective dimming element, reflective dimming member and multi-layered glass
CN104412154B (zh) 反射型调光元件
Lohstroh et al. Self-Organized Layered Hydrogenation in Black M g 2 N i H x Switchable Mirrors
EP2154528B1 (en) Hydrogen sensor
Ham et al. Size and stress dependent hydrogen desorption in metastable Mg hydride films
Gautam et al. Hydrogenation of Pd-capped Mg thin films prepared by DC magnetron sputtering
JP6697781B2 (ja) 水素感知素子及び水素センサー
Tajima et al. Switchable mirror glass with a Mg–Zr–Ni ternary alloy thin film
JP5232045B2 (ja) 水素センサ
Lohstroh et al. Double layer formation in Mg–TM switchable mirrors (TM: Ni, Co, Fe)
WO2018055946A1 (ja) 水素吸蔵体、ガスクロミック型調光素子、水素感知素子及び水素センサー
Bao et al. Metal buffer layer inserted switchable mirrors
Bao et al. Optical property and cycling durability of polytetrafluoroethylene top-covered and metal buffer layer inserted Mg–Ni switchable mirror
Tajima et al. Environmental durability of electrochromic switchable mirror glass at sub-zero temperature
Tajima et al. Mg–Ni thin-film composition dependence of durability of electrochromic switchable mirror glass in simulated environment
CN112596279A (zh) 碳氟/钯/镁-钌气致调光薄膜及其制备方法
Deng et al. Effects of Amorphous and Nanocrystalline Structures on Hydrogen-Induced Optical Performance of Modulated Mg–Gd Films with Various Composition Fluctuations
Romero et al. Pd as a promoter to reduce Co cluster films at room temperature
JP4984064B2 (ja) 光反射透過材料、光反射透過装置および光反射透過窓
Ell et al. Reasons for the specific kinetics of switchable mirrors of magnesium nickel films

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20130213