CN102764157B - Robot for orthopaedic surgery - Google Patents
Robot for orthopaedic surgery Download PDFInfo
- Publication number
- CN102764157B CN102764157B CN201210108847.2A CN201210108847A CN102764157B CN 102764157 B CN102764157 B CN 102764157B CN 201210108847 A CN201210108847 A CN 201210108847A CN 102764157 B CN102764157 B CN 102764157B
- Authority
- CN
- China
- Prior art keywords
- joint
- arm
- surgical robot
- orthopedic surgical
- servo motor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000012829 orthopaedic surgery Methods 0.000 title 1
- 230000000399 orthopedic effect Effects 0.000 claims abstract description 35
- 230000005484 gravity Effects 0.000 claims abstract description 16
- 230000007246 mechanism Effects 0.000 claims description 13
- 210000000707 wrist Anatomy 0.000 claims description 10
- 210000000245 forearm Anatomy 0.000 claims description 8
- 230000008878 coupling Effects 0.000 claims description 7
- 238000010168 coupling process Methods 0.000 claims description 7
- 238000005859 coupling reaction Methods 0.000 claims description 7
- 230000009467 reduction Effects 0.000 claims description 6
- 238000001356 surgical procedure Methods 0.000 abstract description 7
- 239000003638 chemical reducing agent Substances 0.000 description 6
- 229910000831 Steel Inorganic materials 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000006073 displacement reaction Methods 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- 238000011161 development Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000009434 installation Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000474 nursing effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
Landscapes
- Manipulator (AREA)
Abstract
一种骨科手术机器人,包括支架、升降组件、大臂、小臂和旋转臂。升降组件安装于支架,升降组件与大臂通过第一关节转动连接,大臂与小臂通过第二关节转动连接,小臂与旋转臂通过第三关节转动连接。第一关节、第二关节的回转轴线平行于重力方向。第三关节的回转轴线垂直于重力方向。上述骨科手术机器人,可以使手术时,骨科手术器械覆盖所有需要进行手术操作的位置,提高了手术空间利用率。
An orthopedic surgical robot includes a bracket, a lifting assembly, a large arm, a small arm and a rotating arm. The lifting component is installed on the bracket, the lifting component is connected to the big arm through the first joint, the big arm is connected to the small arm through the second joint, and the small arm is connected to the rotating arm through the third joint. The axes of rotation of the first joint and the second joint are parallel to the direction of gravity. The axis of rotation of the third joint is perpendicular to the direction of gravity. The above-mentioned orthopedic surgical robot can enable orthopedic surgical instruments to cover all positions where surgical operations are required during surgery, thereby improving the utilization rate of surgical space.
Description
技术领域 technical field
本发明涉及医疗机器人技术领域,特别是涉及一种骨科手术机器人。The invention relates to the technical field of medical robots, in particular to an orthopedic surgery robot.
背景技术 Background technique
计算机技术、微电子技术以及医学科学的发展是机器人发展的前进动力,医用机器人得到了很大的发展,并有广泛的应用。目前,医疗机器人的研究主要集中在外科手术机器人、康复机器人、护理机器人和微型机器人等几个方面。其中,根据结构形式的不同外科手术机器人可分为主动式外科手术机器人、主从式外科手术机器人和遥操作式外科手术机器人。The development of computer technology, microelectronics technology and medical science is the driving force for the development of robots. Medical robots have been greatly developed and widely used. At present, research on medical robots mainly focuses on surgical robots, rehabilitation robots, nursing robots and micro-robots. Among them, according to different structural forms, surgical robots can be divided into active surgical robots, master-slave surgical robots, and teleoperated surgical robots.
骨科手术机器人是一种外科手术机器人。传统的骨科手术机器人在手术工作空间利用率低,很难覆盖所有需要进行手术操作的位置。另外,在机器人发生故障或误操作时,机械手臂会因重力的影响沿垂直平面下落,损伤安装于骨科手术机器人端部的手术工具甚至造成医疗事故。An orthopedic surgical robot is a surgical robot. Traditional orthopedic surgical robots have a low utilization rate of the surgical workspace, and it is difficult to cover all the positions that require surgical operations. In addition, when the robot fails or is misoperated, the mechanical arm will fall along the vertical plane due to the influence of gravity, which will damage the surgical tools installed at the end of the orthopedic surgical robot and even cause medical accidents.
发明内容 Contents of the invention
基于此,有必要针对传统的骨科手术机器人手术空间利用率低的问题,提供一种手术利用空降较高的骨科手术机器人。Based on this, it is necessary to provide an orthopedic surgical robot with high airborne surgical utilization to solve the problem of low surgical space utilization of traditional orthopedic surgical robots.
一种骨科手术机器人,包括支架、升降组件、大臂、小臂和旋转臂,所述升降组件安装于支架,所述升降组件与所述大臂通过第一关节转动连接,所述大臂与所述小臂通过第二关节转动连接,所述小臂与所述旋转臂通过第三关节转动连接;所述第一关节、第二关节的回转轴线平行于重力方向;所述第三关节的回转轴线垂直于重力方向。An orthopedic surgical robot, comprising a bracket, a lifting assembly, a large arm, a small arm and a rotating arm, the lifting assembly is installed on the bracket, the lifting assembly is connected to the large arm through a first joint rotation, and the large arm is connected to the The forearm is rotatably connected through a second joint, and the forearm and the rotating arm are rotatably connected through a third joint; the axes of rotation of the first and second joints are parallel to the direction of gravity; the third joint The axis of rotation is perpendicular to the direction of gravity.
在其中一个实施例中,所述升降组件包括丝杆、丝杆螺母、连接件和驱动机构,所述丝杆螺母旋于丝杆,所述连接件的一端固定于所述丝杆螺母,另一端与所述大臂转动连接,所述驱动机构安装于所述支架,所述丝杆的一端与所述驱动机构连接,另一端与所述支架转动连接。In one of the embodiments, the lifting assembly includes a screw, a screw nut, a connecting piece and a driving mechanism, the screw nut is screwed on the screw, one end of the connecting piece is fixed to the screw nut, and the other One end is rotatably connected to the boom, the driving mechanism is installed on the bracket, one end of the screw rod is connected to the driving mechanism, and the other end is rotatably connected to the bracket.
在其中一个实施例中,所述第三关节的回转轴线平行于所述小臂的延伸方向。In one of the embodiments, the rotation axis of the third joint is parallel to the extension direction of the forearm.
在其中一个实施例中,还包括腕部组件,所述腕部组件通过第四关节与所述旋转臂远离所述第三关节的一端转动连接。In one of the embodiments, it further includes a wrist assembly, and the wrist assembly is rotationally connected to an end of the rotating arm away from the third joint through a fourth joint.
在其中一个实施例中,所述第四关节的回转轴线垂直于所述旋转臂的延伸方向。In one of the embodiments, the rotation axis of the fourth joint is perpendicular to the extension direction of the rotation arm.
在其中一个实施例中,所述腕部组件包括手术器械安装件和俯仰臂,所述俯仰臂通过所述第四关节与所述旋转臂相连,所述手术器械安装件安装于所述俯仰臂。In one of the embodiments, the wrist assembly includes a surgical instrument mount and a pitch arm, the pitch arm is connected to the rotating arm through the fourth joint, and the surgical instrument mount is mounted on the pitch arm .
在其中一个实施例中,所述腕部组件还包括标识件,所述标识件安装于所述俯仰臂远离所述手术器械安装件的一端。In one of the embodiments, the wrist assembly further includes an identification part, and the identification part is mounted on an end of the pitch arm away from the surgical instrument installation part.
在其中一个实施例中,所述驱动机构包括联轴器、多级减速箱、伺服电机和编码器,所述丝杠依次通过所述联轴器、多级减速箱与所述伺服电机的输出轴连接,所述编码器安装于所述伺服电机。In one of the embodiments, the driving mechanism includes a shaft coupling, a multi-stage reduction box, a servo motor and an encoder, and the lead screw passes through the output of the shaft coupling, the multi-stage reduction box and the servo motor in sequence. The shaft is connected, and the encoder is installed on the servo motor.
在其中一个实施例中,所述编码器与手术机器人的控制系统相连接。In one of the embodiments, the encoder is connected with the control system of the surgical robot.
上述骨科手术机器人中,第一关节、第二关节的回转轴线平行于重力方向,通过转动第一关节和第二关节以及移动升降组件调整大臂和小臂的位置,可以使手术时,骨科手术器械覆盖所有需要进行手术操作的位置,提高了手术空间利用率。In the above-mentioned orthopedic surgery robot, the rotation axes of the first joint and the second joint are parallel to the direction of gravity. By rotating the first joint and the second joint and moving the lifting assembly to adjust the positions of the upper arm and the forearm, it is possible to make the orthopedic surgery The instrument covers all the positions that need to be operated on, which improves the utilization rate of the operating space.
附图说明 Description of drawings
图1为本发明较佳实施例的立体图;Fig. 1 is a perspective view of a preferred embodiment of the present invention;
图2为图1中旋转臂转动时一个角度的姿态图;Fig. 2 is a posture diagram of an angle when the rotating arm in Fig. 1 rotates;
图3为图1中旋转臂转动时另一个角度的姿态图;Fig. 3 is a posture diagram of another angle when the rotating arm in Fig. 1 rotates;
图4为图1中俯仰臂作俯仰运动时一个角度的姿态图;Fig. 4 is a posture diagram of an angle when the pitching arm in Fig. 1 performs a pitching motion;
图5为图1中俯仰臂作俯仰运动时另一个角度的姿态图。Fig. 5 is a posture diagram of another angle when the pitching arm in Fig. 1 performs a pitching motion.
具体实施方式 Detailed ways
针对传统的骨科手术机器人在手术工作空间利用率低,很难覆盖所有需要进行手术操作的位置,以及在机器人发生故障或误操作时,机械手臂会因重力的影响沿垂直平面下落,损伤安装于骨科手术机器人端部的手术工具甚至造成医疗事故的问题,提供了一种骨科手术机器人。In view of the low utilization rate of the surgical workspace of traditional orthopedic surgical robots, it is difficult to cover all the positions that need to be operated on, and when the robot fails or is misoperated, the mechanical arm will fall along the vertical plane due to the influence of gravity, which will damage the The surgical tool at the end of the orthopedic surgical robot even causes the problem of medical malpractice, and an orthopedic surgical robot is provided.
如图1所示,本发明较佳实施例的骨科手术机器人,包括支架110、安装于支架的升降组件120、大臂130、小臂140和旋转臂150。升降组件120安装于支架110,升降组件120与大臂130通过第一关节160转动连接。大臂130与小臂140通过所述第二关节170转动连接。小臂140与旋转臂150通过第三关节180转动连接。第一关节160与第二关节170的回转轴线平行于重力方向,第三关节180的回转轴线垂直于重力方向。As shown in FIG. 1 , the orthopedic surgical robot of the preferred embodiment of the present invention includes a frame 110 , a lift assembly 120 mounted on the frame, a large arm 130 , a small arm 140 and a rotating arm 150 . The lifting assembly 120 is mounted on the bracket 110 , and the lifting assembly 120 is rotatably connected to the boom 130 through the first joint 160 . The big arm 130 is rotatably connected to the small arm 140 through the second joint 170 . The small arm 140 is rotationally connected to the rotating arm 150 through a third joint 180 . The rotational axis of the first joint 160 and the second joint 170 are parallel to the direction of gravity, and the rotational axis of the third joint 180 is perpendicular to the direction of gravity.
上述骨科手术机器人中,第一关节160、第二关节170的回转轴线平行于重力方向,通过转动第一关节160和第二关节170以及移动升降组件120调整大臂130和小臂140的位置,可以使手术时,骨科手术器械覆盖所有需要进行手术操作的位置,提高了手术空间利用率。In the above-mentioned orthopedic surgical robot, the rotation axes of the first joint 160 and the second joint 170 are parallel to the direction of gravity, and the positions of the big arm 130 and the small arm 140 are adjusted by rotating the first joint 160 and the second joint 170 and moving the lifting assembly 120, During the operation, the orthopedic surgical instrument can cover all the positions where the operation needs to be performed, thereby improving the utilization rate of the operation space.
在本实施例中,升降组件120包括丝杆121、丝杆螺母123、连接件125和驱动机构127。丝杆螺母123旋于丝杆121。连接件125的一端固定于丝杆螺母123,另一端与大臂130转动连接。驱动机构127安装于支架110,丝杆121的一端与驱动机构127连接,另一端与支架110转动连接。第三关节180的回转轴线平行于小臂140的延伸方向。In this embodiment, the lifting assembly 120 includes a screw rod 121 , a screw nut 123 , a connecting piece 125 and a driving mechanism 127 . The screw nut 123 is screwed on the screw rod 121 . One end of the connecting piece 125 is fixed to the screw nut 123 , and the other end is rotatably connected to the boom 130 . The driving mechanism 127 is installed on the bracket 110 , one end of the threaded rod 121 is connected to the driving mechanism 127 , and the other end is rotatably connected to the bracket 110 . The rotation axis of the third joint 180 is parallel to the extension direction of the forearm 140 .
上述实施例中,第一关节160、第二关节170的回转轴线平行于重力方向,第三关节180的回转轴线垂直于重力方向,医生进行操作时,大臂130、小臂140紧沿水平方向移动,旋转臂150沿轴转动。虽然升降组件120的运动沿竖直方向,但是升降组件120中采用了配备有丝杆螺母123的丝杆121作为运动轨道,即使机器人故障或误操作,也不会在重力方向有较大的回落,有效的避免了因机械手臂下落造成的手术工具损伤或医疗事故的发生。In the above embodiment, the rotation axes of the first joint 160 and the second joint 170 are parallel to the direction of gravity, and the rotation axis of the third joint 180 is perpendicular to the direction of gravity. To move, the swivel arm 150 rotates along the axis. Although the movement of the lifting assembly 120 is along the vertical direction, the screw rod 121 equipped with the screw nut 123 is used as the movement track in the lifting assembly 120, even if the robot fails or misoperates, it will not fall back in the direction of gravity , effectively avoiding surgical tool damage or medical accidents caused by the fall of the robotic arm.
如图2、图3、图4和图5所示,骨科手术机器人还包括腕部组件210。腕部组件210通过第四关节220与旋转臂150远离第三关节180的一端转动连接。第四关节220的回转轴线垂直于旋转臂150的延伸方向。腕部组件210包括手术器械安装件212、俯仰臂214和标识件216。俯仰臂214通过第四关节220与旋转臂150相连,俯仰臂214可以以第四关节为轴作俯仰运动。手术器械安装件212安装于俯仰臂214的一端,标识件216安装于俯仰臂214远离手术器械安装件212的一端。手术器械安装件212用于安装骨科手术器械,标识件216用于在骨科手术机器人运动过程中对骨科手术器械的位置进行定位。As shown in FIG. 2 , FIG. 3 , FIG. 4 and FIG. 5 , the orthopedic surgical robot further includes a wrist assembly 210 . The wrist assembly 210 is rotatably connected to an end of the rotating arm 150 away from the third joint 180 through the fourth joint 220 . The rotation axis of the fourth joint 220 is perpendicular to the extension direction of the rotation arm 150 . Wrist assembly 210 includes surgical instrument mount 212 , pitch arm 214 , and identification member 216 . The pitching arm 214 is connected to the rotating arm 150 through the fourth joint 220, and the pitching arm 214 can perform a pitching motion around the fourth joint as an axis. The surgical instrument mounting part 212 is mounted on one end of the pitching arm 214 , and the identification part 216 is mounted on the end of the pitching arm 214 away from the surgical instrument mounting part 212 . The surgical instrument mounting part 212 is used for installing the orthopedic surgical instrument, and the identification part 216 is used for locating the position of the orthopedic surgical instrument during the movement of the orthopedic surgical robot.
在本实施例中,驱动机构127包括联轴器、多级减速箱、伺服电机和编码器。丝杠依次通过联轴器、多级减速箱与伺服电机的输出轴连接,编码器安装于伺服电机。伺服电机作为动力源,输出力矩和转速,经过多级减速箱减速,以增大驱动机构的输出力矩。联轴器将转速和力矩传递给丝杆,丝杆转动带动丝杆螺母的移动,进而完成升降组件的升降运动。编码器与手术机器人的控制系统相连接。编码器检测伺服电机的转角位移和角速度,以电信号的形式反馈给控制系统,控制系统经过处理,通过伺服电机的驱动电路调整伺服电机的转角位移和角速度。In this embodiment, the driving mechanism 127 includes a shaft coupling, a multi-stage reduction box, a servo motor and an encoder. The lead screw is connected to the output shaft of the servo motor through a coupling and a multi-stage reduction box in turn, and the encoder is installed on the servo motor. As the power source, the servo motor outputs torque and speed, and is decelerated by a multi-stage gearbox to increase the output torque of the drive mechanism. The coupling transmits the speed and torque to the screw, and the rotation of the screw drives the movement of the screw nut, thereby completing the lifting movement of the lifting assembly. The encoder is connected with the control system of the surgical robot. The encoder detects the angular displacement and angular velocity of the servo motor, and feeds back to the control system in the form of electrical signals. After processing, the control system adjusts the angular displacement and angular velocity of the servo motor through the drive circuit of the servo motor.
在本实施例中,第一关节160包括第一编码器、第一伺服电机和第一谐波减速器。第一伺服电机安装于连接件125,第一编码器安装于第一伺服电机。第一谐波减速器包括第一波发生器、第一柔轮和第一钢轮。第一波发生器与第一伺服电机的输出轴连接,第一钢轮固定于连接件125,第一柔轮与大臂130连接。第一伺服电机输出转速和力矩,通过第一谐波减速器的减速,将运动传递给大臂130,实现大臂130的转动。第一编码器与手术机器人的控制系统相连接,将第一伺服电机的角速度和角位移转换成电信号并将该电信号传送给控制系统。In this embodiment, the first joint 160 includes a first encoder, a first servo motor and a first harmonic reducer. The first servo motor is installed on the connecting member 125 , and the first encoder is installed on the first servo motor. The first harmonic reducer includes a first wave generator, a first flex spline and a first steel wheel. The first wave generator is connected to the output shaft of the first servo motor, the first steel wheel is fixed to the connecting member 125 , and the first flexible wheel is connected to the big arm 130 . The first servo motor outputs the rotational speed and torque, and transmits the motion to the boom 130 through the deceleration of the first harmonic reducer, so as to realize the rotation of the boom 130 . The first encoder is connected with the control system of the surgical robot, converts the angular velocity and angular displacement of the first servo motor into electrical signals and transmits the electrical signals to the control system.
在本实施例中,第二关节170包括第二编码器、第二伺服电机和第二谐波减速器。第二伺服电机安装于小臂140。第二编码器安装于第二伺服电机。第二谐波减速器包括第二波发生器、第二柔轮和第二钢轮。第二波发生器与第二伺服电机的输出轴连接,第二钢轮固定于小臂140,第二柔轮与大臂130连接。第二伺服电机提供第二关节的转速和转矩,第二谐波减速器降低转速,增大转矩。第二编码器与手术机器人的控制系统相连接,将第二伺服电机的角速度和角位移转换成电信号并将该电信号传送给控制系统。In this embodiment, the second joint 170 includes a second encoder, a second servo motor and a second harmonic reducer. The second servo motor is mounted on the arm 140 . The second encoder is installed on the second servo motor. The second harmonic reducer includes a second wave generator, a second flex spline and a second steel wheel. The second wave generator is connected with the output shaft of the second servo motor, the second steel wheel is fixed on the small arm 140 , and the second flexible wheel is connected with the big arm 130 . The second servo motor provides the speed and torque of the second joint, and the second harmonic reducer reduces the speed and increases the torque. The second encoder is connected with the control system of the surgical robot, converts the angular velocity and angular displacement of the second servo motor into electrical signals and transmits the electrical signals to the control system.
在本实施例中,第三关节180和第四关节220均包括驱动件,分别用于驱动旋转臂150转动和俯仰臂212做俯仰运动。In this embodiment, both the third joint 180 and the fourth joint 220 include driving parts, which are respectively used to drive the rotating arm 150 to rotate and the pitching arm 212 to perform a pitching motion.
上述骨科手术机器人,设计为平面关节机器人设计形式,第一关节160、第二关节170的回转轴线平行于重力方向,通过转动第一关节160和第二关节170以及移动升降组件120调整大臂130和小臂140的位置,可以使手术时,骨科手术器械覆盖所有需要进行手术操作的位置,提高了手术空间利用率。同时,在拖拽机器人时,机器人的大臂130、小臂140与旋转臂150和地面的距离不变,可以随意拖拽而不会对病人有任何的安全隐患,大大提高了手术的安全性,而且平面关节机器人还有工作空间大,定位精确、操作简单的特点。The above-mentioned orthopedic surgery robot is designed in the form of a planar joint robot. The rotation axes of the first joint 160 and the second joint 170 are parallel to the direction of gravity. And the position of the forearm 140 can make the orthopedic surgical instruments cover all the positions that need to be operated during the operation, which improves the utilization rate of the operation space. At the same time, when dragging the robot, the distance between the big arm 130 and the small arm 140 of the robot and the rotating arm 150 and the ground remains unchanged, and the robot can be dragged at will without any safety hazard to the patient, which greatly improves the safety of the operation. , and the planar joint robot also has the characteristics of large working space, precise positioning and simple operation.
另外,骨科手术机器人具有升降组件120、第一关节160、第二关节170、第三关节180和第四关节210五个自由度。其中,升降组件120、第一关节160和第二关节170用于调整骨科手术机器人的末端位置。第三关节180和第四关节210用于调整骨科手术机器人的末端姿态。在配合医生手术时,拖拽方便,五个自由度可以保证将骨科手术器械调整到工作范围内的任何位置,可以实现工作范围内的任何姿态,完全满足医生手术的需求。In addition, the orthopedic surgical robot has five degrees of freedom of the lifting assembly 120 , the first joint 160 , the second joint 170 , the third joint 180 and the fourth joint 210 . Wherein, the lifting assembly 120, the first joint 160 and the second joint 170 are used to adjust the end position of the orthopedic surgery robot. The third joint 180 and the fourth joint 210 are used to adjust the terminal posture of the orthopedic surgery robot. When cooperating with the doctor's operation, it is easy to drag and drop, and the five degrees of freedom can ensure that the orthopedic surgical instrument can be adjusted to any position within the working range, and any posture within the working range can be realized, fully meeting the needs of the doctor's operation.
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。The above-mentioned embodiments only express several implementation modes of the present invention, and the description thereof is relatively specific and detailed, but should not be construed as limiting the patent scope of the present invention. It should be pointed out that those skilled in the art can make several modifications and improvements without departing from the concept of the present invention, and these all belong to the protection scope of the present invention. Therefore, the protection scope of the patent for the present invention should be based on the appended claims.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210108847.2A CN102764157B (en) | 2012-04-13 | 2012-04-13 | Robot for orthopaedic surgery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210108847.2A CN102764157B (en) | 2012-04-13 | 2012-04-13 | Robot for orthopaedic surgery |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102764157A CN102764157A (en) | 2012-11-07 |
CN102764157B true CN102764157B (en) | 2014-12-10 |
Family
ID=47091895
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210108847.2A Active CN102764157B (en) | 2012-04-13 | 2012-04-13 | Robot for orthopaedic surgery |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102764157B (en) |
Families Citing this family (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105193502A (en) * | 2014-06-23 | 2015-12-30 | 上海艾迅医疗设备有限公司 | Surgical operation robot |
US9974619B2 (en) * | 2015-02-11 | 2018-05-22 | Engineering Services Inc. | Surgical robot |
CN104783900B (en) * | 2015-04-03 | 2017-02-22 | 中国科学院深圳先进技术研究院 | Follow-up type nasal endoscope operation auxiliary robot |
CN105147393B (en) * | 2015-08-19 | 2017-06-20 | 哈尔滨工业大学 | A kind of minimally invasive robot holds mirror mechanical arm |
CN105476713B (en) * | 2015-12-28 | 2017-12-26 | 苏州点合医疗科技有限公司 | A kind of robot for orthopaedic surgery that the antiwind micro-wound pressure-reduced manipulator of bushing type is avoided based on collet |
CN105997250B (en) * | 2016-04-27 | 2018-11-20 | 中国科学院深圳先进技术研究院 | A kind of spinal lamina grinding attachment |
WO2017219208A1 (en) * | 2016-06-20 | 2017-12-28 | 深圳市鑫君特智能医疗器械有限公司 | Intelligent bone drill of orthopedic surgery robot |
CN106175935B (en) * | 2016-06-29 | 2019-01-22 | 微创(上海)医疗机器人有限公司 | Mechanical arm and orthopedic robot |
CN106361434B (en) * | 2016-09-21 | 2018-10-02 | 浙江锦源实业有限公司 | A kind of cutter can various dimensions movement operating robot |
CN106344158B (en) * | 2016-09-21 | 2018-08-17 | 东莞市联洲知识产权运营管理有限公司 | A kind of bottom is equipped with the operating robot of lifting idler wheel |
CN106236276B (en) * | 2016-09-28 | 2019-09-17 | 微创(上海)医疗机器人有限公司 | Surgical robot system |
CN107320192A (en) * | 2017-07-31 | 2017-11-07 | 成都中科博恩思医学机器人有限公司 | The operating theater instruments and operating robot of operating robot |
CN107334532B (en) * | 2017-07-31 | 2021-03-19 | 成都博恩思医学机器人有限公司 | surgical robot |
CN108652744A (en) * | 2018-04-08 | 2018-10-16 | 石佳明 | A kind of bone surgery auxiliary manipulator |
CN110384555B (en) * | 2018-04-19 | 2021-03-12 | 中国科学院深圳先进技术研究院 | Holding mirror surgical robot based on far-end center movement mechanism |
CN108888343A (en) * | 2018-05-04 | 2018-11-27 | 东莞市联洲知识产权运营管理有限公司 | Medical treatment operation is with diversified manipulator of adjusting that has adsorption apparatus structure |
CN108908315A (en) * | 2018-09-17 | 2018-11-30 | 深圳市越疆科技有限公司 | Forearm and articulated robot |
CN110200704B (en) * | 2019-07-10 | 2023-12-22 | 重庆金山医疗机器人有限公司 | Linear motion mechanism and operation trolley |
CN110464464B (en) * | 2019-08-06 | 2024-07-30 | 复旦大学附属肿瘤医院 | Mechanical arm of urological operation robot |
CN113288427B (en) * | 2020-02-21 | 2022-07-05 | 中国科学院沈阳自动化研究所 | A suspension positioning manipulator and its control method |
CN112353495B (en) * | 2020-10-29 | 2021-08-10 | 北京唯迈医疗设备有限公司 | Intervene surgical robot arm system |
CN112914729A (en) * | 2021-03-25 | 2021-06-08 | 江苏集萃复合材料装备研究所有限公司 | Intelligent auxiliary positioning bone surgery robot system and operation method thereof |
CN113616261A (en) * | 2021-09-15 | 2021-11-09 | 常州安康医疗器械有限公司 | Electric endoscope anastomat with high automation degree and automatic control assembly thereof |
TWI823152B (en) * | 2021-10-01 | 2023-11-21 | 財團法人金屬工業研究發展中心 | Optical positioning probe cart |
CN114098978B (en) * | 2021-11-12 | 2024-06-25 | 艺柏湾医疗科技(上海)有限公司 | A robotic arm for minimally invasive surgery |
CN113995668B (en) * | 2021-12-13 | 2023-08-25 | 沈阳天仁合一科技有限公司 | Intelligent moxibustion instrument |
CN114012780B (en) * | 2021-12-13 | 2023-08-08 | 沈阳天仁合一科技有限公司 | Rotating arm with displacement compensation |
CN115381555A (en) * | 2022-08-10 | 2022-11-25 | 中国中医科学院望京医院(中国中医科学院骨伤科研究所) | A special orthopedic surgical robot for specific parts |
CN117442238A (en) * | 2023-12-25 | 2024-01-26 | 中国科学院自动化研究所 | A portable ultrasonic robot scanning system |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1417004A (en) * | 2002-11-26 | 2003-05-14 | 北京航空航天大学 | Five-coardinate space positioning robot mechanism |
CN1457747A (en) * | 2003-05-28 | 2003-11-26 | 天津大学 | Mechanical arm used in microsurgery operation robot |
CN2645862Y (en) * | 2003-10-29 | 2004-10-06 | 中国科学院自动化研究所 | Mobile mechanical arm system |
CN1586831A (en) * | 2004-07-09 | 2005-03-02 | 北京理工大学 | Six-freedom remote control arm with gravity compensation and length regulation |
CN1711976A (en) * | 2005-07-21 | 2005-12-28 | 复旦大学 | A Surgical Navigation Tool |
CN1798638A (en) * | 2003-06-13 | 2006-07-05 | Abb公司 | A robot arm having a wrist house movable mounted by holding means |
CN2796972Y (en) * | 2005-04-04 | 2006-07-19 | 天津市华志计算机应用有限公司 | Structure of fire freedom space location robot |
CN101160104A (en) * | 2005-02-22 | 2008-04-09 | 马科外科公司 | Haptic guidance system and method |
CN101862223A (en) * | 2010-06-24 | 2010-10-20 | 中国科学院深圳先进技术研究院 | surgical robot |
CN202143653U (en) * | 2011-05-09 | 2012-02-15 | 无锡佑仁科技有限公司 | Minimally invasive vascular intervention operation robot |
-
2012
- 2012-04-13 CN CN201210108847.2A patent/CN102764157B/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1417004A (en) * | 2002-11-26 | 2003-05-14 | 北京航空航天大学 | Five-coardinate space positioning robot mechanism |
CN1457747A (en) * | 2003-05-28 | 2003-11-26 | 天津大学 | Mechanical arm used in microsurgery operation robot |
CN1798638A (en) * | 2003-06-13 | 2006-07-05 | Abb公司 | A robot arm having a wrist house movable mounted by holding means |
CN2645862Y (en) * | 2003-10-29 | 2004-10-06 | 中国科学院自动化研究所 | Mobile mechanical arm system |
CN1586831A (en) * | 2004-07-09 | 2005-03-02 | 北京理工大学 | Six-freedom remote control arm with gravity compensation and length regulation |
CN101160104A (en) * | 2005-02-22 | 2008-04-09 | 马科外科公司 | Haptic guidance system and method |
CN2796972Y (en) * | 2005-04-04 | 2006-07-19 | 天津市华志计算机应用有限公司 | Structure of fire freedom space location robot |
CN1711976A (en) * | 2005-07-21 | 2005-12-28 | 复旦大学 | A Surgical Navigation Tool |
CN101862223A (en) * | 2010-06-24 | 2010-10-20 | 中国科学院深圳先进技术研究院 | surgical robot |
CN202143653U (en) * | 2011-05-09 | 2012-02-15 | 无锡佑仁科技有限公司 | Minimally invasive vascular intervention operation robot |
Non-Patent Citations (4)
Title |
---|
五自由度康复机械手臂的设计;车仁炜等;《机械设计》;20050430;第22卷(第4期);全文 * |
刘达等.面向微创手术的医疗外科机器人构型综合.《机器人》.2003,第25卷(第2期), * |
车仁炜等.五自由度康复机械手臂的设计.《机械设计》.2005,第22卷(第4期), * |
面向微创手术的医疗外科机器人构型综合;刘达等;《机器人》;20030331;第25卷(第2期);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN102764157A (en) | 2012-11-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102764157B (en) | Robot for orthopaedic surgery | |
CN101862223B (en) | Operating robot | |
CN102764158B (en) | Surgical robot | |
US9037293B2 (en) | Robot | |
CN102764156B (en) | Surgical operation robot | |
CN104589304B (en) | Robot controller and robot | |
CN103565529A (en) | Robot-assisted multifunctional instrument arm for minimally invasive surgery | |
US10189164B2 (en) | Robot, control device, and robot system | |
CN104546147A (en) | RCM mechanism for mechanical arm of laparoscopic minimally invasive surgical robot | |
CN108000477A (en) | A kind of complete main passive compliance robot of pose and screw valve method using the robot | |
CN103934831A (en) | Robot | |
JP2015085427A (en) | Each axis angle determination method for 6-axis robot and controller for 6-axis robot | |
CN204446127U (en) | A kind of peritoneoscope micro-wound operation robot mechanical arm RCM mechanism | |
JP2019063941A (en) | robot | |
CN104260095A (en) | Control method and device of medical mechanical arm | |
JP2018187749A (en) | robot | |
JP2017087302A (en) | Control device, robot and robot system | |
JP6582520B2 (en) | robot | |
CN207745190U (en) | A kind of novel operation robot main manipulator | |
JP2016203344A (en) | robot | |
JP2017226045A (en) | Robot, control device, and robot system | |
JP2017131969A (en) | robot | |
CN106618735A (en) | Collaborative interaction robot for surgical operation | |
CN109760022B (en) | Flexible adjusting mechanism for operation posture | |
CN206424149U (en) | A kind of surgical operation robot containing arc prismatic pair |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |