[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN102742033B - 薄膜光电池、制造方法及应用 - Google Patents

薄膜光电池、制造方法及应用 Download PDF

Info

Publication number
CN102742033B
CN102742033B CN201080058546.2A CN201080058546A CN102742033B CN 102742033 B CN102742033 B CN 102742033B CN 201080058546 A CN201080058546 A CN 201080058546A CN 102742033 B CN102742033 B CN 102742033B
Authority
CN
China
Prior art keywords
layer
type semiconductor
sublayer
cdte
window layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201080058546.2A
Other languages
English (en)
Other versions
CN102742033A (zh
Inventor
J·史卡波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao Sifang Sri Intelligent Technology Co ltd
Original Assignee
Beneq Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beneq Oy filed Critical Beneq Oy
Publication of CN102742033A publication Critical patent/CN102742033A/zh
Application granted granted Critical
Publication of CN102742033B publication Critical patent/CN102742033B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1828Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1828Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe
    • H01L31/1836Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe comprising a growth substrate not being an AIIBVI compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0296Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0296Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe
    • H01L31/02963Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe characterised by the doping material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/543Solar cells from Group II-VI materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)
  • Light Receiving Elements (AREA)

Abstract

薄膜光电池(10)包括n型半导体窗口层(40)、p型半导体吸收层(5)和这两个层之间的界面处的pn结(6),其中,p型半导体吸收层由碲化镉CdTe形成。根据本发明,所述n型半导体窗口层(40)包含氧化锌/硫化锌Zn(O,S)。

Description

薄膜光电池、制造方法及应用
发明领域
本发明一般涉及光电池。它涉及形成光电池关键工作部分的半导体层结构。更具体而言,本发明专注于碲化镉(CdTe)基光电池,尤其是n型半导体层,即,所谓的这种电池的窗口层(window layer)。
发明背景
光电池被用于各种应用中,以将电磁辐射转换成电能。光电池工业和行业中的一个具体领域是利用阳光作为主要能源的太阳能电池领域。
光电池在本文中一般意为半导体基组件,其通过光电效应将入射电磁辐射转换成电能。本文所论述类型的光电池的简化的基本结构通常包括第一导电型半导体材料的窗口层和第二导电型半导体材料的吸收层。pn结(pn junction)位于这两个不同类型半导体层之间的界面处。能量低于窗口层材料带隙能(band gap energy)的入射光的光子通过窗口层穿透到吸收层。在吸收层中,能量等于或大于吸收层材料带隙能的光子被吸收,因而激发电子从价带到达导带。以这种方式产生的自由电荷载体然后通过与pn结的不同面连接的电极装置被收集。
在光电池发展中的一个有前景的技术趋势是薄膜电池领域。在薄膜光电池中,认识到装置的半导体层为薄层,其厚度在几纳米到几十微米的范围内。
一般,薄膜光电池以及光电池通常根据吸收层材料被分类。最广泛使用的薄膜吸收层材料是非晶形硅Si、碲化镉CdTe和铜铟镓硒CIGS。那些材料中的每一种均确定一种分立的电池类型,因而形成不相关连的技术领域,其特有特征不同于其它电池类型的领域。这些不同技术之间的差异不仅在于实际的吸收层材料和其它材料以及电池的详细工作,还在于所需要的并最适于生产光电池的制造工艺和生产设备。这意味着被配置来生产一种类型电池的生产工厂并不能直接转变用于制造一些其它电池类型。这通常迫使薄膜光电池生产商仅选择这些技术中的一种。
在上述电池类型中,CdTe电池现今常常被看作前沿技术。这是基于整体考虑,不仅专注于设备性能(例如,已知CIGS薄膜电池可比CdTe基电池提供更高的功效),而且还考虑与例如制造成本有关的制造观点。
在CdTe薄膜电池中,n型窗口材料为硫化镉CdS,根据在本领域中的既定理解,硫化镉CdS实际上是用于CdTe电池的唯一合适的n型材料。这两种材料形成良好的pn结,并且,从制造观点上看,它们也彼此相容。CdTe/CdS电池在很长时间中处于集约发展,最近几年,最集约化的发展专注于优化CdTe的掺杂和背电极结构以及专注于制造。结果,CdTe/CdS电池技术的状态现在达到30%的最大理论功效的约一半。
然而,存在一个与CdS有关的悉知问题。CdS的带隙能为2,4eV,其相当于520nm的波长。因此,该值以下的波长在窗口层中被吸收,因而并不对由光电池产生的电流有贡献。这在例如将太阳辐射转换成电能的太阳能电池中是个重要问题。
缓解上述问题的一个已知方法是利用较小的CdS层厚度。厚度越小,波长低于所述界限值的辐射能经过CdS层的比例越高。然而,随着CdS层变薄,出现的另一个问题是可能的小孔形成,其在CdTe和通常存在于CdS上的上部透明导电氧化物TCO电流收集层之间产生局部化的连接。在CdTe和TCO之间的这些类型的直接接触点会使装置性能严重恶化。
发明目的
本发明的目的是提供新的高效光电池结构。
发明概述
本发明以权利要求1、3和5所呈现的为特征。
根据本发明一个方面的薄膜光电池包括n型半导体窗口层、p型半导体吸收层和位于这两个层之间的界面处的pn结,其中p型半导体吸收层由碲化镉CdTe形成。
“薄膜光电池”在本文中意为这样的光电池结构,其中装置的关键工作部件,像窗口层和吸收层,被理解为一叠薄的、基本上平面的膜,其厚度在几纳米到几十微米的范围内。“窗口层”意为在入射辐射面的层,通过该层,具有能量低于窗口层材料带隙能的光子的入射辐射传播到吸收层。在由CdTe形成的、具有较窄带隙的吸收层中,能量等于或超出CdTe带隙能的光子通过将其能量传递给CdTe的电子而被吸收,因而在结构中产生自由电荷载体作为电子空穴对。
自然地,CdTe薄膜光电池,即具有CdTe作为吸收层材料的电池,作为完整的装置在装置的核心中还含有除所述窗口和吸收层以外的其它部件。整个装置在生长基底上形成,该基底通常由玻璃制成。邻近于基底的层通常是透明导电氧化物TCO层,其用于确保有效收集在整个装置区域上产生的电流。窗口层与TCO层接触。在吸收层下面是导电材料——例如一些金属——层,该导电材料层形成装置的背电极以提供与吸收层的电连接。另外,当需要时,完整的装置还可以包括用于不同目的的其它层。然而,这种可能的层(例如,用于背电极接触)从本发明主要原理来看不是重要的。
根据本发明,n型半导体窗口层包含氧化锌/硫化锌Zn(O,S)。因此,与基于CdTe/CdS的基本结构和优化其中细节的所有现有技术方法不同,本发明采取强有力的步骤来引入全新的窗口层材料用于CdTe电池。
Zn(O,S)是氧化锌ZnO基材料。Zn(O,S)包括堆叠的薄层封装件(package),每一个封装件包括ZnO子层(sublayer)和另一个ZnS子层。每个ZnO子层的厚度为1–20单层,通常为7-12单层,而ZnS子层厚度在1–10单层之内,通常在1-2单层之内。
本发明人现已惊讶地发现,Zn(O,S)的物理和化学特性使得它与CdTe相容,因而能够实现在CdTe和Zn(O,S)之间良好的pn结。此外,重要的是,Zn(O,S)具有比CdS的带隙宽的带隙,因而,尤其为太阳能电池提供与CdS相比改进的功效。薄膜Zn(O,S)带隙通常为2.7-3.6eV,这非线性地取决于O/S比。因此,本发明通过使较低端截止波长转变为明显低于CdS的所述520nm的界限来提供CdTe光电池装置功效的显著增强。作为另一优势,本发明减少装置中毒性镉的量。
除了完全替换窗口层中的CdS之外,本发明的基本原理,即,“包含”Zn(O,S)的窗口层也可以在这样的实施方式中实现,在该实施方式中,窗口层包括附着于CdTe吸收层的、薄的CdS子层和较厚的Zn(O,S)子层。在该实施方式中,CdS薄层与CdTe一起形成p型吸收层和n型窗口层之间的实际界面。然而,同样在该实施方式中,明显的大部分n型窗口层厚度由Zn(O,S)形成,因此,窗口层的透明度主要由该材料确定。
根据本发明的窗口层厚度可以变化,这取决于所选择的实际窗口层组成和期望的装置性能。合适的厚度范围为10-200nm,优选20-50nm。在选择最佳厚度时要考虑的一个方面是CdTe再结晶的步骤,该步骤通常在CdTe电池制造工艺结束时进行。该步骤也可能影响窗口层材料的结构,并且可以设置对窗口层厚度的要求。
优选地,所述n型半导体窗口层材料通过原子层沉积ALD被沉积。ALD是薄膜技术,其能实现精确和良好控制的具有纳米级厚度的薄膜涂层的生产。ALD有时也称为原子层外延ALE。在ALD工艺中,基底交替地暴露于至少两种前体,一次暴露于一种前体,以通过交替重复基底表面(在稍后阶段,自然地,基底上已经形成的涂层表面)和前体之间基本上自限性的表面反应而在基底上形成涂层。结果,沉积的材料一个分子层一个分子层地在基底上“生长”。
通常,通过ALD沉积的涂层具有若干有利特征。例如,分子层接分子层型涂层形成意为非常精确可控制的层厚度。另一方面,由于在沉积工艺中表面控制的反应,涂层均匀地沉积在基底的整个表面上,无论基底表面形状如何。在根据本发明的CdTe电池中,这些特征意为,窗口层具有非常均匀的厚度,并且,它以良好的一致性覆盖下面的装置层。
根据方法方面,本发明是用于制造薄膜光电池的方法,其包括形成n型半导体窗口层和p型半导体吸收层以便在这两个层之间的界面处形成pn结的步骤,其中,p型半导体吸收层由碲化镉CdTe形成。以上决定并不固定这两个层的制造顺序。然而,在标准CdTe电池工艺中,顺序为如所表示的,即,首先形成CdS窗口层。CdTe吸收层可通过蒸发、溅射或近空间升华(close spaced sublimation)(CSS)工艺来形成。然后,最初完成的膜在CdCl2存在的情况下被加热处理,导致CdTe再结晶和其中的晶体的生长。根据本领域中已知的完全确立的原理可以选择工艺细节,这对于本发明的基本原理不是关键的。
根据本发明,n型半导体窗口层被形成,以便包含氧化锌/硫化锌Zn(O,S)。如上所述,该材料为CdTe薄膜光电池展现大的新优势。
根据本发明的n型半导体窗口层材料可以通过,例如已知用于沉积不同种类薄膜的化学浴沉积(CBD)方法来形成。然而,在一个优选实施方式中,它通过原子层沉积ALD被沉积。除了沉积的膜本身特性的优势之外,ALD也给制造工艺提供许多益处。例如,ALD是干燥(真空)工艺,因而,沉积工艺可以直接地与CdTe工艺(也在真空下进行)结合。成行的ALD工艺室(chamber)可以其加热部分嵌入到CdTe处理线中。同样,在不需要用DI水进行溶液处理和清洁时,该工艺成本仍然是合理的。ALD也是非常精确可控制的工艺。例如,ALD能使得沉积的膜的不同表面上的O/S比不同。根据ALD技术中已知的原理,精确的工艺细节可以被选择。例如,Zn(O,S)的沉积温度的范围可以为100–270℃,优选200-270℃。Zn(O,S)的合适工艺参数的详细实例在,例如Platzer-et al,"Zn(O,S)/Cu(In,Ga)Se2 solar cells:band alignment and sulfur gradient",Journal of Applied Physics 100,044506(2006)中有说明。
根据另一个方面,本发明是氧化锌/硫化锌Zn(O,S)在薄膜光电池窗口层中的新用途,所述薄膜光电池包括n型半导体窗口层、p型半导体吸收层和在这两个层之间的界面处的pn结,其中,p型半导体吸收层由碲化镉CdTe形成。
优选地,所述n型半导体窗口层材料通过原子层沉积ALD被沉积。然而,其它沉积工艺也是可能的。
在根据本发明的光电池及制造方法的上下文中,所述用途及其优选实施方式共享上述基本特征和优势。
发明详述
通过附图,在下面更详细地描述本发明,其中
-图1显示典型的现有技术CdTe光电池结构,
-图2示意性显示根据本发明的一种CdTe光电池结构,
-图3显示现有技术装置和根据本发明的CdTe光电池之间的相对量子效率的比较,和
-图4以流程图显示用于生产根据本发明的CdTe光电池窗口层的一种可能制造方法。
图1的现有技术CdTe/CdS光电池1在玻璃基底2上形成,该玻璃基底2在图中是装置的最上层。透明导电氧化物TCO层3,包括例如沉积在基底上的氟掺杂氧化锡FTO,形成透明电流收集层。在TCO层下面是是n掺杂的CdS窗口层4。与其邻近的是p掺杂的CdTe吸收层5,在该吸收层5中,发生入射光子的实际吸收。具有不同传导性类型的窗口和吸收层在它们之间的界面处形成pn结6。作为图1装置的最低层的是金属背电极层7,其由例如Cu/Au或Ni/Al形成。
如本领域技术人员所熟知的,该装置的工作原理如下。入射辐射在玻璃基底2的面上接触装置。大部分辐射——除了由于在界面处的反射造成的损失和层内可能的少量吸收损失之外——穿透经过玻璃和TCO层2、3,然后到达n型窗口层4。具有比窗口层材料带隙能低的能量的光子进一步传播到吸收层,在该吸收层中,它们被吸收,从而产生自由的电子空穴对。然后,这些产生的电荷载体通过与TCO和背电极层3、7连接的电路装置(未显示)被收集。
在显示根据本发明的CdTe光电池10的图2中,大部分电池部件与图1中的那些部件类似,并且,它们以与图1现有技术装置中相应部件相同的编号被引用。作为关键的差异,窗口层40由通过ALD沉积的n掺杂的Zn(O,S)形成。窗口层厚度在20和50nm之间。
图3显示四个CdTe光电池的测量结果。电池中的两个代表图1中图示的基本现有技术结构,其中CdS窗口层厚度为50nm。其它两个电池与现有技术电池的不同在于:CdS窗口层由通过ALD沉积的50nm厚的Zn(O,S)层替换。ALD Zn(O,S)的O/S循环比为10/1。
图3的图显示在CdS已被Zn(O,S)替换的组分中500nm以下相对量子效率的明显改进。在测试的组分中,在阳光作为入射辐射的情况下,量子效率的改进意味着在产生的电流中增加约2-3mA/cm2,即,10%。这意为增加装置总效率的百分之一单位。
在图4图解的ALD工艺中,ALD室的沉积区域首先被加热到所选的沉积温度,例如200℃。如同在典型的ALD工艺中一样,氮气N2被用作载体和净化气体。实际的ALD工艺开始于将作为锌前体的二乙基锌DEZ脉冲与N2载体气流一起供应到沉积室中。氮气作为连续的流被供应到室中。这意味着,在将DEZ的供应切断之后,室被净化,即,过剩的前体蒸汽以及可能的副产物通过连续氮气流被从室中去除。接下来,作为氧的前体的水H2O,或者作为硫的前体的H2S——这取决于分层的ZnO/ZnS结构的那一种材料待被首先沉积——的脉冲与氮气流一起被引入到沉积室中。之后,室再次被氮气净化。
前体供应和净化步骤的持续时间取决于使用的实际ALD反应器。例如,200/400/200/400ms的持续时间已被成功地用于由Beneq TFS 500反应器所进行的Zn(O,S)沉积中。
上述四个步骤形成一种单一ALD工艺循环,其产生一种单一的Zn(O,S)单层。工艺循环被相继重复直到达到第一材料单层的期望数目N,然后,将非金属前体换成其它可选项。换言之,如果首先沉积的材料是ZnO,以H2O作为工艺循环第三步骤的前体,在下一轮(或多轮)中,将该前体换成H2S,以产生ZnS,反之亦然。在达到第二材料单层的期望数目M之后,该工艺再次开始,其始于最初的前体。因此,沉积的材料由ZnO和ZnS的交替子层组成,每一个子层由一个或多个单层组成。在一个优选实施方式中,ZnO子层的厚度为10单层,而ZnS子层的厚度为1或2单层。堆叠子层的沉积被重复Z次,直到实现期望的Zn(O,S)总厚度,例如50nm。
图4中图解的方法仅涉及Zn(O,S)窗口层沉积。形成整个CdTe/Zn(O,S)光电池的其它步骤不属于本发明的核心;它们可以根据本领域中已知的原理和工艺被实施。
如对本领域技术人员来说明显的,同时考虑到由技术进步所展现的可能的新潜能,本发明实施方式不限于以上实例,但是,它们可以在权利要求书的范围内自由变化。

Claims (6)

1.薄膜光电池(10),包括n型半导体窗口层(40)、p型半导体吸收层(5)和在这两个层之间的界面处的pn结(6),其中所述p型半导体吸收层由碲化镉CdTe形成,其特征在于所述n型半导体窗口层(40)包含氧化锌/硫化锌Zn(O,S),所述氧化锌/硫化锌Zn(O,S)包含堆叠的薄层封装件,每一个封装件包括ZnO子层和另一个ZnS子层,每个ZnO子层的厚度为1–20单层,而每个ZnS子层的厚度为1–10单层。
2.根据权利要求1所述的薄膜光电池(10),其特征在于所述n型半导体窗口层材料通过原子层沉积ALD被沉积。
3.制备薄膜光电池(40)的方法,包括形成n型半导体窗口层(40)和p型半导体吸收层(5)以便在这两个层之间的界面处形成pn结(6)的步骤,其中所述p型半导体吸收层由碲化镉CdTe形成,其特征在于所述n型半导体窗口层(40)被形成以便包含氧化锌/硫化锌Zn(O,S),所述氧化锌/硫化锌Zn(O,S)包含堆叠的薄层封装件,每一个封装件包括ZnO子层和另一个ZnS子层,每个ZnO子层的厚度为1–20单层,而每个ZnS子层的厚度为1–10单层。
4.根据权利要求3所述的方法,其特征在于所述n型半导体窗口层材料通过原子层沉积ALD被沉积。
5.氧化锌/硫化锌Zn(O,S)在薄膜光电池(10)窗口层(40)中的应用,所述薄膜光电池(10)包括n型半导体窗口层(40)、p型半导体吸收层(5)和在该两个层的界面处的pn结(6),其中所述p型半导体吸收层由碲化镉CdTe形成,所述氧化锌/硫化锌Zn(O,S)包含堆叠的薄层封装件,每一个封装件包括ZnO子层和另一个ZnS子层,每个ZnO子层的厚度为1–20单层,而每个ZnS子层的厚度为1–10单层。
6.根据权利要求5所述的应用,其中所述n型半导体窗口层材料通过原子层沉积ALD被沉积。
CN201080058546.2A 2009-12-22 2010-12-22 薄膜光电池、制造方法及应用 Active CN102742033B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FI20096380 2009-12-22
FI20096380A FI20096380A0 (fi) 2009-12-22 2009-12-22 Ohutkalvoaurinkokenno, valmistusmenetelmä ja käyttö
PCT/FI2010/051072 WO2011077008A2 (en) 2009-12-22 2010-12-22 A thin film photovoltaic cell, a method for manufacturing, and use

Publications (2)

Publication Number Publication Date
CN102742033A CN102742033A (zh) 2012-10-17
CN102742033B true CN102742033B (zh) 2015-02-25

Family

ID=41462838

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201080058546.2A Active CN102742033B (zh) 2009-12-22 2010-12-22 薄膜光电池、制造方法及应用

Country Status (7)

Country Link
US (1) US20130000726A1 (zh)
EP (1) EP2517269B1 (zh)
CN (1) CN102742033B (zh)
EA (1) EA201290380A1 (zh)
FI (1) FI20096380A0 (zh)
TW (1) TW201123491A (zh)
WO (1) WO2011077008A2 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014121187A2 (en) 2013-02-01 2014-08-07 First Solar, Inc. Photovoltaic device including a p-n junction and method of manufacturing
US9276154B2 (en) 2013-02-07 2016-03-01 First Solar, Inc. Photovoltaic device with protective layer over a window layer and method of manufacture of the same
WO2014151514A1 (en) * 2013-03-15 2014-09-25 First Solar, Inc. Photovoltaic device with a zinc oxide layer and method of formation
US11876140B2 (en) 2013-05-02 2024-01-16 First Solar, Inc. Photovoltaic devices and method of making
CN104183663B (zh) 2013-05-21 2017-04-12 第一太阳能马来西亚有限公司 光伏器件及其制备方法
US10062800B2 (en) 2013-06-07 2018-08-28 First Solar, Inc. Photovoltaic devices and method of making
CN104022189B (zh) * 2014-06-23 2016-07-06 山东建筑大学 一种制备ZnO/ZnS复合光电薄膜的方法
WO2016068873A1 (en) * 2014-10-28 2016-05-06 Hewlett Packard Enterprise Development Lp Media content download time
US10529883B2 (en) 2014-11-03 2020-01-07 First Solar, Inc. Photovoltaic devices and method of manufacturing
CN109030578A (zh) * 2018-07-30 2018-12-18 清华大学 一种基于CdTe/ZnO纳米异质结结构的NO2气敏传感器的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1820358A (zh) * 2003-05-08 2006-08-16 索里布罗股份公司 薄膜太阳能电池
CN1996623A (zh) * 2005-12-28 2007-07-11 中国科学院大连化学物理研究所 一种用于光伏电池的ⅱ-ⅵ族半导体薄膜

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6916398B2 (en) * 2001-10-26 2005-07-12 Applied Materials, Inc. Gas delivery apparatus and method for atomic layer deposition
JP2010087105A (ja) * 2008-09-30 2010-04-15 Fujifilm Corp 太陽電池

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1820358A (zh) * 2003-05-08 2006-08-16 索里布罗股份公司 薄膜太阳能电池
CN1996623A (zh) * 2005-12-28 2007-07-11 中国科学院大连化学物理研究所 一种用于光伏电池的ⅱ-ⅵ族半导体薄膜

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Chemical bath deposition of zinc sulfide based buffer layers using low toxicity materials;D.A.Johnston, M.H.Carletto, K.T.R.Reddy, I.Forbes, R.W.Miles,;《Thin solid Films》;ELSEVIER;20020201(第403-404期);第102页Abstract部分以及Introduction部分 *

Also Published As

Publication number Publication date
FI20096380A0 (fi) 2009-12-22
TW201123491A (en) 2011-07-01
US20130000726A1 (en) 2013-01-03
CN102742033A (zh) 2012-10-17
EP2517269B1 (en) 2016-03-09
EA201290380A1 (ru) 2013-01-30
WO2011077008A2 (en) 2011-06-30
EP2517269A2 (en) 2012-10-31
WO2011077008A3 (en) 2011-11-17

Similar Documents

Publication Publication Date Title
CN102742033B (zh) 薄膜光电池、制造方法及应用
Hossain et al. Atomic layer deposition enabling higher efficiency solar cells: A review
US5141564A (en) Mixed ternary heterojunction solar cell
US5728231A (en) Precursor for semiconductor thin films and method for producing semiconductor thin films
US8197703B2 (en) Method and apparatus for affecting surface composition of CIGS absorbers formed by two-stage process
US8859406B2 (en) Method of fabricating high efficiency CIGS solar cells
US8980682B2 (en) Methods for fabricating ZnOSe alloys
US20070257255A1 (en) Thin film solar cells by selenization sulfurization using diethyl selenium as a selenium precursor
US7854963B2 (en) Method and apparatus for controlling composition profile of copper indium gallium chalcogenide layers
US20140113403A1 (en) High efficiency CZTSe by a two-step approach
US20130164918A1 (en) Absorbers For High-Efficiency Thin-Film PV
CN105140319A (zh) 一种薄膜太阳能电池及其制备方法
CN103430279A (zh) 薄膜光伏装置及制造方法
Ríos-Saldaña et al. Improvement of the conversion efficiency of as-deposited Bi2S3/PbS solar cells using a CeO2 buffer layer
CN106653946B (zh) 一种碲化镉薄膜太阳能电池吸收层的沉积方法
KR101542342B1 (ko) Czts계 태양전지의 박막 제조방법 및 이로부터 제조된 태양전지
GB2400725A (en) Electrodeposited semiconductors
KR101906712B1 (ko) 광흡수층 조성물, 이를 포함하는 투명태양전지 및 이의 제조방법
Zhang Organic nanostructured thin film devices and coatings for clean energy
Junior et al. Novel dielectrics compounds grown by atomic layer deposition as sustainable materials for chalcogenides thin-films photovoltaics technologies
WO2013111443A1 (ja) 光電変換装置
KR101160487B1 (ko) 후막형 cigs 태양전지 및 그 제조방법
WilliamPessoa nio F. Junior1, 2, da Cunha1, Leandro Pedro XMP Moreno3, Salome Rodrigo4 and
Terletskaia et al. Materials Research Inorganic materials chemistry
Martinson ALD for Light Absorption

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20230413

Address after: Room 205-5-7, 2nd Floor, East Office Building, No. 45 Beijing Road, Qianwan Bonded Port Area, Qingdao, Shandong Province, China (Shandong) Pilot Free Trade Zone (A)

Patentee after: QINGDAO SIFANG SRI INTELLIGENT TECHNOLOGY Co.,Ltd.

Address before: Vanta, Finland

Patentee before: BENEQ OY

TR01 Transfer of patent right