CN102732948A - Method for improving ingot-casting monocrystaline silicon yield - Google Patents
Method for improving ingot-casting monocrystaline silicon yield Download PDFInfo
- Publication number
- CN102732948A CN102732948A CN2012102052942A CN201210205294A CN102732948A CN 102732948 A CN102732948 A CN 102732948A CN 2012102052942 A CN2012102052942 A CN 2012102052942A CN 201210205294 A CN201210205294 A CN 201210205294A CN 102732948 A CN102732948 A CN 102732948A
- Authority
- CN
- China
- Prior art keywords
- silicon
- crucible
- ingot
- crystal
- single crystal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 14
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 title claims description 31
- 229910052710 silicon Inorganic materials 0.000 title claims description 25
- 239000010703 silicon Substances 0.000 title claims description 25
- 238000005266 casting Methods 0.000 title description 2
- 239000013078 crystal Substances 0.000 claims abstract description 76
- 229910021421 monocrystalline silicon Inorganic materials 0.000 claims abstract description 23
- 239000012535 impurity Substances 0.000 claims abstract description 21
- 238000009792 diffusion process Methods 0.000 claims abstract description 19
- 230000004888 barrier function Effects 0.000 claims abstract description 14
- 230000001965 increasing effect Effects 0.000 claims abstract description 13
- 239000000843 powder Substances 0.000 claims abstract description 5
- 239000002210 silicon-based material Substances 0.000 claims description 18
- 239000010453 quartz Substances 0.000 claims description 12
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 12
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 7
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 7
- 239000011863 silicon-based powder Substances 0.000 claims description 6
- 238000007711 solidification Methods 0.000 claims description 5
- 230000008023 solidification Effects 0.000 claims description 5
- 239000011261 inert gas Substances 0.000 claims description 4
- 239000002994 raw material Substances 0.000 claims description 4
- 238000010438 heat treatment Methods 0.000 claims description 3
- 239000010408 film Substances 0.000 claims description 2
- 229910021426 porous silicon Inorganic materials 0.000 claims description 2
- 239000010409 thin film Substances 0.000 claims description 2
- 235000012431 wafers Nutrition 0.000 claims 2
- 150000004767 nitrides Chemical class 0.000 claims 1
- 238000005192 partition Methods 0.000 abstract 1
- 230000006698 induction Effects 0.000 description 4
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 3
- 229910052796 boron Inorganic materials 0.000 description 3
- 239000002019 doping agent Substances 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 238000009413 insulation Methods 0.000 description 3
- 239000000155 melt Substances 0.000 description 3
- 230000001681 protective effect Effects 0.000 description 3
- 229910021419 crystalline silicon Inorganic materials 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Silicon Compounds (AREA)
Abstract
本发明涉及一种提高铸锭单晶硅收率的方法,是通过控制坩埚底部杂质向籽晶扩散来实现的。本发明基于对坩埚底部杂质向籽晶内部扩散的阻挡,在籽晶底部设置阻挡层;阻挡层包括粉状、薄膜、块体或空隙隔断。相比未设置扩散阻挡层的铸锭单晶,本发明所制备的铸锭单晶晶锭底部的少子寿命得到了大幅度提高,按相同截断标准,晶锭收率提高了3个百分点以上(绝对差值)。The invention relates to a method for increasing the yield of ingot single crystal silicon, which is realized by controlling the diffusion of impurities at the bottom of the crucible to the seed crystal. The present invention is based on preventing impurities from the bottom of the crucible from diffusing into the seed crystal, and a barrier layer is arranged at the bottom of the seed crystal; the barrier layer includes powder, film, block or gap partition. Compared with the ingot single crystal without a diffusion barrier layer, the minority carrier lifetime at the bottom of the ingot single crystal ingot prepared by the present invention has been greatly improved. According to the same cut-off standard, the ingot yield has increased by more than 3 percentage points ( absolute difference).
Description
技术领域 technical field
本发明涉及光伏电池领域,尤其是一种在铸锭坩埚底部设置杂质扩散阻挡层,来阻挡杂质向晶锭内的扩散,以此来提高铸锭单晶硅收率的方法。The invention relates to the field of photovoltaic cells, in particular to a method for setting an impurity diffusion barrier layer at the bottom of an ingot crucible to block the diffusion of impurities into an ingot, thereby increasing the yield of ingot single crystal silicon.
背景技术 Background technique
通过具有特定晶向的籽晶来诱导生长铸锭单晶硅是近年来在光伏硅电池领域得到了大幅应用的一种技术,已申请的相关专利有:Inducing the growth of ingot monocrystalline silicon through seed crystals with a specific crystal orientation is a technology that has been widely used in the field of photovoltaic silicon cells in recent years. Related patents that have been applied for include:
(1)专利US2007/0169685(A1)中提到采用<100>单晶硅作为籽晶来诱导生长铸锭单晶硅,认为该种工艺能明显减少或消除缺陷密度,得到晶粒至少大于10cm的晶锭。(1) The patent US2007/0169685(A1) mentions the use of <100> monocrystalline silicon as a seed crystal to induce the growth of ingot monocrystalline silicon. It is believed that this process can significantly reduce or eliminate the defect density, and the crystal grains are at least larger than 10cm of crystal ingots.
(2)专利CN201010284738.7中发明者提出将中心开孔的石英片置于坩埚底部,石英片为梯形体结构,可节省籽晶用量。生长出来的是<100>晶向单晶。(2) In the patent CN201010284738.7, the inventor proposes to place a quartz plate with a hole in the center at the bottom of the crucible. The quartz plate has a trapezoidal structure, which can save the amount of seed crystal. The grown out is <100> oriented single crystal.
(3)专利CN 201010299013.5中发明者提出采用<111>单晶硅作为籽晶来诱导生成具有<111>晶向的铸锭单晶硅,由于<111>是择优生长方向,因此能得到高比例的铸锭单晶。(3) In the patent CN 201010299013.5, the inventor proposed to use <111> single crystal silicon as the seed crystal to induce the generation of ingot single crystal silicon with <111> crystal orientation. Since <111> is the preferred growth direction, a high proportion can be obtained ingot single crystal.
在铸锭单晶生长过程中,籽晶部分熔化,在剩余籽晶与已熔化硅液的固液界面上会发生诱导生长,所生长出的类单晶晶向与籽晶晶向一致。未熔化部分的籽晶经历了硅料升温、熔化、长晶和退火四阶段,热历史远远长于普通铸锭多晶的底部硅晶体。实验结果表明,铸锭单晶硅的收率(百分比)低于普通铸锭多晶硅5~8个百分点,大大增加了铸锭单晶硅的生产成本。晶锭底部少子寿命低是造成铸锭单晶收率低的主要原因。比如,按照少子寿命1微秒为截断标准的话,铸锭单晶的截断量达到50~60mm,远高于普通铸锭多晶的15~25mm。上述被截断部分行业内称之为红区,即少子寿命不符合要求的部分。During the growth process of the ingot single crystal, the seed crystal is partially melted, and induced growth occurs on the solid-liquid interface between the remaining seed crystal and the melted silicon liquid, and the crystal orientation of the grown quasi-single crystal is consistent with that of the seed crystal. The unmelted part of the seed crystal has experienced four stages of silicon material heating, melting, crystal growth and annealing, and the thermal history is much longer than that of the bottom silicon crystal of ordinary ingot polycrystalline. The experimental results show that the yield (percentage) of ingot monocrystalline silicon is 5-8 percentage points lower than that of ordinary ingot polycrystalline silicon, which greatly increases the production cost of ingot monocrystalline silicon. The low minority carrier lifetime at the bottom of the ingot is the main reason for the low yield of cast single crystals. For example, if the minority carrier lifetime is 1 microsecond as the truncation standard, the truncation of ingot single crystal reaches 50~60mm, which is much higher than the 15~25mm of ordinary ingot polycrystalline. The above-mentioned truncated part is called the red zone in the industry, that is, the part where the life expectancy of the minority birth does not meet the requirements.
经分析,铸锭单晶红区较高的原因主要来自坩埚底部的杂质扩散。铸锭用石英坩埚的纯度相对硅料要低得多,坩埚中的杂质会扩散进入硅晶体,作为少子复合中心大大地降低少子寿命,杂质扩散进入硅晶体的总量与温度和扩散时间密切相关,温度越高,时间越久,扩散进入的杂质总量越大,形成的低少子寿命区域越多,晶锭收率越低。铸锭单晶的剩余籽晶经历的热历史较长,因此被扩散进入的杂质总量较大,往往会被作为低少子寿命区域而被截断。After analysis, the reason for the high red area of the ingot single crystal is mainly from the impurity diffusion at the bottom of the crucible. The purity of the quartz crucible for casting ingots is much lower than that of the silicon material. The impurities in the crucible will diffuse into the silicon crystal, which will greatly reduce the minority carrier life as a minority carrier recombination center. The total amount of impurities diffused into the silicon crystal is closely related to the temperature and diffusion time. , the higher the temperature and the longer the time, the greater the total amount of impurities diffused into, the more low minority carrier lifetime regions are formed, and the lower the yield of the crystal ingot. The remaining seed crystals of cast single crystals have a longer thermal history, so the total amount of impurities diffused into them is larger, and they are often cut off as low minority carrier lifetime regions.
因此,控制坩埚杂质向籽晶内的扩散,对提高铸锭单晶晶锭底部少子寿命、减少底部红区的截断长度、提高晶锭收率有着极其重要的意义。Therefore, controlling the diffusion of crucible impurities into the seed crystal is of great significance to improving the minority carrier lifetime at the bottom of the ingot single crystal ingot, reducing the cut-off length of the red zone at the bottom, and increasing the yield of the ingot.
发明内容 Contents of the invention
本发明要解决的技术问题是:提出一种能够控制坩埚杂质向籽晶内的扩散,提高铸锭单晶晶锭底部少子寿命,减少底部红区的截断长度,提高晶锭收率的方法。The technical problem to be solved by the present invention is to propose a method capable of controlling the diffusion of impurities in the crucible into the seed crystal, increasing the minority carrier lifetime at the bottom of the ingot single crystal ingot, reducing the truncated length of the red zone at the bottom, and increasing the yield of the crystal ingot.
本发明所采用的技术方案为:一种提高铸锭单晶硅收率的方法,包括以下步骤:The technical solution adopted in the present invention is: a method for improving the yield of cast monocrystalline silicon, comprising the following steps:
1)在铸锭坩埚底部设置杂质扩散阻挡层,来阻挡杂质向晶锭内的扩散;1) An impurity diffusion barrier is set at the bottom of the ingot crucible to prevent the diffusion of impurities into the ingot;
2)将厚度为5~50 mm的单晶硅块紧密排列,作为籽晶铺满坩埚底部;2) Arrange the monocrystalline silicon blocks with a thickness of 5-50 mm closely, and use them as seed crystals to cover the bottom of the crucible;
3)然后依次将硅料、掺杂元素原料置于坩埚中;3) Then place the silicon material and the doping element raw material in the crucible in turn;
4)抽取真空并通入惰性气体N2或Ar,边抽真空边通入惰性气体;4) Vacuum is drawn and inert gas N 2 or Ar is introduced, and inert gas is introduced while vacuuming;
5)加热坩埚,使作为籽晶的单晶硅块接触于坩埚底部的部分不熔化,与坩埚不接触的部分、硅料及掺杂元素原料均熔化并在原子尺度上彼此充分混合;5) Heating the crucible so that the part of the single crystal silicon block as the seed crystal in contact with the bottom of the crucible does not melt, and the part not in contact with the crucible, the silicon material and the doping element raw material are all melted and fully mixed with each other on the atomic scale;
6)定向凝固时,使坩埚底部为冷端,籽晶的未熔化部分诱导硅熔体的凝固生长,得到具有特定晶向的铸锭单晶硅。6) During directional solidification, the bottom of the crucible is used as the cold end, and the unmelted part of the seed crystal induces the solidification and growth of the silicon melt to obtain ingot single crystal silicon with a specific crystal orientation.
具体的说,本发明所述步骤1)中的杂质扩散阻挡层为氮化硅薄膜、氮化硅粉、氮化硅球、石英板、多孔硅、硅粉、硅片、架空或其他具有杂质扩散阻挡功能的形式。所述的杂质扩散阻挡层采用薄膜或硅片,厚度为0.01~5mm;采用板材,厚度为5~20mm;采用粉状物,松装厚度为0.5~20mm;采用架空,则架空的高度为1~20mm。所述的架空是通过支撑物支撑籽晶来达到目的的。Specifically, the impurity diffusion barrier layer in step 1) of the present invention is silicon nitride film, silicon nitride powder, silicon nitride ball, quartz plate, porous silicon, silicon powder, silicon wafer, overhead or other The form of the diffusion barrier function. The impurity diffusion barrier layer adopts thin film or silicon wafer with a thickness of 0.01-5mm; adopts plate material with a thickness of 5-20mm; adopts powder with a loose thickness of 0.5-20mm; adopts overhead, and the height of the overhead is 1 ~20mm. The above-mentioned overhead is achieved by supporting the seed crystal with a support.
本发明所述的铸锭单晶是指采用单晶籽晶诱导的方法,在定向凝固过程中所产生的单晶。所用的坩埚包括但不局限于常用的石英坩埚。本发明所述的单晶籽晶是指晶向为<100>、<110>、<111>、<112>或由上述晶向籽晶混合拼接而成的。The ingot single crystal mentioned in the present invention refers to the single crystal produced in the process of directional solidification by adopting the method of single crystal seed crystal induction. The crucibles used include but are not limited to commonly used quartz crucibles. The single-crystal seed crystal in the present invention refers to a crystal orientation of <100>, <110>, <111>, <112> or a hybrid splicing of the above crystal orientation seed crystals.
本发明的有益效果是:基于对坩埚底部杂质向籽晶内部扩散的阻挡,在籽晶底部设置阻挡层;相比未设置扩散阻挡层的铸锭单晶,本发明所制备的铸锭单晶晶锭底部的少子寿命得到了大幅度提高,按相同截断标准,晶锭收率提高了3个百分点以上(绝对差值)。The beneficial effects of the present invention are: based on the barrier to the diffusion of impurities at the bottom of the crucible to the inside of the seed crystal, a barrier layer is provided at the bottom of the seed crystal; The minority carrier life at the bottom of the crystal ingot has been greatly improved, and the yield of the crystal ingot has increased by more than 3 percentage points (absolute difference) according to the same cut-off standard.
具体实施方式 Detailed ways
实施例1Example 1
将直径为6mm的氮化硅球密堆积在坩埚底部,铺有一层,然后将尺寸为330×150 mm的<111>籽晶硅块紧密铺排在石英坩埚底部,籽晶硅块厚40 mm。210kg硅料置于籽晶硅块上面,掺入40 mg的掺杂剂硼,在加上210kg硅料,实现装炉。将炉膛抽成真空,采用Ar做保护气体。设计热场,使炉膛内的硅料部分温度达到1420℃以上并逐渐熔化,使炉膛内<111>单晶硅与硅料接触部分熔化20 mm,与石英坩埚接触的20 mm保持不熔化。最后,开启保温罩,使硅熔体从坩埚底部逐渐凝固,依靠<111>晶向籽晶的诱导而实现硅晶体的定向生长,得到铸锭单晶。Silicon nitride spheres with a diameter of 6 mm were densely packed on the bottom of the crucible to form a layer, and then <111> seed crystal silicon blocks with a size of 330×150 mm were densely laid on the bottom of the quartz crucible, and the thickness of the seed silicon blocks was 40 mm. 210kg of silicon material is placed on the seed silicon block, mixed with 40 mg of dopant boron, and 210kg of silicon material is added to realize furnace loading. The furnace is evacuated, and Ar is used as the protective gas. The thermal field is designed so that the temperature of the silicon material in the furnace reaches above 1420°C and gradually melts, so that the <111> single crystal silicon in the furnace in contact with the silicon material is melted by 20 mm, and the 20 mm in contact with the quartz crucible remains unmelted. Finally, the insulation cover is opened to gradually solidify the silicon melt from the bottom of the crucible, and the directional growth of the silicon crystal is achieved by the induction of the <111> crystal to the seed crystal, and an ingot single crystal is obtained.
相比坩埚底部未放置有氮化硅球的铸锭单晶,底部低少子寿命区均按照0.6微秒截断的话,本实施例的底部截断量由原来的45 mm减少到30 mm,晶锭收率由61%提高到65%。Compared with the ingot single crystal without silicon nitride balls placed on the bottom of the crucible, if the low minority carrier lifetime area at the bottom is cut off at 0.6 microseconds, the bottom cutoff in this embodiment is reduced from the original 45 mm to 30 mm, and the ingot is closed. rate increased from 61% to 65%.
实施例2Example 2
将厚度为5mm、宽为10 mm、长为400 mm的石英条取1 6条,均匀铺设在尺寸为800×800×480 mm的坩埚底部,然后把尺寸为400×400 mm的<100>籽晶硅块紧密铺排在石英板上,籽晶硅块厚30 mm。210kg硅料置于籽晶硅块上面,掺入40 mg的掺杂剂硼,在加上210kg硅料,实现装炉。将炉膛抽成真空,采用Ar做保护气体。设计热场,使炉膛内的硅料部分温度达到1420℃以上并逐渐熔化,使炉膛内<100>单晶硅与硅料接触部分熔化20 mm,与石英坩埚接触的10 mm保持不熔化。最后,开启保温罩,使硅熔体从坩埚底部逐渐凝固,依靠<100>晶向籽晶的诱导而实现硅晶体的定向生长,得到铸锭单晶。Take 16 quartz bars with a thickness of 5 mm, a width of 10 mm, and a length of 400 mm, and lay them evenly on the bottom of a crucible with a size of 800×800×480 mm, and then place <100> seeds with a size of 400×400 mm The crystalline silicon blocks are closely arranged on the quartz plate, and the thickness of the seed silicon block is 30 mm. 210kg of silicon material is placed on the seed silicon block, mixed with 40 mg of dopant boron, and 210kg of silicon material is added to realize furnace loading. The furnace is evacuated, and Ar is used as the protective gas. Design the thermal field so that the temperature of the silicon material in the furnace reaches above 1420°C and gradually melt, so that the <100> single crystal silicon in the furnace in contact with the silicon material is melted by 20 mm, and the 10 mm in contact with the quartz crucible remains unmelted. Finally, the insulation cover is opened to gradually solidify the silicon melt from the bottom of the crucible, and the directional growth of the silicon crystal is achieved by the induction of the <100> crystal to the seed crystal, and an ingot single crystal is obtained.
相比坩埚底部未放置有石英条的铸锭单晶,底部低少子寿命区均按照0.6微秒截断的话,本实施例的底部截断量由原来的40 mm减少到20 mm,晶锭收率由62%提高到66%。Compared with the ingot single crystal with no quartz strip placed on the bottom of the crucible, if the low minority carrier lifetime area at the bottom is cut off at 0.6 microseconds, the bottom cutoff in this embodiment is reduced from the original 40 mm to 20 mm, and the ingot yield is reduced from 62% increased to 66%.
实施例3Example 3
将粒径为0.05mm的高纯硅粉铺设在坩埚底部,硅粉的松装厚度为3 mm,然后把尺寸为400×400 mm的<110>籽晶硅块紧密铺排在石英坩埚底部,籽晶硅块厚30 mm。210kg硅料置于籽晶硅块上面,掺入40 mg的掺杂剂硼,在加上210kg硅料,实现装炉。将炉膛抽成真空,采用Ar做保护气体。设计热场,使炉膛内的硅料部分温度达到1420℃以上并逐渐熔化,使炉膛内<110>单晶硅与硅料接触部分熔化5 mm,与硅粉接触的20 mm保持不熔化。最后,开启保温罩,使硅熔体从坩埚底部逐渐凝固,依靠<110>晶向籽晶的诱导而实现硅晶体的定向生长,得到铸锭单晶。Lay high-purity silicon powder with a particle size of 0.05 mm on the bottom of the crucible. The loose thickness of the silicon powder is 3 mm. The crystalline silicon block is 30 mm thick. 210kg of silicon material is placed on the seed silicon block, mixed with 40 mg of dopant boron, and 210kg of silicon material is added to realize furnace loading. The furnace is evacuated, and Ar is used as the protective gas. The thermal field is designed so that the temperature of the silicon material in the furnace reaches above 1420°C and gradually melts, so that the <110> single crystal silicon in the furnace in contact with the silicon material melts 5 mm, and the 20 mm in contact with the silicon powder remains unmelted. Finally, the insulation cover is opened to gradually solidify the silicon melt from the bottom of the crucible, and the directional growth of the silicon crystal is achieved by the induction of the <110> crystal to the seed crystal, and an ingot single crystal is obtained.
相比坩埚底部未放置有高纯硅粉的铸锭单晶,底部低少子寿命区均按照0.6微秒截断的话,本实施例的底部截断量由原来的45 mm减少到25 mm,晶锭收率由61%提高到65.5%。Compared with the ingot single crystal without high-purity silicon powder placed on the bottom of the crucible, if the low minority carrier lifetime area at the bottom is cut off at 0.6 microseconds, the cut-off amount at the bottom of this embodiment is reduced from the original 45 mm to 25 mm, and the ingot is closed. The rate increased from 61% to 65.5%.
以上说明书中描述的只是本发明的具体实施方式,各种举例说明不对本发明的实质内容构成限制,所属技术领域的普通技术人员在阅读了说明书后可以对以前所述的具体实施方式做修改或变形,而不背离发明的实质和范围。What is described in the above description is only the specific implementation of the present invention, and various illustrations do not limit the essence of the present invention. Those of ordinary skill in the art can modify or modify the previous specific implementation after reading the description. variations without departing from the spirit and scope of the invention.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012102052942A CN102732948A (en) | 2012-06-20 | 2012-06-20 | Method for improving ingot-casting monocrystaline silicon yield |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012102052942A CN102732948A (en) | 2012-06-20 | 2012-06-20 | Method for improving ingot-casting monocrystaline silicon yield |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102732948A true CN102732948A (en) | 2012-10-17 |
Family
ID=46989223
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2012102052942A Pending CN102732948A (en) | 2012-06-20 | 2012-06-20 | Method for improving ingot-casting monocrystaline silicon yield |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102732948A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013149560A1 (en) * | 2012-04-01 | 2013-10-10 | 江西赛维Ldk太阳能高科技有限公司 | Polycrystalline silicon ingot, preparation method thereof, and polycrystalline silicon wafer |
CN103882517A (en) * | 2014-04-04 | 2014-06-25 | 阿特斯(中国)投资有限公司 | Preparation method of polycrystalline silicon ingot |
CN105603507A (en) * | 2016-02-03 | 2016-05-25 | 江西赛维Ldk太阳能高科技有限公司 | Seed crystal laying method, preparation method of monocrystalline silicon-like ingot and monocrystalline silicon-like piece |
CN106521621A (en) * | 2016-09-20 | 2017-03-22 | 江西赛维Ldk太阳能高科技有限公司 | Ingot casting method capable of reducing red edge width of polycrystalline silicon ingot, polycrystalline silicon ingot and crucible for polycrystalline silicon ingot casting |
CN106757331A (en) * | 2016-12-16 | 2017-05-31 | 江西赛维Ldk太阳能高科技有限公司 | A kind of polycrystal silicon ingot and preparation method thereof |
CN108456930A (en) * | 2018-02-24 | 2018-08-28 | 常熟华融太阳能新型材料有限公司 | A kind of polycrystalline silicon ingot casting porous silicon seed and its preparation method and application |
CN108588824A (en) * | 2018-06-12 | 2018-09-28 | 山东大海新能源发展有限公司 | The method for avoiding introducing impurity during crystal ingot casting using barrier |
CN108754614A (en) * | 2018-06-28 | 2018-11-06 | 浙江大学 | A kind of quasi-monocrystalline silicon crucible for casting ingots using silica membrane as barrier layer |
CN109778311A (en) * | 2019-01-24 | 2019-05-21 | 赛维Ldk太阳能高科技(新余)有限公司 | A kind of preparation method and crucible for casting ingots of silicon ingot |
CN110534590A (en) * | 2019-08-16 | 2019-12-03 | 上海交通大学 | A kind of silicon nitride film and preparation method thereof improving solar cell long-wave response |
CN111705358A (en) * | 2020-06-30 | 2020-09-25 | 江苏协鑫硅材料科技发展有限公司 | Cast monocrystalline silicon ingot and preparation method thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201527173U (en) * | 2009-06-10 | 2010-07-14 | 余姚市晶英电弧坩埚有限公司 | Composite-layer quartz crucible |
CN102191536A (en) * | 2011-06-16 | 2011-09-21 | 浙江碧晶科技有限公司 | Method for controlling crystallization and nucleation on crucible bottom when using directional solidification method to grow silicon crystal |
CN102206857A (en) * | 2011-04-30 | 2011-10-05 | 常州天合光能有限公司 | 111 crystal orientation cast silicon monocrystal and preparation method thereof |
CN102229502A (en) * | 2011-06-10 | 2011-11-02 | 东海晶澳太阳能科技有限公司 | Crucible coating for casting crystalline silicon and preparation method thereof |
US20110303143A1 (en) * | 2010-06-15 | 2011-12-15 | Sino-American Silicon Products Inc. | Method of manufacturing crystalline silicon ingot |
-
2012
- 2012-06-20 CN CN2012102052942A patent/CN102732948A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201527173U (en) * | 2009-06-10 | 2010-07-14 | 余姚市晶英电弧坩埚有限公司 | Composite-layer quartz crucible |
US20110303143A1 (en) * | 2010-06-15 | 2011-12-15 | Sino-American Silicon Products Inc. | Method of manufacturing crystalline silicon ingot |
CN102206857A (en) * | 2011-04-30 | 2011-10-05 | 常州天合光能有限公司 | 111 crystal orientation cast silicon monocrystal and preparation method thereof |
CN102229502A (en) * | 2011-06-10 | 2011-11-02 | 东海晶澳太阳能科技有限公司 | Crucible coating for casting crystalline silicon and preparation method thereof |
CN102191536A (en) * | 2011-06-16 | 2011-09-21 | 浙江碧晶科技有限公司 | Method for controlling crystallization and nucleation on crucible bottom when using directional solidification method to grow silicon crystal |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013149560A1 (en) * | 2012-04-01 | 2013-10-10 | 江西赛维Ldk太阳能高科技有限公司 | Polycrystalline silicon ingot, preparation method thereof, and polycrystalline silicon wafer |
US10253430B2 (en) | 2012-04-01 | 2019-04-09 | Jiang Xi Sai Wei Ldk Solar Hi-Tech Co., Ltd. | Method for preparing polycrystalline silicon ingot |
US10227711B2 (en) | 2012-04-01 | 2019-03-12 | Jiang Xi Sai Wei Ldk Solar Hi-Tech Co., Ltd. | Method for preparing polycrystalline silicon ingot |
CN103882517A (en) * | 2014-04-04 | 2014-06-25 | 阿特斯(中国)投资有限公司 | Preparation method of polycrystalline silicon ingot |
CN105603507B (en) * | 2016-02-03 | 2018-11-06 | 江西赛维Ldk太阳能高科技有限公司 | The preparation method and class monocrystalline silicon piece of a kind of laying method of seed crystal, class monocrystal silicon |
CN105603507A (en) * | 2016-02-03 | 2016-05-25 | 江西赛维Ldk太阳能高科技有限公司 | Seed crystal laying method, preparation method of monocrystalline silicon-like ingot and monocrystalline silicon-like piece |
CN106521621B (en) * | 2016-09-20 | 2019-01-29 | 江西赛维Ldk太阳能高科技有限公司 | A kind of casting ingot method, polycrystal silicon ingot and crucible used for polycrystalline silicon ingot casting reducing the red hem width degree of polycrystal silicon ingot |
CN106521621A (en) * | 2016-09-20 | 2017-03-22 | 江西赛维Ldk太阳能高科技有限公司 | Ingot casting method capable of reducing red edge width of polycrystalline silicon ingot, polycrystalline silicon ingot and crucible for polycrystalline silicon ingot casting |
CN106757331A (en) * | 2016-12-16 | 2017-05-31 | 江西赛维Ldk太阳能高科技有限公司 | A kind of polycrystal silicon ingot and preparation method thereof |
CN106757331B (en) * | 2016-12-16 | 2019-03-08 | 赛维Ldk太阳能高科技(新余)有限公司 | A kind of polycrystal silicon ingot and preparation method thereof |
CN108456930A (en) * | 2018-02-24 | 2018-08-28 | 常熟华融太阳能新型材料有限公司 | A kind of polycrystalline silicon ingot casting porous silicon seed and its preparation method and application |
CN108588824A (en) * | 2018-06-12 | 2018-09-28 | 山东大海新能源发展有限公司 | The method for avoiding introducing impurity during crystal ingot casting using barrier |
CN108754614A (en) * | 2018-06-28 | 2018-11-06 | 浙江大学 | A kind of quasi-monocrystalline silicon crucible for casting ingots using silica membrane as barrier layer |
CN109778311A (en) * | 2019-01-24 | 2019-05-21 | 赛维Ldk太阳能高科技(新余)有限公司 | A kind of preparation method and crucible for casting ingots of silicon ingot |
CN110534590A (en) * | 2019-08-16 | 2019-12-03 | 上海交通大学 | A kind of silicon nitride film and preparation method thereof improving solar cell long-wave response |
CN111705358A (en) * | 2020-06-30 | 2020-09-25 | 江苏协鑫硅材料科技发展有限公司 | Cast monocrystalline silicon ingot and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102732948A (en) | Method for improving ingot-casting monocrystaline silicon yield | |
CN103060892B (en) | One kind monocrystalline silicon cast ingot seed crystal joining method | |
CN103014833B (en) | The preparation method of silicon ingot | |
CN103088417B (en) | A kind of polycrystalline cast ingot high efficient crucible and preparation method thereof | |
CN103088406B (en) | A kind of preparation method of seed crystal and the castmethod of class silicon single crystal ingot | |
JP5496674B2 (en) | Method for refining metallic silicon by directional solidification | |
TWI620838B (en) | Crystalline silicon ingot including nucleation promotion particles and method of fabricating the same | |
CN105369351B (en) | A kind of polycrystal silicon ingot and preparation method thereof and polysilicon chip | |
CN103882517A (en) | Preparation method of polycrystalline silicon ingot | |
CN102206857A (en) | 111 crystal orientation cast silicon monocrystal and preparation method thereof | |
KR20160105751A (en) | Poly-crystalline silicon ingot, silicon wafer therefrom and method of fabricating poly-crystalline silicon ingot | |
CN102703965A (en) | Method for reducing crystal defects of ingot-casting silicon single crystal | |
CN102644108A (en) | Charging method for growing silicon crystal by using casting process and process for growing silicon crystal | |
RU2358905C2 (en) | Method of polycristalline silicon ingots obtaining | |
CN101597790A (en) | Method for preparing cast polysilicon by melting silicon and doping nitrogen under nitrogen | |
CN118600532A (en) | Device, system and method for growing large-size (010) primary surface gallium oxide single crystal by guided mode method | |
CN101591807A (en) | Nitrogen-doped directionally solidified cast single crystal silicon and its preparation method | |
CN102776556B (en) | Polycrystalline silicon ingot and preparation method thereof as well as polycrystalline silicon wafer | |
CN105019022A (en) | Quasi mono-crystalline silicon co-doped with gallium, germanium and boron and preparing method thereof | |
CN106757331A (en) | A kind of polycrystal silicon ingot and preparation method thereof | |
CN104203845A (en) | Method of preparing cast silicon by directional solidification | |
TWI595124B (en) | Manufacturing method of polysilicon ingot | |
CN102140689B (en) | Method for growing sapphire crystal | |
CN203373447U (en) | There is seed crystal ingot casting crucible backplate device | |
CN101597792A (en) | Method for casting nitrogen-doped polysilicon with controllable nitrogen concentration under nitrogen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C12 | Rejection of a patent application after its publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20121017 |