CN102735349A - Apparatus for measuring multiple parameters of laser - Google Patents
Apparatus for measuring multiple parameters of laser Download PDFInfo
- Publication number
- CN102735349A CN102735349A CN2011100877448A CN201110087744A CN102735349A CN 102735349 A CN102735349 A CN 102735349A CN 2011100877448 A CN2011100877448 A CN 2011100877448A CN 201110087744 A CN201110087744 A CN 201110087744A CN 102735349 A CN102735349 A CN 102735349A
- Authority
- CN
- China
- Prior art keywords
- laser
- field
- ccd
- polarization
- reflector
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000005259 measurement Methods 0.000 claims abstract description 31
- 230000010287 polarization Effects 0.000 claims abstract description 27
- 238000013519 translation Methods 0.000 claims abstract description 19
- 230000003287 optical effect Effects 0.000 claims abstract description 7
- 239000000523 sample Substances 0.000 claims abstract description 7
- 238000012360 testing method Methods 0.000 claims description 10
- 238000012546 transfer Methods 0.000 claims description 5
- 239000013078 crystal Substances 0.000 claims description 3
- 230000006978 adaptation Effects 0.000 claims 1
- 238000001514 detection method Methods 0.000 claims 1
- 238000002347 injection Methods 0.000 claims 1
- 239000007924 injection Substances 0.000 claims 1
- 239000000203 mixture Substances 0.000 claims 1
- 230000003595 spectral effect Effects 0.000 abstract description 7
- 230000005540 biological transmission Effects 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
Images
Landscapes
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
本发明涉及一种激光参数测量装置,属于激光测量技术领域。该装置是由计算机、电源模块、控制信号接收模块、前光学透镜、近场光学透镜、科学CCD、近场电动平移台、远场电动平移台、光电探头、光学楔板组、反射镜组、衰减片、能量计构成的一个激光测量装置。该装置通过外接相关测量仪器可以实现对单脉冲激光的能量、能量稳定性、波长、光谱分布、脉冲宽度、脉冲波形、近场光斑,软化因子、近场调制度、M2因子、发散角、指向性、输出信噪比、偏振方向、偏振度、束腰位置、像传递面位置、瑞利距离的测量和计算。该测量装置能够有效提高测量效率,计算被测量光束相关参数,具有很好的实用意义。
The invention relates to a laser parameter measuring device, which belongs to the technical field of laser measurement. The device is composed of a computer, a power supply module, a control signal receiving module, a front optical lens, a near-field optical lens, a scientific CCD, a near-field electric translation stage, a far-field electric translation stage, a photoelectric probe, an optical wedge group, a mirror group, A laser measuring device composed of an attenuation sheet and an energy meter. The device can realize the single pulse laser energy, energy stability, wavelength, spectral distribution, pulse width, pulse waveform, near-field spot, softening factor, near-field modulation degree, M2 factor, divergence angle, pointing The measurement and calculation of properties, output signal-to-noise ratio, polarization direction, polarization degree, beam waist position, image transmission surface position, and Rayleigh distance. The measuring device can effectively improve the measuring efficiency and calculate the relevant parameters of the measured light beam, and has good practical significance.
Description
技术领域 technical field
本发明涉及一种新型激光测量装置,特别是涉及一种将多个仪器综合集成的激光参数测量装置,属于激光测量技术领域。The invention relates to a novel laser measuring device, in particular to a laser parameter measuring device which integrates multiple instruments, and belongs to the technical field of laser measuring.
背景技术 Background technique
为了满足不同的需要,针对一个激光光源输出的光束需要进行多方面的测量,比如:光谱宽度、光斑尺寸、光斑调制度、瑞利距离、束腰位置、发散角、指向性、光束质量因子、单脉冲能量、能量稳定性、平均功率、功率稳定性、重复频率、脉冲宽度、脉冲稳定性、输出信噪比、偏振方向、偏振度等。而现有的激光参数测试仪器,只能针对单个或密切关联的几个激光参数进行测试,不能够跨越时域、频域、能量等多各方面,同时、全面的测量多个参数。这使得在进行激光光源输出光束特性的测试过程中,需要众多的仪器逐一测量,费时费力,而且不能够很好的把握激光器的工作状态。比如在针对重复频率低至数十分钟一个脉冲的激光器进行测量时,进行能量计测量脉冲能量方面的参数,光电二极管结合示波器测量激光输出时域方面的参数,光束质量分析仪测量激光M2因子等多个步骤的测试,不仅费时费力,前后测量的激光参数对应不同的时间状态,也使得测量结果不能很好的反映激光器的实时特性。In order to meet different needs, the output beam of a laser source needs to be measured in many aspects, such as: spectral width, spot size, spot modulation, Rayleigh distance, beam waist position, divergence angle, directivity, beam quality factor, Single pulse energy, energy stability, average power, power stability, repetition frequency, pulse width, pulse stability, output signal-to-noise ratio, polarization direction, polarization degree, etc. However, the existing laser parameter testing instruments can only test a single or closely related laser parameters, and cannot measure multiple parameters simultaneously and comprehensively across multiple aspects such as time domain, frequency domain, and energy. This makes it necessary to measure the output beam characteristics of the laser light source one by one with many instruments, which is time-consuming and labor-intensive, and the working state of the laser cannot be well grasped. For example, when measuring a laser with a repetition rate as low as one pulse per tens of minutes, an energy meter is used to measure the parameters of the pulse energy, a photodiode is combined with an oscilloscope to measure the parameters of the laser output in the time domain, and a beam quality analyzer is used to measure the M2 factor of the laser. The multi-step test is not only time-consuming and laborious, but also the laser parameters measured before and after correspond to different time states, which also makes the measurement results unable to reflect the real-time characteristics of the laser well.
比如申请号为200610167350.2的激光参数测量装置,采用漫反射成像光靶来反射被测激光源,然后通过图像采集卡处理后显示。这种装置仅局限于脉宽、频率、图像等可被图像采集卡获取的相关参数,并不能全面的反映被测激光束的多方面状态。For example, the laser parameter measurement device with the application number 200610167350.2 uses a diffuse reflection imaging light target to reflect the measured laser source, and then displays it after being processed by an image acquisition card. This device is limited to relevant parameters such as pulse width, frequency, and image that can be obtained by the image acquisition card, and cannot fully reflect the various states of the measured laser beam.
发明内容 Contents of the invention
本发明目的在于解决上述已有技术中出现的问题,提供一种能够同时采集待测激光束频域、时域、光斑参数,并计算所需参数的装置。该装置能够测量频域上的中心波长、光谱宽度、光谱分布;时域上的重复频率、脉冲宽度、脉冲稳定性;空间上的光斑尺寸、光斑调制度、发散角、指向性、光束质量因子;能量/功率上的单脉冲能量、能量稳定性、平均功率、功率稳定性、输出信噪比;偏振状态上的偏振方向、偏振度;以及束腰位置、M2因子等综合参数的激光多参数实时测量装置。该装置能够同时针对频域、时域、能量/功率、偏振状态以及由此瞬时计算的综合参数进行测量,实现对激光光源输出特性的全面、高效、实时测量和监控,为激光器的调试和研究提供了更快速、更便捷的测量。The purpose of the present invention is to solve the problems in the above-mentioned prior art, and provide a device capable of simultaneously collecting the frequency domain, time domain, and light spot parameters of the laser beam to be measured, and calculating the required parameters. The device can measure the central wavelength, spectral width, and spectral distribution in the frequency domain; the repetition frequency, pulse width, and pulse stability in the time domain; the spot size, spot modulation, divergence angle, directivity, and beam quality factor in space. ; Single pulse energy, energy stability, average power, power stability, output signal-to-noise ratio on energy/power; polarization direction and degree of polarization on polarization state; Parameter real-time measurement device. The device can simultaneously measure the frequency domain, time domain, energy/power, polarization state, and the comprehensive parameters calculated instantaneously, so as to realize comprehensive, efficient, real-time measurement and monitoring of the output characteristics of the laser light source, and provide support for laser debugging and research. Provides faster and more convenient measurements.
本发明提供一种激光参数测量系统,包括滑动支杆1,前大反射镜2,后大反射镜3,大透镜4,折叠反射镜5,前固定反射镜6,后固定反射镜9,前楔板10,后楔板11,小透镜13,远场CCD14,远场电动平移台15,近场CCD16,近场电动平移台17,接口电路板18,电源模块19,箱体20,如图1所示。还可以包括能量计7,旋转电磁铁8,偏振测试单元12,光电探头21,光谱仪采集头22;The invention provides a laser parameter measurement system, which includes a sliding support rod 1, a front large reflector 2, a rear large reflector 3, a large lens 4, a folding reflector 5, a front fixed reflector 6, a rear fixed reflector 9, a
在所述的技术方案中,所述的滑动支杆1用来固定前大反射镜2和后大反射镜3;In the described technical solution, the sliding strut 1 is used to fix the front large reflector 2 and the rear large reflector 3;
在所述的技术方案中,所述的前大反射镜2和后大反射镜3在所述的滑动支杆1上可以滑动,实现对不同高度位置光束的测量;In the technical solution, the front large reflector 2 and the rear large reflector 3 can slide on the sliding rod 1, so as to realize the measurement of light beams at different heights;
在所述的技术方案中,所述的大透镜4,用来汇聚待测激光光束;In the described technical solution, the large lens 4 is used to converge the laser beam to be measured;
在所述的技术方案中,所述的折叠反射镜5,用来折转光束;In the described technical solution, the folding mirror 5 is used to bend the light beam;
在所述的技术方案中,所述的前固定反射镜6和后固定反射镜9用来折转光束;In the described technical solution, the front fixed reflector 6 and the rear fixed reflector 9 are used to bend light beams;
在所述的技术方案中,所述的能量计7用来采集计算能量值;In the described technical solution, the described energy meter 7 is used to collect and calculate the energy value;
在所述的技术方案中,所述的旋转电磁铁8用来控制衰减片的进入和移出,控制待测光束的透过能量;In the described technical solution, the
在所述的技术方案中,所述的前楔板10和后楔板11用来将待测激光分束,并折转到CCD中;In the described technical solution, the
在所述的技术方案中,所述的偏振测试单元12用来测量激光束的偏振方向和偏振度,由CCD、衰减片、PBS晶体构成;In described technical scheme, described
在所述的技术方案中,所述的小透镜13用来与所述的大透镜4构成像传递结构,并同时实现缩束,测量激光截面光斑;In the technical solution, the
在所述的技术方案中,所述的远场CCD14用来采集远场汇聚光斑情况,并用来计算相关激光参数;In the described technical solution, the far-field CCD14 is used to collect far-field converging spot conditions, and is used to calculate relevant laser parameters;
在所述的技术方案中,所述的远场电动平移台15用来控制移动所述的远场CCD14,计算相关激光参数;In the described technical solution, the far-field
在所述的技术方案中,所述的近场CCD16用来采集近场光斑情况,并用来计算相关激光参数;In the described technical solution, the near-field CCD16 is used to collect near-field light spots and to calculate relevant laser parameters;
在所述的技术方案中,所述的近场电动平移台17用来控制移动所述的近场CCD16,计算相关激光参数;In the described technical solution, the near-field electric translation stage 17 is used to control and move the near-
在所述的技术方案中,所述的接口电路板18用来转换放大触发信号,并操纵旋转电磁铁8;In the described technical solution, the described
在所述的技术方案中,所述的电源模块19用来为接口电路板18供电;In the described technical solution, the described power supply module 19 is used to supply power to the
在所述的技术方案中,所述的箱体20构成激光多参数测量装置外壳,为各个部件提供支撑和保护;In the above technical solution, the
在所述的技术方案中,所述的光电探头21固定在箱体底板上适当位置,用来采集光脉冲的时间波形;In the described technical solution, the photoelectric probe 21 is fixed at an appropriate position on the bottom plate of the box body, and is used to collect the time waveform of the optical pulse;
在所述的技术方案中,所述的光谱仪采集头22固定在箱体底板上适当位置,用来采集光脉冲的频域波形。In the technical solution, the spectrometer collecting head 22 is fixed at a proper position on the bottom plate of the box body, and is used to collect the frequency domain waveform of the optical pulse.
本发明与已有技术相比具有如下的优点:Compared with the prior art, the present invention has the following advantages:
1.本发明的装置能够针对激光光源同时进行频域、时域、空间、能量/功率、偏振状态的测量,这种跨越多个方面的全面型测量仪器与现有仪器针对频域、时域、空间等某一方面的几个参数进行测试存在本质不同,本发明的装置能够实现对激光光源输出特性的全面、高效、实时测量和监控。1. The device of the present invention can simultaneously measure the frequency domain, time domain, space, energy/power, and polarization state for the laser light source. This comprehensive measuring instrument spanning multiple aspects is different from existing instruments for the frequency domain, time domain There are essential differences in the testing of several parameters in a certain aspect, such as space, etc., and the device of the present invention can realize comprehensive, efficient, real-time measurement and monitoring of the output characteristics of the laser light source.
2.本发明的装置能够在实现对激光光源输出多个参数实时测量后,实时计算M2因子等复杂的激光光束参数,并进行统计处理,得到这些复杂参数之间,或者复杂参数与其他任意参数之间的关系曲线,从而更好的检测激光光源输出特性,而现有的仪器装置不能够实现这样的功能。2. The device of the present invention can calculate complex laser beam parameters such as M2 factor in real time after realizing the real-time measurement of multiple parameters output by the laser light source, and perform statistical processing to obtain the relationship between these complex parameters, or complex parameters and other arbitrary parameters. The relationship curve between them, so as to better detect the output characteristics of the laser light source, but the existing instruments and devices cannot realize such a function.
附图说明 Description of drawings
图1是激光多参数测量装置的内部结构图。Figure 1 is a diagram of the internal structure of the laser multi-parameter measurement device.
图2是激光多参数测量装置与电脑的接口连接示意图。Fig. 2 is a schematic diagram of the interface connection between the laser multi-parameter measuring device and the computer.
具体实施方式 Detailed ways
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图和实施例将对本发明进一步详细说明。In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments.
实施例1Example 1
如图1所示,为本发明激光多参数实时测量系统实施例的结构示意图,包括滑动支杆1,前大反射镜1,后大反射镜2,大透镜3,大透镜4,折叠反射镜5,前固定反射镜6,能量计7,旋转电磁铁8,后固定反射镜9,前楔板10,后楔板11,偏振测试单元12,小透镜13,远场CCD14,远场电动平移台15,近场CCD16,近场电动平移台17,接口电路板18,电源模块19,箱体20,光电探头21和光谱仪采集头22。系统内部结构如图1所示。As shown in Figure 1, it is a structural schematic diagram of an embodiment of a laser multi-parameter real-time measurement system of the present invention, including a sliding support rod 1, a front large mirror 1, a rear large mirror 2, a large lens 3, a large lens 4, and a folding mirror 5. Front fixed mirror 6, energy meter 7,
测量时,调整仪器入射光束的方向和角度,使得待测量激光束经过大透镜3汇聚后经过折叠反射镜5、前固定反射镜6反射后,除小部分透射进入能量计7,大部分经过后固定反射镜9反射以及前楔板10,后楔板11分光,分别进入远场CCD14、近场CCD16中。调节远场电动平移台15和近场电动平移台17,找到清晰的图像位置,然后采集各个CCD的图像,并通过软件实现实时的计算,得到所需的各个参数。同时光电探头和光谱仪采集头22采集时域和频域的测量信息。When measuring, adjust the direction and angle of the incident beam of the instrument so that the laser beam to be measured is converged by the large lens 3 and then reflected by the folded reflector 5 and the front fixed reflector 6. The light reflected by the fixed mirror 9 and split by the
该激光多参数测量装置可以实现对中心波长、光谱宽度、光谱分布、光谱稳定性等频域相关参数的测量;实现对重复频率、脉冲宽度、脉冲稳定性、脉冲波形等时域相关参数的测量;实现对光斑尺寸、光斑调制度、发散角、光束指向性等空间相关参数的测量;实现对单脉冲能量、能量稳定性、平均功率、功率稳定性、输出信噪比等能量/功率相关参数的测量;实现对偏振方向、偏振度等相关参数的测量;进行测量结果的汇总、计算、统计等处理,可以用来进行束腰位置、M2因子等相关参数的计算,可以用来进行测量结果、计算结果参数相关曲线的实时绘制。The laser multi-parameter measurement device can realize the measurement of frequency-domain related parameters such as central wavelength, spectral width, spectral distribution, and spectral stability; and realize the measurement of time-domain related parameters such as repetition frequency, pulse width, pulse stability, and pulse waveform. ; Realize the measurement of space-related parameters such as spot size, spot modulation degree, divergence angle, and beam directivity; realize energy/power-related parameters such as single pulse energy, energy stability, average power, power stability, and output signal-to-noise ratio measurement; realize the measurement of relevant parameters such as polarization direction and degree of polarization; perform summary, calculation, and statistical processing of measurement results, which can be used to calculate relevant parameters such as beam waist position and M2 factor, and can be used to perform measurement results , Real-time drawing of the calculation result parameter correlation curve.
实施例2Example 2
系统包括滑动支杆1,前大反射镜1,后大反射镜2,大透镜3,大透镜4,折叠反射镜5,前固定反射镜6,后固定反射镜9,前楔板10,后楔板11,小透镜13,远场CCD14,远场电动平移台15,近场CCD16,近场电动平移台17,接口电路板18,电源模块19,箱体20。The system includes a sliding strut 1, a front large reflector 1, a rear large reflector 2, a large lens 3, a large lens 4, a folding reflector 5, a front fixed reflector 6, a rear fixed reflector 9, a
测量时,调整仪器入射光束的方向和角度,使得待测量激光束经过大透镜3汇聚后经过折叠反射镜5、前固定反射镜6反射后,大部分经过后固定反射镜9反射以及前楔板10,后楔板11分光,分别进入远场CCD14、近场CCD16中。调节远场电动平移台15和近场电动平移台17,找到清晰的图像位置,然后采集各个CCD的图像,并通过软件实现实时的计算,得到所需的各个参数。When measuring, adjust the direction and angle of the incident beam of the instrument so that the laser beam to be measured is converged by the large lens 3 and reflected by the folding mirror 5 and the front fixed mirror 6, and most of it is reflected by the rear fixed mirror 9 and the
该激光多参数测量装置可以实现对光斑尺寸、光斑调制度、发散角、光束指向性等空间相关参数的测量;汇总、计算、统计处理得到束腰位置、M2因子等相关参数,可以用来进行测量结果、计算结果参数相关曲线的实时绘制。The laser multi-parameter measurement device can realize the measurement of space-related parameters such as spot size, spot modulation degree, divergence angle, and beam directivity; relevant parameters such as beam waist position, M2 factor, etc. can be obtained by summarizing, calculating, and statistical processing, which can be used to carry out Real-time drawing of parameter correlation curves of measurement results and calculation results.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011100877448A CN102735349A (en) | 2011-04-08 | 2011-04-08 | Apparatus for measuring multiple parameters of laser |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011100877448A CN102735349A (en) | 2011-04-08 | 2011-04-08 | Apparatus for measuring multiple parameters of laser |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102735349A true CN102735349A (en) | 2012-10-17 |
Family
ID=46991257
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2011100877448A Pending CN102735349A (en) | 2011-04-08 | 2011-04-08 | Apparatus for measuring multiple parameters of laser |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102735349A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107356407A (en) * | 2016-05-10 | 2017-11-17 | 南京理工大学 | The device of synchro measure high-capacity optical fiber laser power, spectrum and beam quality |
CN110095260A (en) * | 2019-03-19 | 2019-08-06 | 杭州奥创光子技术有限公司 | A kind of comprehensive self-diagnosable system of embedded laser parameter and its workflow |
WO2019148475A1 (en) * | 2018-02-03 | 2019-08-08 | Shenzhen Genorivision Technology Co. Ltd. | Methods and systems with dynamic gain determination |
CN110749421A (en) * | 2018-07-24 | 2020-02-04 | 深圳市矽电半导体设备有限公司 | Luminescent device testing integrated machine |
CN111207829A (en) * | 2020-01-18 | 2020-05-29 | 中北大学 | A multi-parameter comprehensive test laser alarm instrument |
CN111239084A (en) * | 2018-11-28 | 2020-06-05 | 中国科学院大连化学物理研究所 | A laser-induced breakdown spectroscopy detection system with beam stability analysis |
CN112909726A (en) * | 2021-01-20 | 2021-06-04 | 苏州长光华芯光电技术股份有限公司 | Multifunctional testing device for laser chip |
CN114279686A (en) * | 2021-12-16 | 2022-04-05 | 中国科学院上海光学精密机械研究所 | Time division space division laser parameter measurement system and method |
CN117293627A (en) * | 2023-11-27 | 2023-12-26 | 四川中久大光科技有限公司 | Miniaturized device for integrated dynamic monitoring of direction and power and application method thereof |
CN118243361A (en) * | 2024-05-28 | 2024-06-25 | 安菲腾(常州)光电科技有限公司 | Method and system for testing performance of optical fiber transmission semiconductor laser |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060215150A1 (en) * | 2005-03-25 | 2006-09-28 | Ling-Hua Que | Method for verifying scan precision of a laser measurement machine |
CN101101199A (en) * | 2006-12-29 | 2008-01-09 | 中国人民解放军总参谋部第五十四研究所 | Laser parameter measuring device |
-
2011
- 2011-04-08 CN CN2011100877448A patent/CN102735349A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060215150A1 (en) * | 2005-03-25 | 2006-09-28 | Ling-Hua Que | Method for verifying scan precision of a laser measurement machine |
CN101101199A (en) * | 2006-12-29 | 2008-01-09 | 中国人民解放军总参谋部第五十四研究所 | Laser parameter measuring device |
Non-Patent Citations (1)
Title |
---|
赵天卓等: "低重复频率激光光束多参数实时监测系统", 《中国激光》 * |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107356407B (en) * | 2016-05-10 | 2020-04-10 | 南京理工大学 | Device for synchronously measuring power, spectrum and beam quality of high-power fiber laser |
CN107356407A (en) * | 2016-05-10 | 2017-11-17 | 南京理工大学 | The device of synchro measure high-capacity optical fiber laser power, spectrum and beam quality |
WO2019148475A1 (en) * | 2018-02-03 | 2019-08-08 | Shenzhen Genorivision Technology Co. Ltd. | Methods and systems with dynamic gain determination |
CN110749421A (en) * | 2018-07-24 | 2020-02-04 | 深圳市矽电半导体设备有限公司 | Luminescent device testing integrated machine |
CN111239084A (en) * | 2018-11-28 | 2020-06-05 | 中国科学院大连化学物理研究所 | A laser-induced breakdown spectroscopy detection system with beam stability analysis |
CN110095260A (en) * | 2019-03-19 | 2019-08-06 | 杭州奥创光子技术有限公司 | A kind of comprehensive self-diagnosable system of embedded laser parameter and its workflow |
CN111207829A (en) * | 2020-01-18 | 2020-05-29 | 中北大学 | A multi-parameter comprehensive test laser alarm instrument |
CN112909726A (en) * | 2021-01-20 | 2021-06-04 | 苏州长光华芯光电技术股份有限公司 | Multifunctional testing device for laser chip |
CN114279686A (en) * | 2021-12-16 | 2022-04-05 | 中国科学院上海光学精密机械研究所 | Time division space division laser parameter measurement system and method |
CN114279686B (en) * | 2021-12-16 | 2023-12-01 | 中国科学院上海光学精密机械研究所 | System and method for measuring time-division space-division laser parameters |
CN117293627A (en) * | 2023-11-27 | 2023-12-26 | 四川中久大光科技有限公司 | Miniaturized device for integrated dynamic monitoring of direction and power and application method thereof |
CN117293627B (en) * | 2023-11-27 | 2024-02-20 | 四川中久大光科技有限公司 | Miniaturized device for integrated dynamic monitoring of direction and power and application method thereof |
CN118243361A (en) * | 2024-05-28 | 2024-06-25 | 安菲腾(常州)光电科技有限公司 | Method and system for testing performance of optical fiber transmission semiconductor laser |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102735349A (en) | Apparatus for measuring multiple parameters of laser | |
CN101782435B (en) | Laser parameter comprehensive test system | |
CN105784334B (en) | Optical-fiber laser beam quality measurement method based on photodetector and CCD camera | |
CN104034416B (en) | High-dynamic-range laser far-field focal spot measuring device and method | |
CN102384836B (en) | Laser multi-parameter real-time measurement device | |
CN102169050B (en) | Comprehensive measurement method for reflectivity | |
CN102566048B (en) | Astigmatism-based sample axial drift compensating method and device | |
CN110186653B (en) | Optical axis consistency calibration and split image fixed focus adjustment device and method for non-imaging system | |
CN102519573B (en) | Remote non-contact vibration measuring device | |
CN105044704B (en) | The spaceborne laser transmitter integrated test system for performance of high accuracy | |
CN105938041B (en) | A kind of infrared thermal imager capability evaluating device | |
CN111006854B (en) | Device and method for testing diffraction efficiency of micro-nano structured lens | |
CN103399413B (en) | Double helix light beam-based sample axial drift detection and compensation method and device | |
JP2010525349A5 (en) | ||
CN105444878A (en) | High-precision mass measurement device and high-precision mass measurement method of chemical oxygen iodine laser far-field beam | |
CN102607461A (en) | Method and device for measuring surface shape error of optical element at high precision | |
CN102243098A (en) | In-situ test system of strong laser beam quality | |
CN102589484A (en) | Autocollimation indication error detection method and device using same | |
CN101603858B (en) | Laser beam quality BQ factor detector | |
CN103105283B (en) | Focal length measuring device of single-spectrum large-caliber long-focus lens | |
CN104154882A (en) | Double beam parallelism detection device and method based on differential defocus measurement | |
CN108051182B (en) | A kind of laser subsystem comprehensive test equipment | |
CN107907813B (en) | Integrated laser ionization effect simulation system | |
CN103063413A (en) | Integrated long-focus measuring device based on Talbot-moire technology | |
CN114894308A (en) | Spectrometer calibration method and system based on low coherence interference |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C12 | Rejection of a patent application after its publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20121017 |