[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN102712516A - 用于制备中空微球体的方法 - Google Patents

用于制备中空微球体的方法 Download PDF

Info

Publication number
CN102712516A
CN102712516A CN2010800586944A CN201080058694A CN102712516A CN 102712516 A CN102712516 A CN 102712516A CN 2010800586944 A CN2010800586944 A CN 2010800586944A CN 201080058694 A CN201080058694 A CN 201080058694A CN 102712516 A CN102712516 A CN 102712516A
Authority
CN
China
Prior art keywords
weight
charging
hollow microspheres
hollow
elongate housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2010800586944A
Other languages
English (en)
Other versions
CN102712516B (zh
Inventor
戚钢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3M Innovative Properties Co
Original Assignee
3M Innovative Properties Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 3M Innovative Properties Co filed Critical 3M Innovative Properties Co
Publication of CN102712516A publication Critical patent/CN102712516A/zh
Application granted granted Critical
Publication of CN102712516B publication Critical patent/CN102712516B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/10Forming beads
    • C03B19/107Forming hollow beads
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/10Forming beads
    • C03B19/107Forming hollow beads
    • C03B19/1075Forming hollow beads by blowing, pressing, centrifuging, rolling or dripping
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B9/00Blowing glass; Production of hollow glass articles
    • C03B9/20Blowing glass; Production of hollow glass articles in "vacuum blowing" or in "vacuum-and-blow" machines
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C11/00Multi-cellular glass ; Porous or hollow glass or glass particles
    • C03C11/002Hollow glass particles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/078Glass compositions containing silica with 40% to 90% silica, by weight containing an oxide of a divalent metal, e.g. an oxide of zinc
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/11Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen
    • C03C3/112Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen containing fluorine
    • C03C3/115Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen containing fluorine containing boron
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Glass Compositions (AREA)
  • Manufacturing Of Micro-Capsules (AREA)

Abstract

本发明提供一种用于制备中空微球体的方法,其包括在足以将进料的至少一部分转换成中空微球体的条件下加热进料,其中所述加热在真空下进行。还提供使用此方法制备的中空微球体。

Description

用于制备中空微球体的方法
本发明涉及一种用于制备中空微球体的方法。本发明还涉及可用于制备中空微球体的真空设备。
发明内容
在一个方面,本发明提供一种形成中空微球体的方法,其包括:在足以将进料的至少一部分转换成中空微球体的条件下加热所述进料,其中所述加热在真空下进行。
在另一方面,本发明提供一种形成中空微球体的方法,其包括在足以进料的至少一部分转换成中空微球体的条件下加热所述进料,其中所述加热在真空下进行,并且其中所述真空维持在等于或小于6,773Pa(2inHg)的绝对压力下。
在另一方面,本发明提供一种形成中空微球体的方法,其包括在足以进料的至少一部分转换成中空微球体的条件下加热所述进料,并且其中所述真空维持在等于或小于33,864Pa(10inHg)的绝对压力下。
在另一方面,本发明提供一种形成中空微球体的方法,其包括在足以将进料的至少一部分转换成中空微球体的条件下加热所述进料,其中所述进料包含选自玻璃、回收的玻璃和珍珠岩中的至少一种。
在另一方面,本发明提供一种形成中空微球体的方法,其包括在足以将进料的至少一部分转换成中空微球体的条件下加热所述进料,其中所述进料包含:(a)介于50重量%和90重量%之间的SiO2;(b)介于2重量%和20重量%之间的碱金属氧化物;(c)介于1重量%和30重量%之间的B2O3;(d)介于0重量%至0.5重量%之间硫;(e)介于0重量%和25重量%之间的二价金属氧化物;(f)介于0重量%和10重量%之间的除SiO2以外的四价金属氧化物;(g)介于0重量%和20重量%之间的三价金属氧化物;(h)介于0重量%和10重量%之间的五价原子的氧化物;和(i)介于0重量%和5重量%之间的氟。
在另一方面,本发明提供一种形成中空微球体的方法,其包括在足以将进料的至少一部分转换为中空微球体条件下加热所述进料,并且还包括将所述进料加热到大于或等于所述进料的软化温度的温度。
在又一方面,本发明提供一种中空微球体,其是使用包括在足以将进料的至少一部分转换成中空微球体的条件下加热所述进料的方法来制备,其中所述加热在真空下进行。
在另一方面,本发明提供一种中空微球体,其是使用包括在足以将进料的至少一部分转换成中空微球体的条件下加热所述进料的方法来制备,其中所述加热在真空下进行,其中所述真空维持在等于或小于6,773Pa(2inHg)的绝对压力下。
在另一方面,本发明提供一种中空微球体,其是使用包括在足以将进料的至少一部分转换成中空微球体的条件下加热所述进料的方法来制备,其中所述加热在真空下进行,其中所述真空维持在等于或小于33,864Pa(10inHg)的绝对压力下。
在另一方面,本发明提供一种中空微球体,其是使用包括在足以将进料的至少一部分转换成中空微球体的条件下加热所述进料的方法来制备,其中所述加热在真空下进行,其中所述进料包含选自玻璃、回收的玻璃和珍珠岩中的至少一种。
在另一方面,本发明提供一种中空微球体,其是使用包括在足以将进料的至少一部分转换成中空微球体的条件下加热所述进料的方法来制备,其中所述加热在真空下进行,其中所述进料包含:(a)介于50重量%和90重量%之间的SiO2;(b)介于2重量%和20重量%之间的碱金属氧化物;(c)介于1重量%和30重量%之间的B2O3;(d)介于0重量%至0.5重量%之间硫;(e)介于0重量%和25重量%之间的二价金属氧化物;(f)介于0重量%和10重量%之间的除SiO2以外的四价金属氧化物;(g)介于0重量%和20重量%之间的三价金属氧化物;(h)介于0重量%和10重量%之间的五价原子的氧化物;和(i)介于0重量%和5重量%之间的氟。
本公开的上述发明内容并不旨在描述本发明的每一个实施例。本发明的一个或多个实施例的细节还在以下描述中给出。本发明的其他特征、目标和优点从描述和权利要求中将显而易见。
附图简要说明
图1为本发明公开的用于制备中空微球体的设备的一个实施例的前剖视图。
图2为本发明公开的用于制备中空微球体的设备的一个实施例的前剖视图。
图3为根据实例1制备的回收的玻璃中空微球体的光学图像。
图4为根据实例5制备的玻璃中空微球体的光学图像。
图5为按实例8中所述制备的珍珠岩中空微球体的光学图像。
具体实施方式
如本文所用的术语“玻璃”包括所有无定形固体或可用于形成无定形固体的熔体,其中用于形成这种玻璃的原材料包括各种氧化物和矿物。这些氧化物包括金属氧化物。
如本文所用的术语“回收的玻璃”是指使用玻璃作为原材料形成的任何材料。
如本文所用的术语“真空”是指低于101,592Pa(30inHg)的绝对压力。
平均直径小于约500微米的中空微球体对许多用途具有宽泛实用性,其中多个用途需要具体尺寸、形状、密度和强度特性。例如,中空微球体在工业中作为聚合物型化合物的添加剂广泛使用,其中它们可以用作调节剂、增强剂、硬化剂(rigidifier)和/或填料。通常,希望中空微球体强度较高从而不在聚合物型配混物的进一步加工期间例如被高压喷射、捏合、挤出或注模压碎或破裂。希望提供一种用于制备中空微球体的方法,其允许控制所得中空微球体的尺寸、形状、密度和强度。
中空微球体和用于制备它们的方法已在各种参考文献中公开。例如,这些参考文献中的一些公开一种使用玻璃形成组分的同时熔融和熔融物质的伸展来制备中空微球体的方法。其他参考文献公开加热含有无机气体形成剂、或发泡剂混合物的玻璃组合物,和加热该玻璃至足以释放发泡剂混合物的温度。其他参考文献公开一种方法,包括通过湿粉碎来粉碎材料以获得粉末状粉末材料的浆液,喷射所述浆液以形成液滴,并加热所述液滴以熔合或烧结粉末材料以便获得无机微球体。其他参考文献公开一种用于通过在夹带流反应器中于部分氧化条件下采用谨慎控制的时间-温度过程处理精确配制的进料混合物来制备低密度微球体的方法。然而,这些参考文献没有提供这样一种用于制备中空微球体的方法,其提供对由其制备的中空微球体的尺寸、形状、密度和强度的控制。
除了尺寸、密度和强度以外,中空微球体的实用性可能取决于水敏感性和成本,其意味着优选的是,用于制备中空微球体玻璃组合物包括相对高的二氧化硅含量。然而,玻璃组合物中较高的二氧化硅含量并不总是可取的,因为在初始玻璃制备中,较高二氧化硅玻璃所需的较高温度和较长熔化时间降低可保留的发泡剂混合物的量,其阻止低密度玻璃气泡的形成。为获得低密度(例如小于0.2g/cc)的中空微球体,很难在初始玻璃熔化操作期间保留足够的发泡剂混合物。希望使用具有相对高的二氧化硅含量并同时产生低密度气泡的玻璃组合物。
中空微球体通常通过加热研磨的熔块(常常称为“进料”,其含有发泡剂混合物)制备。用于制备中空微球体的已知方法包括玻璃熔化、玻璃进料研磨和使用火焰处理的中空微球体形成。该方法的关键在于,在用火焰处理形成中空微球体使之前用于形成中空微球体的玻璃组合物必须包含具体量的发泡剂混合物。发泡剂混合物通常为在高温下分解的组合物。示例性发泡剂混合物包括硫或硫和氧的化合物,其基于玻璃组合物的总重量计在玻璃组合物中以大于约0.12重量%的发泡剂混合物的量存在。
在这些方法中,必要的是熔化玻璃两次,一次是在批料熔化以溶解玻璃中的发泡剂混合物期间,另一次是指形成中空微球体期间。因为玻璃组合物中发泡剂混合物的挥发性,批料熔化步骤限于相对较低温度,在此期间批料组合物变得对用于批料熔化步骤的熔化槽的耐火材料十分具有腐蚀性。批料熔化步骤还需要相对长的时间且必须保持用于批料熔化步骤的玻璃粒子尺寸很小。这些问题导致所得中空微球体的成本增加和潜在杂质增加。希望提供一种不需要使用发泡剂混合物来制备中空微球体的方法。
可用于本发明的进料可以例如通过压碎和/或研磨任何合适玻璃来制备。本发明中的进料可以具有能够形成玻璃的任何组合物,例如回收的玻璃、珍珠岩、硅酸盐玻璃等等。在一些实施例中,基于总重量计,该进料包含50至90%的SiO2,2至20%的碱金属氧化物,1至30%的B2O3,0至0.5%的硫(例如,作为元素性硫),0至25%的二价金属氧化物(例如,CaO、MgO、BaO、SrO、ZnO、或PbO),除SiO2以外的0至10%的四价金属氧化物(例如,TiO2、MnO2、或ZrO2),0至20%的三价金属氧化物(例如,Al2O3、Fe2O3、或Sb2O3,0至10%的五价原子的氧化物(例如,P2O5或V2O5),和0至5%的氟(如氟化物),所述氟可充当助熔剂以促进玻璃组合物熔化。在一个实施例中,进料包含485g SiO2(可购自US Silica,West Virginia,美国),114gNa2O.2B2O3(90%小于590μm),161gCaCO3(90%小于44μm),29gNa2CO3,3.49g Na2SO4(60%小于74μm)和10g Na4P2O7(90%小于840μm)。在另一个实施例中,进料包含68.02%的SiO2,7.44%的Na2O,11.09%的B2O3,12.7%的CaCO3和0.76%的P2O5
附加成分可用于进料组合物中并且可被包含在进料中(例如)以向所得中空微球体贡献特定性质或特性(例如,硬度或颜色)。在一些实施例中,上述进料组成基本上不含发泡剂混合物。如本文所用的短语“基本上不含发泡剂混合物”是指基于进料组合物的总重量计小于0.12重量%的发泡剂混合物。在一个实施例中,进料包含基于进料组合物的总重量计的小于或等于约0.12重量%的硫。在另一个实施例中,进料包含基于进料组合物的总重量计约0重量%的硫。
该进料通常被研磨,并任选地被分类,以产生用于形成所需尺寸的中空微球体的合适粒度的进料。适用于研磨进料的方法包括(例如)使用珠磨机或球磨机、磨碎机、辊式开炼机、盘磨机、喷磨机、或它们的组合来研磨。例如,为制备用于形成中空微球体的合适粒度的进料,进料可以使用盘磨机来粗研磨(例如压碎),并随后使用喷磨机来细研磨。喷磨机通常为三种类型:螺旋式喷磨机、流化床喷磨机和对冲式喷磨机,但也可使用其他的类型。
螺旋式喷磨机包括,例如,可以商品名“MICRONIZER JET MILL”得自Sturtevant,Inc.,Hanover,Massachusetts;商品名“MICRON-MASTER JET PULVERIZER”得自The Jet Pulverizer Co.,Moorestown,New Jersey;和商品名“MICRO-JET”得自Fluid Energy Processing andEquipment Co.,Plumsteadville,Pennsylvania的那些。在螺旋式喷磨机中,平面的圆柱研磨腔(flat cylindrical grinding chamber)被喷嘴环围绕。将待研磨的材料作为粒子被喷射器引入到喷嘴环内部。被压缩流体的射流膨胀通过喷嘴并加速所述粒子,其通过互相撞击导致尺寸下降。
流化床喷磨机例如可以商品名“CGS FLUIDIZED BED JET MILL”得自Netzsch Inc.,Exton,Pennsylvania;商品名“ROTO-JET”得自FluidEnergy Processing and Equipment Co.;和商品名“ALPINE MODEL 100APG”得自Hosokawa Micron Powder系统,Summit,New Jersey。这种类型的机器的下面部分为磨削区域。在所述磨削区域中的磨削喷嘴的环聚焦于中心点,并且所述磨削流体使被研磨的材料粒子加速。在材料的流化床内发生尺寸降低,并且这项技术可显著改进能量效率。
对冲式喷磨机类似于流化床喷磨机,不同之处在于至少两个对冲的喷嘴加速粒子,这导致它们在中心点碰撞。对冲式喷磨机可例如商购于CCE Technologies,Cottage Grove,Minnesota。
一旦所述进料已研磨,则将其给料至本发明公开的设备中,所述设备包括分配系统、加热系统、真空系统和收集器。现参见图1和图2,示出所公开设备10的两个示例性实施例。
图1和图2中所示设备10包括具有细长外壳20的分配系统12。细长外壳20具有比水平壁24更长的竖直壁22。取决于其中将被分配的进料的类型和体积,选择细长外壳20的粒度和形状。例如,细长外壳20可以是球形的。图1中所示的示例性细长外壳20为球形并且具有约3.81cm的直径。图2中所示的示例性细长外壳20为球形并且具有约5.08cm的直径。细长外壳20可以由适用于分配进料32的任何材料制成,例如金属、玻璃、树脂等等和它们的组合的材料。例如,图1中所示细长外壳20完全由玻璃构造,并且图2中所示细长外壳20包括玻璃竖直壁22和金属水平壁24。
细长外壳20还包括在细长外壳20内竖直地保持居中的中空内管26。取决于其中将被分配的进料32的类型和体积,选择中空内管26的粒度和形状。例如,中空内管26可以为球形。图1中所示的示例性中空内管26为球形并具有约1.27cm的直径。图2中所示的示例性中空内管26为球形并具有约2.54cm的直径。中空内管26在顶端28和底端30处开口,使得粒子或进料32可以从中通过。如图2所示,细长外壳20还可以包括竖直延伸的凸起29,其从细长外壳20的顶部恰好延伸至中空内管26的顶端28上方,以便在竖直延伸凸起29和中空内管26的顶端28之间提供间隙31。中空内管26可以由适用于分配进料32的任何材料制成,例如,金属、玻璃、树脂等等和它们的组合的材料。例如,图1中所示中空内管26完全由玻璃构造并且图2中所示中空内管26完全由金属构造。
细长外壳20还包括颈状物34。颈状物34定义图1中的接纳进料32和用于将进料32流化和移动至设备10中的中空内管内的载气的入口。颈状物34可以设置在分配系统12的竖直壁22或分配系统12的水平壁24的底部附近。例如,图1中所示颈状物34沿着最靠近加热系统14的竖直壁22的一部分设置并且包括开口36和水平延伸壁38。图2中所示的示例性颈状物34沿着水平壁24的一部分设置并且包括开口36和竖直延伸壁40。图2中所示的分配系统12具有两个颈状物34或可以沿着底部水平壁24的一部分具有更多颈状物。图2中所示的示例性颈状物34很小,类似小孔。用于接纳图2所示进料32的入口35位于顶部水平壁24。
中空内管26的底端30操作性地连接到加热系统14的入口44。设备10可以包括介于中空内管26的底端30和加热系统14的入口44之间的过渡部42。希望介于中空内管26的底端30和加热系统14的入口44之间的过渡部42被密封以避免环境空气引入至设备10中。例如,介于中空内管26的底端30和加热系统14的入口44之间的过渡部42可以用O形环或任何其他类型的常规垫圈材料密封以避免环境空气在操作期间进入设备。
设备10包括加热系统14。可以使用任何市售的加热系统,例如可商购自Thermal Technology Inc.(California,美国)的“Astro 1100-4080MI”型炉。本领域技术人员可了解,加热系统14内的温度取决于各种因素,例如进料32中所用材料的类型。在本发明公开的方法中,加热系统14内的温度应维持在大于或等于玻璃软化温度的温度下。在实施例中,加热系统14内的温度维持在大于约1300℃。示例性温度包括大于约1300℃、大于约1410℃、大于约1550℃、大于约1560℃、大于约1575℃、大于约1600℃和大于约1650℃的温度。
设备10也包括在加热系统14内提供真空的真空系统16(未示出)。可以使用任何市售的真空系统。真空系统16可以为经由管件线例如空气线、液体线等等连接至加热系统14的独立系统。真空系统16还可以整合到加热系统14、收集器18或这两者中。例如,以商品名“MasterHeat Gun”商购自Master Appliances Corp.(Wisconsin,美国)的冷空气鼓风机可以直接结合到加热系统14中。这些冷空气鼓风机可以在加热系统14的入口处、加热系统14的出口处、收集器18的入口处、或多个这些位置处提供冷却空气。希望将本发明公开的加热系统14的内部压力保持在约小于6,773Pa(2inHg)的绝对压力下。在其他有益效果中,当使用基本上不含发泡剂混合物的进料32时,在本发明公开的制备中空微球体方法中将加热系统14的绝对内部压力维持在约小于6,773Pa(2inHg)是有用的。
设备10可以也包括其中收集形成的中空微球体的收集器18。收集器18的入口48操作性地连接到加热系统14的出口46。希望介于收集器18和加热系统14之间的连接被密封以避免环境空气引入到设备10中。例如,介于收集器18和加热系统14之间的连接可以用O形环或任何其他类型的常规垫圈材料密封以避免环境空气在操作期间进入设备。本领域技术人员可了解,收集器18可以许多方式设计,取决于各种因素,例如尺寸、其中正在收集的中空微球体的形状和体积、真空系统14的整合、设备10的操作温度等等。
仍参见图1和图2,在本发明公开的用于制备中空微球体方法期间,使用载气将粒子或进料32给料至设备10中,其中所述载气可以是任何惰性气体。本领域技术人员可以了解,载气的流速根据各种因素来选择,例如正被给料至设备10中的进料32的尺寸、形状和体积,设备10内的所需压力等等。载气的流速应足以将进料32引入在中空内管26的顶端28处的开口中。然后,因为真空系统16在加热系统14内产生的真空,进料32被牵引至加热系统14。一旦处于加热系统14内,则进料32变成中空微球体。在一个实施例中,使得所述中空微球体可以经由重力穿过加热系统14自由下落并且离开加热系统14中的出口46。在另一个实施例中,中空微球体可以被比加热系统14中所维持的真空更高的收集器18中的真空牵引穿过加热系统14中的出口46并进入收集器18。收集器18所收集的中空微球体可以从设备10穿过收集器18中的出口50分配。或者,收集器18可以可从设备10拆除以便从设备10排放形成的中空微球体。
使用本发明公开的方法制备的中空微球体具有相对低的密度。在一些实施例中,本发明公开的中空微球体的密度小于约1.3g/ml。在一些实施例中,本发明公开的中空微球体的密度小于约0.8g/ml。在其它实施例中,本发明公开的中空微球体的密度小于约0.5g/ml,小于约0.4g/ml,小于约0.3g/ml,或小于约0.2g/ml。
使用本发明公开的方法制备的中空微球体具有相对高的强度。在一些实施例中,本发明公开的中空微球体的强度大于约350psi。在一些实施例中,本发明公开的中空微球体的强度大于约1500psi。在其它实施例中,本发明公开的中空微球体的强度大于约2500psi,大于约5000psi,大于约10,000psi,或大于约15,000psi。
使用本发明公开的方法制备的中空微球体具有基本上单一的单元结构。如本文所用的术语“基本上”是指使用本发明公开的方法制备的绝大多数中空微球体具有单一单元结构。如本文所用的术语“单一单元结构”是指各中空微球体仅由一个外壁定义,并在各单独中空微球体中不存在其他外部壁、部分球面、同心球面、等等。示例性单一单元结构示于图3和图4中所示的光学图像中。
如下为本发明的一些示例性实施例:
1.一种形成中空微球体的方法,其包括在足以将进料的至少一部分转换成中空微球体的条件下加热所述进料,其中所述加热在真空下进行。
2.根据权利要求1所述的方法,其中所述进料通过包括分配系统的方法来提供。
3.根据权利要求2所述的方法,其中所述分配系统包括细长外壳,该细长外壳具有在其中竖直保持居中的中空内管。
4.根据权利要求3所述的方法,其中所述中空内管具有顶端和底端,其中顶端和底端完全敞开。
5.根据权利要求3或4所述的方法,其中所述中空内管具有顶端和底端,并且另外其中竖直延伸凸起从所述细长外壳的所述顶部延伸到恰好在所述中空内管的所述顶端上方。
6.根据权利要求3、4或5中任一项所述的方法,其还包括在所述细长外壳中流化进料和使用载气将进料引入到所述中空内管中。
7.根据前述任一项权利要求所述的方法,其还包括在收集器中收集形成的中空微球体。
8.根据前述任一项权利要求所述的方法,其中所述真空维持在等于或小于绝对的6,773Pa(2inHg)。
9.根据前述任一项权利要求所述的方法,其中所述真空维持在等于或小于绝对的33,864Pa(10inHg)。
10.根据前述任一项权利要求所述的方法,其中所述进料包含选自玻璃、回收的玻璃和珍珠岩中的至少一种。
11.根据前述任一项权利要求所述的方法,其中所述进料包含:
(a)介于50重量%和90重量%之间的SiO2
(b)介于2重量%和20重量%之间的碱金属氧化物;
(c)介于1重量%和30重量%之间的B2O3
(d)介于0重量%至0.5重量%之间的硫;
(e)介于0重量%和25重量%之间的二价金属氧化物;
(f)介于0重量%和10重量%之间的除SiO2以外的四价金属氧化物;
(g)介于0重量%和20重量%之间的三价金属氧化物;
(h)介于0重量%和10重量%之间的五价原子的氧化物;和
(i)介于0重量%和5重量%之间的氟。
12.根据前述任一项权利要求所述的方法,其还包括将所述进料加热到大于或等于所述进料的软化温度的温度。
13.一种中空微球体,其使用下述方法制造,所述方法包括在足以将进料的至少一部分转换成中空微球体的条件下加热所述进料,其中所述加热在真空下进行。
14.根据权利要求13所述的中空微球体,其中所述真空维持在等于或小于绝对的6,773Pa(2inHg)。
15.根据权利要求13所述的中空微球体,其中所述真空维持在等于或小于绝对的33,864Pa(10inHg)。
16.根据权利要求13、14、或15中任一项所述的中空微球体,其中所述进料包括选自玻璃、回收的玻璃和珍珠岩中的至少一种。
17.根据权利要求13、14、15、或16所述的中任一项所述的中空微球体,其中所述进料包含:
(a)介于50重量%和90重量%之间的SiO2
(b)介于2重量%和20重量%之间的碱金属氧化物;
(c)介于1重量%和30重量%之间的B2O3
(d)介于0重量%至0.5重量%之间的硫;
(e)介于0重量%和25重量%之间的二价金属氧化物;
(f)介于0重量%和10重量%之间的除SiO2以外的四价金属氧化物;
(g)介于0重量%和20重量%之间的三价金属氧化物;
(h)介于0重量%和10重量%之间的五价原子的氧化物;和
(i)介于0重量%和5重量%之间的氟。
18.根据权利要求13、14、15、16、或17中任一项所述的中空微球体,其中所述进料通过包括分配系统的方法来提供。
19.根据权利要求18所述的中空微球体,其中所述分配系统包括细长外壳,该细长外壳具有在其中竖直保持居中的中空内管,其中所述中空内管具有顶端和底端,并且另外其中竖直延伸凸起从所述细长外壳的顶部延伸到恰好在所述中空内管的顶端上方。
20.根据权利要求19所述的中空微球体,其还包括在所述细长外壳中流化进料和使用载气将进料引入到所述中空内管中。
以下特定(但非限制性)实例将用于说明本发明。除非另外明确指出,否则在这些实例中,所有量均以重量份表示。
设备
在以下实例中使用“Astro 1100-4080MI”型炉(通过ThermalTechnology Inc.(California,美国)商购)作为外加热系统,不同的是通过移除上炉床和下炉床来改进内室(inplate)以使粒子或进料自由下落穿过加热系统。使用机械夹具将三个冷却空气鼓风机(通过MasterAppliances Corp.(Wisconsin,美国)以商品名“Master Heat Gun”商购)固定至加热系统的结构:一个冷却空气鼓风机靠近给料开口位于加热系统的顶部,并且两个冷却空气鼓风机位于加热系统的底部,在收集开口处吹出空气。位于加热系统的顶部的给料开口通过添加O形环密封而被改进以将分配系统保持在适当的位置。
测试方法
平均粒子密度测定
使用以商品名“Accupyc 1330Pycnometer”得自Micromeritics(Norcross,Georgia)的完全自动化的气体置换比重瓶,根据ASTMD2840-69,“中空微球的平均真颗粒密度”(Average True Particle Densityof Hollow Microspheres),测定微球体的密度。
由经过水漂浮步骤的以移除任何较重微球体、或“沉降物(sinker)”的样品测量漂浮密度。
粒度测定
使用以商品名“Coulter Counter LS-130”得自Beckman Coulter(Fullerton,California)的粒度分析器测定粒度分布。
强度测试
中空微球体的强度使用ASTM D3102-72,“中空玻璃微球体的流体静力学破裂强度”(Hydrostatic Collapse Strength of Hollow GlassMicrospheres)进行测定,不同的是中空微球体的样本尺寸是10mL,中空微球体分散于甘油(20.6g)中,并且使用计算机软件自动进行数据整理。记录的数值是按原始产品体积计10%破裂时的静水压力。
实例
实例1至4
将回收的玻璃粒子(得自Strategic Materials Inc.,Texas,美国)在流化床喷磨机(可以商品名“Alpine Model 100APG”得自HosokawaMicron Powder Systems,Summit,New Jersey)中研磨,提供平均粒度约20μm的进料。使用在图2中所示并于对应文本中描述的设备将该进料分配到加热系统中。在进料置于细长外壳和中空内管之间的情况下,以4立方英尺每小时(CFH)的流速和6,773Pa(2inHg)的绝对压力将载气喷射穿过颈状物。使进料朝中空内管的顶端处的缩窄开口悬浮并且由于施加于此处的真空压力而被朝加热系统牵引穿过中空管。
原材料和处理条件列于表1中。
图3为按实例1中所述制备的回收的玻璃中空微球体的光学图像,其由连接至HRD-060HMT型数字照相机(得自Leica Mycrosystems,Illinois,美国)的“DM LM”型显微镜获取。图3中所示中空微球体具有基本上单一的单元结构。
在成形中空微球体之后,测量密度和强度。结果同样示于表1中。对于实例1,测量漂浮密度。
表1
Figure BDA00001796652900151
实例5和6
实例5和6使用按PCT专利申请WO2006062566(以引用方式并入本文中)中描述获得的进料来制备。该进料包含:485g SiO2(可购自US Silica,West Virginia,美国),114g Na2O.2B2O3(90%小于590μm,可购自US Borax,California,美国),161g CaCO3(90%小于44μm,可购自Imerys,Alabama,美国),29g Na2CO3(可购自FMC Corp.,Wyoming,美国),3.49g Na2SO4(60%小于74μm,可购自Searles ValleyMineral,California,美国),和10g Na4P2O7(90%小于840μm,可购自Astaris,Missouri,美国)。玻璃进料的总硫浓度为0.12%。
将该进料在实例1-4中所述流化床喷磨机中研磨,提供平均粒度约13μm的进料。如实例1-4中所述并使用图2中所示并于对应文本中所述的设备,将进料分配至加热系统中。图4为按实例5所述制备的玻璃微球体的光学图像。
使用手持式高温计(可以商品名Mikraon M90-31得自MikronInfrared,California,美国)测量温度。
处理条件和测试结果示于下表2中。
表2
  实施例   温度(℃)   密度(g/ml)   强度(psi) 气泡尺寸(目)
  实例5   1300   0.40   大于5000   200
  实例6   1560   0.15   380   未测量
实例7
按实例5中所述制备进料,不同的是不使用硫酸钠。基于总重量计进料的组成为:68.02%SiO2、7.44%Na2O、11.09%B2O3、12.7%CaCO3和0.76%P2O5。该进料是通过在流化床喷磨机中研磨进料直至平均粒度为大约20μm而制备。按实例7中所述制备的中空微球体具有0重量%的硫浓度。
使用在图1中所示并于对应文本中描述的设备将该进料分配到加热系统中。在进料置于细长外壳内部的情况下,以4立方英尺每小时(CFH)的流速和6,773Pa(2inHg)的绝对压力将载气喷射穿过颈状物。使进料朝中空内管的顶端悬浮并且由于施加于此处的真空压力而被朝加热系统牵引穿过中空管。处理条件和测试结果示于下表3中。
表3
  实施例   温度(℃)   真空(Pa),绝对   密度(g/ml)   强度(psi)
  实例7   1550   6,773(2inHg)   0.73   >10,000
实例8
使用实例1-4中所述流化床喷磨机研磨珍珠岩的粒子(得自RedcoII,California,美国)直至平均粒度为约25μm。使用400目和200目不锈钢筛网(得自McMaster-Carr,of Illinois,美国)分类研磨粒子。将平均粒度介于200目和400目之间的粒子与气相二氧化硅(可以商品名“Cab-O-Sil TS-530”得自Cabot Corporation,Massachusetts,美国)以1%的重量比混合。使用图2中所示并于对应文本中描述的设备将珍珠岩和热解法二氧化硅粒子分配至加热系统,不同的是使用绝对压力33,864Pa(10inHg)。
图5为按实例8所述制备的珍珠岩中空微球体的光学图像。处理条件和测试结果示于下表4中。
表4
  实施例   温度(℃)   真空(Pa,绝对)   密度(g/ml)
  实例8   1410   33,864(10inHg)   1.26
比较例A
比较例A包括可以商品名“3M Glass Bubbles K1”商购自3M公司的中空微球体,其为使用火焰形成方法来制备。火焰形成方法之前进料中总硫含量为基于进料的总重量计0.47重量%的硫。中空微球体的性质示于下表5中。中空微球体的粒度分布示于下表6中。
表5
  实施例   密度(g/ml)   强度(psi)
  比较例A   0.125   250
表6
  粒子的百分比(%)   尺寸(mm)
  10   30.0
  50   65.0
  50   115.0
在不脱离本发明范围和精神的前提下,对本发明进行的各种修改和更改对本领域内的技术人员来说将是显而易见的。

Claims (20)

1.一种形成中空微球体的方法,其包括在足以将进料的至少一部分转换成中空微球体的条件下加热所述进料,其中所述加热在真空下进行。
2.根据权利要求1所述的方法,其中所述进料通过包括分配系统的方法来提供。
3.根据权利要求2所述的方法,其中所述分配系统包括细长外壳,该细长外壳具有在其中竖直地保持居中的中空内管。
4.根据权利要求3所述的方法,其中所述中空内管具有顶端和底端,其中所述顶端和底端完全敞开。
5.根据权利要求3所述的方法,其中所述中空内管具有顶端和底端,并且另外其中竖直延伸凸起从所述细长外壳的顶部延伸到恰好在所述中空内管的顶端上方。
6.根据权利要求3所述的方法,其还包括在所述细长外壳中流化进料和使用载气将进料引入到所述中空内管。
7.根据权利要求1所述的方法,其还包括在收集器中收集形成的中空微球体。
8.根据权利要求1所述的方法,其中将所述真空维持在等于或小于6,773Pa(2inHg)的绝对压力下。
9.根据权利要求1所述的方法,其中将所述真空维持在等于或小于33,864Pa(10inHg)的绝对压力下。
10.根据权利要求1所述的方法,其中所述进料包含选自玻璃、回收的玻璃和珍珠岩中的至少一种。
11.根据权利要求1所述的方法,其中所述进料包含:
(a)介于50重量%和90重量%之间的SiO2
(b)介于2重量%和20重量%之间的碱金属氧化物;
(c)介于1重量%和30重量%之间的B2O3
(d)介于0重量%至0.5重量%之间的硫;
(e)介于0重量%和25重量%之间的二价金属氧化物;
(f)介于0重量%和10重量%之间的除SiO2以外的四价金属氧化物;
(g)介于0重量%和20重量%之间的三价金属氧化物;
(h)介于0重量%和10重量%之间的五价原子的氧化物;和
(i)介于0重量%和5重量%之间的氟。
12.根据权利要求1所述的方法,其还包括将所述进料加热到大于或等于所述进料的软化温度的温度。
13.一种中空微球体,其使用包括在足以将进料的至少一部分转换成中空微球体的条件下加热所述进料的方法来制备,其中所述加热在真空下进行。
14.根据权利要求13所述的中空微球体,其中所述真空维持在等于或小于6,773Pa(2inHg)的绝对压力下。
15.根据权利要求13所述的中空微球体,其中所述真空维持在等于或小于33,864Pa(10inHg)的绝对压力下。
16.根据权利要求13所述的中空微球体,其中所述进料包含选自玻璃、回收的玻璃和珍珠岩中的至少一种。
17.根据权利要求13所述的中空微球体,其中所述进料包含:
(a)介于50重量%和90重量%之间的SiO2
(b)介于2重量%和20重量%之间的碱金属氧化物;
(c)介于1重量%和30重量%之间的B2O3
(d)介于0重量%至0.5重量%之间的硫;
(e)介于0重量%和25重量%之间的二价金属氧化物;
(f)介于0重量%和10重量%之间的除SiO2以外的四价金属氧化物;
(g)介于0重量%和20重量%之间的三价金属氧化物;
(h)介于0重量%和10重量%之间的五价原子的氧化物;和
(i)介于0重量%和5重量%之间的氟。
18.根据权利要求13所述的中空微球体,其中所述进料通过包括分配系统的方法来提供。
19.根据权利要求18所述的中空微球体,其中所述分配系统包括细长外壳,该细长外壳具有在其中竖直保持居中的中空内管,其中所述中空内管具有顶端和底端,并且另外其中竖直延伸的凸起从所述细长外壳的顶部延伸到恰好在所述中空内管的顶端上方。
20.根据权利要求19所述的中空微球体,其还包括在所述细长外壳中流化进料和使用载气将进料引入到所述中空内管中。
CN201080058694.4A 2009-12-21 2010-12-14 用于制备中空微球体的方法 Expired - Fee Related CN102712516B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/643,606 US8261577B2 (en) 2009-12-21 2009-12-21 Method for making hollow microspheres
US12/643,606 2009-12-21
PCT/US2010/060229 WO2011084407A2 (en) 2009-12-21 2010-12-14 Method for making hollow microspheres

Publications (2)

Publication Number Publication Date
CN102712516A true CN102712516A (zh) 2012-10-03
CN102712516B CN102712516B (zh) 2015-04-22

Family

ID=44151907

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201080058694.4A Expired - Fee Related CN102712516B (zh) 2009-12-21 2010-12-14 用于制备中空微球体的方法

Country Status (8)

Country Link
US (1) US8261577B2 (zh)
EP (1) EP2516338A4 (zh)
JP (1) JP5731537B2 (zh)
KR (1) KR101902587B1 (zh)
CN (1) CN102712516B (zh)
BR (1) BR112012015180A2 (zh)
EA (1) EA025991B1 (zh)
WO (1) WO2011084407A2 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104926137A (zh) * 2015-07-01 2015-09-23 合肥鼎亮光学科技有限公司 一种pc反光膜用玻璃微珠及其制备方法
CN105036555A (zh) * 2015-07-13 2015-11-11 安徽天堂唯高塑业科技有限公司 一种用于汽车车牌级反光膜的玻璃微珠及其制备方法
CN105152538A (zh) * 2015-08-27 2015-12-16 东阿县鼎盛玻璃球有限公司 一种代替不锈钢球的新型节能环保玻璃球
CN109877330A (zh) * 2019-03-20 2019-06-14 北京科技大学 一种生产3d打印用球形金属粉体的装置及使用方法
CN114144291A (zh) * 2019-03-29 2022-03-04 陶氏环球技术有限责任公司 含有添加剂的粒料

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA028106B1 (ru) * 2010-12-20 2017-10-31 3М Инновейтив Пропертиз Компани Полые микросферы и способ получения полых микросфер
CN105392742B (zh) 2013-07-18 2018-05-11 3M创新有限公司 玻璃微泡、粗制产品及其制备方法
FR3015474B1 (fr) 2013-12-19 2016-01-01 Bostik Sa Composition d'enduit pour mur et plafond ayant des proprietes d'isolation thermique
GB201415005D0 (en) * 2014-08-22 2014-10-08 Univ Nottingham Porous and non-pourous bodies
US9809493B2 (en) * 2015-04-27 2017-11-07 Ford Global Technologies, Llc Surface treatment of glass bubbles
CN105060706A (zh) * 2015-07-29 2015-11-18 蚌埠高华电子股份有限公司 一种反光布用耐压玻璃微珠及其制备方法
PL3184494T3 (pl) 2015-12-21 2018-07-31 Adf Materials Gmbh Kompozycja chemiczna do wytwarzania pustych w środku, sferycznych cząstek szkła o dużej wytrzymałości na ściskanie
JP2019112283A (ja) * 2017-12-26 2019-07-11 日本電気硝子株式会社 ガラスフィラーの製造方法
CN110054396B (zh) * 2018-01-18 2021-10-15 宁波大学 一种2s2g硫系玻璃微球制作装置
CA3105264A1 (en) * 2018-07-26 2020-01-30 Basf Se Hollow spherical glass particles
EP3861041A1 (de) 2018-10-03 2021-08-11 Sika Technology AG Härtbare zusammensetzung mit geringer dichte
KR102308504B1 (ko) * 2020-12-31 2021-10-01 황인동 중공비드를 포함하는 콘크리트 조성물 및 그 제조방법
EP4288474A1 (de) 2021-02-02 2023-12-13 Sika Technology AG Zweikomponentige polyurethanspachtelmasse mit einstellbarer topfzeit
CN116604810B (zh) * 2023-05-25 2024-01-16 惠州市顺美医疗科技有限公司 一种导管鞘表面成型设备及其成型工艺

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4133854A (en) * 1977-06-16 1979-01-09 The United States Of America As Represented By The United States Department Of Energy Method for producing small hollow spheres
US4142969A (en) * 1971-05-17 1979-03-06 Funk Richard S Composition and process for selectively removing oleaginous products from water
US4257798A (en) * 1979-07-26 1981-03-24 The United States Of America As Represented By The United States Department Of Energy Method for introduction of gases into microspheres
US4661137A (en) * 1984-06-21 1987-04-28 Saint Gobain Vitrage Process for producing glass microspheres
US4698317A (en) * 1984-04-24 1987-10-06 Kanto Kagaku Kabushiki Kaisha Porous cordierite ceramics, a process for producing same and use of the porous cordierite ceramics
US5501871A (en) * 1992-10-30 1996-03-26 Innovation Associates, Inc. Thermal insulating material and method of manufacturing same
US20050284630A1 (en) * 2003-05-22 2005-12-29 Halliburton Energy Services, Inc. Lightweight high strength particles and methods of their use in wells
US20090280328A1 (en) * 2005-09-16 2009-11-12 Matsumoto Yushi-Seiyaku Co. Ltd Thermally expanded microspheres and a process for producing the same

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US243363A (en) * 1881-06-28 Geobge ceottch
NL232500A (zh) * 1957-10-22
US3230064A (en) 1960-10-21 1966-01-18 Standard Oil Co Apparatus for spherulization of fusible particles
US3365315A (en) 1963-08-23 1968-01-23 Minnesota Mining & Mfg Glass bubbles prepared by reheating solid glass partiles
US3673101A (en) * 1969-12-08 1972-06-27 Grace W R & Co Process for preparing improved carbide microspheres from ion exchange resins
US4279632A (en) 1979-05-08 1981-07-21 Nasa Method and apparatus for producing concentric hollow spheres
US4303431A (en) 1979-07-20 1981-12-01 Torobin Leonard B Method and apparatus for producing hollow microspheres
CA1143684A (en) 1979-08-23 1983-03-29 Ecolotrol, Inc. Downflow bioreactor
US4391646A (en) 1982-02-25 1983-07-05 Minnesota Mining And Manufacturing Company Glass bubbles of increased collapse strength
ZA831343B (en) 1982-04-08 1983-11-30 Pq Corp Hollow microspheres with organosilicon-silicate surfaces
US4960351A (en) * 1982-04-26 1990-10-02 California Institute Of Technology Shell forming system
US4767726A (en) 1987-01-12 1988-08-30 Minnesota Mining And Manufacturing Company Glass microbubbles
US5002696A (en) 1988-08-01 1991-03-26 Grefco, Inc. Expanded mineral particles and apparatus and method of production
US4983550A (en) 1988-08-24 1991-01-08 Potters Industries, Inc. Hollow glass spheres
US5217928A (en) 1988-08-24 1993-06-08 Potters Industries, Inc. Hollow glass spheres
DK165090D0 (da) 1990-07-09 1990-07-09 Kem En Tec As Konglomererede partikler
EP0601594B1 (en) * 1992-12-11 1998-03-18 Asahi Glass Company Ltd. Process for producing crystalline microballoons
JP3633091B2 (ja) 1996-04-09 2005-03-30 旭硝子株式会社 微小無機質球状中実体の製造方法
EP1156021A1 (en) 2000-05-19 2001-11-21 Asahi Glass Co., Ltd. Hollow aluminosilicate glass microspheres and process for their production
US7449503B2 (en) * 2004-10-18 2008-11-11 Potters Industries Inc. Glass microspheres with multiple bubble inclusions
JP4949657B2 (ja) * 2004-11-09 2012-06-13 大研化学工業株式会社 高耐摩耗性ジルコニア微小球とその製造方法
US20060122049A1 (en) 2004-12-03 2006-06-08 3M Innovative Properties Company Method of making glass microbubbles and raw product
BRPI0611003A2 (pt) 2005-04-29 2011-02-22 3M Innovative Properties Co método para formar um compósito de espuma sintática, espuma sintática, e, explosivo à base de água
GB2427170A (en) * 2005-06-17 2006-12-20 3M Innovative Properties Co Fluoropolymer film having glass microspheres
WO2007050062A1 (en) 2005-10-26 2007-05-03 University Of North Dakota Methods for the production of low-density microspheres

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4142969A (en) * 1971-05-17 1979-03-06 Funk Richard S Composition and process for selectively removing oleaginous products from water
US4133854A (en) * 1977-06-16 1979-01-09 The United States Of America As Represented By The United States Department Of Energy Method for producing small hollow spheres
US4257798A (en) * 1979-07-26 1981-03-24 The United States Of America As Represented By The United States Department Of Energy Method for introduction of gases into microspheres
US4698317A (en) * 1984-04-24 1987-10-06 Kanto Kagaku Kabushiki Kaisha Porous cordierite ceramics, a process for producing same and use of the porous cordierite ceramics
US4661137A (en) * 1984-06-21 1987-04-28 Saint Gobain Vitrage Process for producing glass microspheres
US5501871A (en) * 1992-10-30 1996-03-26 Innovation Associates, Inc. Thermal insulating material and method of manufacturing same
US20050284630A1 (en) * 2003-05-22 2005-12-29 Halliburton Energy Services, Inc. Lightweight high strength particles and methods of their use in wells
US20090280328A1 (en) * 2005-09-16 2009-11-12 Matsumoto Yushi-Seiyaku Co. Ltd Thermally expanded microspheres and a process for producing the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104926137A (zh) * 2015-07-01 2015-09-23 合肥鼎亮光学科技有限公司 一种pc反光膜用玻璃微珠及其制备方法
CN105036555A (zh) * 2015-07-13 2015-11-11 安徽天堂唯高塑业科技有限公司 一种用于汽车车牌级反光膜的玻璃微珠及其制备方法
CN105152538A (zh) * 2015-08-27 2015-12-16 东阿县鼎盛玻璃球有限公司 一种代替不锈钢球的新型节能环保玻璃球
CN105152538B (zh) * 2015-08-27 2018-11-09 东阿县鼎盛玻璃球有限公司 一种代替不锈钢球的节能环保玻璃球
CN109877330A (zh) * 2019-03-20 2019-06-14 北京科技大学 一种生产3d打印用球形金属粉体的装置及使用方法
CN109877330B (zh) * 2019-03-20 2023-09-05 北京科技大学 一种生产3d打印用球形金属粉体的装置及使用方法
CN114144291A (zh) * 2019-03-29 2022-03-04 陶氏环球技术有限责任公司 含有添加剂的粒料

Also Published As

Publication number Publication date
KR20120102779A (ko) 2012-09-18
EA201200772A1 (ru) 2013-02-28
CN102712516B (zh) 2015-04-22
EP2516338A4 (en) 2014-07-09
EP2516338A2 (en) 2012-10-31
BR112012015180A2 (pt) 2016-03-29
JP5731537B2 (ja) 2015-06-10
WO2011084407A3 (en) 2011-10-20
JP2013514965A (ja) 2013-05-02
WO2011084407A2 (en) 2011-07-14
KR101902587B1 (ko) 2018-09-28
EA025991B1 (ru) 2017-02-28
US8261577B2 (en) 2012-09-11
US20110152056A1 (en) 2011-06-23

Similar Documents

Publication Publication Date Title
CN102712516A (zh) 用于制备中空微球体的方法
CN102811965A (zh) 中空微球体
CN103249684B (zh) 中空微球体和制备中空微球体的方法
AU701603B2 (en) Compositions comprising fused particulates and methods of making them
CN101068753B (zh) 制造玻璃微泡的方法和粗产品
KR101965007B1 (ko) 용융 유리의 제조 방법 및 유리 제품의 제조 방법
CN103108839B (zh) 玻璃原料造粒体的制造方法及玻璃制品的制造方法
CN101638295A (zh) 一种空心玻璃微珠及其生产方法
CN103415481A (zh) 中空微球体
CA2236444A1 (en) Methods of making fused particulates by flame fusion
EP3022161B1 (en) Glass microbubbles and method of making a raw product comprising the glass microbubbles
CN104520245A (zh) 具有低硼含量的低密度玻璃颗粒
AU2017262727A1 (en) Method and plant for producing hollow microspheres made of glass
US3416936A (en) Abrasion resistant glass bead with sharp softening range and process for making the same
US20190135675A1 (en) Hollow glass microspheres and method for producing the same
JPH10324539A (ja) 微小球状ガラス及びその製造方法
CN1120132C (zh) 玻璃微珠粉末飘浮电热成珠方法及设备

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150422

Termination date: 20191214