CN102719526A - MicroRNA quantitative detection analytic method by utilizing isothermal amplification to synthesize fluorescent nano silver cluster probe - Google Patents
MicroRNA quantitative detection analytic method by utilizing isothermal amplification to synthesize fluorescent nano silver cluster probe Download PDFInfo
- Publication number
- CN102719526A CN102719526A CN2012101074569A CN201210107456A CN102719526A CN 102719526 A CN102719526 A CN 102719526A CN 2012101074569 A CN2012101074569 A CN 2012101074569A CN 201210107456 A CN201210107456 A CN 201210107456A CN 102719526 A CN102719526 A CN 102719526A
- Authority
- CN
- China
- Prior art keywords
- reaction
- solution
- dna
- microrna
- concentration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 108700011259 MicroRNAs Proteins 0.000 title claims abstract description 62
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 title claims abstract description 50
- 238000001514 detection method Methods 0.000 title claims abstract description 48
- 238000004458 analytical method Methods 0.000 title claims abstract description 24
- 239000000523 sample Substances 0.000 title claims abstract description 24
- 238000011901 isothermal amplification Methods 0.000 title description 5
- 238000006243 chemical reaction Methods 0.000 claims abstract description 66
- 239000002679 microRNA Substances 0.000 claims abstract description 59
- 230000004544 DNA amplification Effects 0.000 claims abstract description 36
- 230000003321 amplification Effects 0.000 claims abstract description 35
- 238000003199 nucleic acid amplification method Methods 0.000 claims abstract description 35
- 108020004414 DNA Proteins 0.000 claims abstract description 31
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 claims abstract description 30
- 238000000034 method Methods 0.000 claims abstract description 24
- 230000008859 change Effects 0.000 claims abstract description 22
- 230000000295 complement effect Effects 0.000 claims abstract description 22
- 101710147059 Nicking endonuclease Proteins 0.000 claims abstract description 17
- 229910001961 silver nitrate Inorganic materials 0.000 claims abstract description 15
- 229910000033 sodium borohydride Inorganic materials 0.000 claims abstract description 13
- 239000012279 sodium borohydride Substances 0.000 claims abstract description 13
- 102000053602 DNA Human genes 0.000 claims abstract description 9
- 108020004682 Single-Stranded DNA Proteins 0.000 claims abstract description 9
- 102000004190 Enzymes Human genes 0.000 claims abstract description 5
- 108090000790 Enzymes Proteins 0.000 claims abstract description 5
- 239000012472 biological sample Substances 0.000 claims abstract description 3
- 239000008280 blood Substances 0.000 claims abstract description 3
- 210000004369 blood Anatomy 0.000 claims abstract description 3
- 239000000243 solution Substances 0.000 claims description 73
- YIXJRHPUWRPCBB-UHFFFAOYSA-N magnesium nitrate Chemical compound [Mg+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O YIXJRHPUWRPCBB-UHFFFAOYSA-N 0.000 claims description 28
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical compound [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 claims description 26
- 239000012086 standard solution Substances 0.000 claims description 23
- 239000000203 mixture Substances 0.000 claims description 22
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 claims description 19
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 claims description 19
- 239000011535 reaction buffer Substances 0.000 claims description 18
- 239000004317 sodium nitrate Substances 0.000 claims description 13
- 235000010344 sodium nitrate Nutrition 0.000 claims description 13
- 230000015572 biosynthetic process Effects 0.000 claims description 12
- 238000003786 synthesis reaction Methods 0.000 claims description 11
- 238000011534 incubation Methods 0.000 claims description 9
- 239000003161 ribonuclease inhibitor Substances 0.000 claims description 9
- 108010042407 Endonucleases Proteins 0.000 claims description 8
- 102000004533 Endonucleases Human genes 0.000 claims description 8
- 239000000047 product Substances 0.000 claims description 8
- PAWQVTBBRAZDMG-UHFFFAOYSA-N 2-(3-bromo-2-fluorophenyl)acetic acid Chemical compound OC(=O)CC1=CC=CC(Br)=C1F PAWQVTBBRAZDMG-UHFFFAOYSA-N 0.000 claims description 7
- VHJLVAABSRFDPM-QWWZWVQMSA-N dithiothreitol Chemical compound SC[C@@H](O)[C@H](O)CS VHJLVAABSRFDPM-QWWZWVQMSA-N 0.000 claims description 7
- 230000029087 digestion Effects 0.000 claims description 4
- 230000035484 reaction time Effects 0.000 claims description 4
- 230000005284 excitation Effects 0.000 claims description 3
- 102000004594 DNA Polymerase I Human genes 0.000 claims description 2
- 108010017826 DNA Polymerase I Proteins 0.000 claims description 2
- 239000002245 particle Substances 0.000 claims description 2
- 239000006228 supernatant Substances 0.000 claims description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims 2
- 229910052759 nickel Inorganic materials 0.000 claims 1
- GTTYPHLDORACJW-UHFFFAOYSA-N nitric acid;sodium Chemical compound [Na].O[N+]([O-])=O GTTYPHLDORACJW-UHFFFAOYSA-N 0.000 claims 1
- 108091028043 Nucleic acid sequence Proteins 0.000 abstract description 17
- 238000003776 cleavage reaction Methods 0.000 abstract description 8
- 230000035945 sensitivity Effects 0.000 abstract description 7
- 238000013461 design Methods 0.000 abstract description 6
- 230000002194 synthesizing effect Effects 0.000 abstract description 5
- 238000005520 cutting process Methods 0.000 abstract description 3
- 230000009467 reduction Effects 0.000 abstract description 2
- 108091058688 miR-141 stem-loop Proteins 0.000 description 37
- 108091062762 miR-21 stem-loop Proteins 0.000 description 29
- 108091041631 miR-21-1 stem-loop Proteins 0.000 description 29
- 108091044442 miR-21-2 stem-loop Proteins 0.000 description 29
- 239000012496 blank sample Substances 0.000 description 14
- 108091091807 let-7a stem-loop Proteins 0.000 description 14
- 108091057746 let-7a-4 stem-loop Proteins 0.000 description 14
- 108091028376 let-7a-5 stem-loop Proteins 0.000 description 14
- 108091024393 let-7a-6 stem-loop Proteins 0.000 description 14
- 108091091174 let-7a-7 stem-loop Proteins 0.000 description 14
- 108091035662 miR-646 stem-loop Proteins 0.000 description 13
- 108010093801 endodeoxyribonuclease BstNBI Proteins 0.000 description 9
- 238000002474 experimental method Methods 0.000 description 9
- 238000002189 fluorescence spectrum Methods 0.000 description 8
- 229920004890 Triton X-100 Polymers 0.000 description 6
- 239000013504 Triton X-100 Substances 0.000 description 6
- 239000007853 buffer solution Substances 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 238000003752 polymerase chain reaction Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 230000007017 scission Effects 0.000 description 5
- 239000001509 sodium citrate Substances 0.000 description 5
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 5
- 239000010414 supernatant solution Substances 0.000 description 5
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 238000003757 reverse transcription PCR Methods 0.000 description 3
- 238000000636 Northern blotting Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 108091033753 let-7d stem-loop Proteins 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 108091089775 miR-200b stem-loop Proteins 0.000 description 2
- 108091059135 miR-429 stem-loop Proteins 0.000 description 2
- 238000002493 microarray Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 208000005623 Carcinogenesis Diseases 0.000 description 1
- 241000206602 Eukaryota Species 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000006907 apoptotic process Effects 0.000 description 1
- 230000008827 biological function Effects 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 230000036952 cancer formation Effects 0.000 description 1
- 231100000504 carcinogenesis Toxicity 0.000 description 1
- 230000004663 cell proliferation Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 239000013068 control sample Substances 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 238000013399 early diagnosis Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000003394 haemopoietic effect Effects 0.000 description 1
- 238000009396 hybridization Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 108091049773 miR-14 stem-loop Proteins 0.000 description 1
- 108091070501 miRNA Proteins 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 239000002547 new drug Substances 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 108091027963 non-coding RNA Proteins 0.000 description 1
- 102000042567 non-coding RNA Human genes 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 150000007523 nucleic acids Chemical class 0.000 description 1
- 239000002773 nucleotide Substances 0.000 description 1
- 125000003729 nucleotide group Chemical group 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 230000026731 phosphorylation Effects 0.000 description 1
- 238000006366 phosphorylation reaction Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000009711 regulatory function Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000010839 reverse transcription Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- -1 that is Proteins 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 239000000439 tumor marker Substances 0.000 description 1
- 230000003612 virological effect Effects 0.000 description 1
Images
Landscapes
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
本发明提供一种利用恒温扩增反应合成荧光纳米银簇探针定量检测microRNA的分析方法。该方法是,设计一条含有三种功能序列的DNA扩增模板:与靶标microRNA结合序列,nicking核酸内切酶酶切序列和合成荧光纳米簇的DNA互补序列。当靶标microRNA与DNA扩增模板结合后,诱导恒温扩增反应和nicking核酸内切酶特异性的酶切反应,得到大量单链DNA产物,其中合成荧光纳米银簇的DNA序列与硝酸银溶液在硼氢化钠的还原作用下制备荧光纳米银簇探针,测定反应体系的荧光信号并计算荧光改变值,与标准工作曲线比对,推算出靶标microRNA的浓度。该方法具有灵敏度高、特异性强、线性检测范围宽、背景信号低、操作简单等特点,可广泛应用于组织,血液或细胞的生物样本中microRNA检测。The invention provides an analysis method for quantitatively detecting microRNA by synthesizing fluorescent nano-silver cluster probes through constant temperature amplification reaction. The method is to design a DNA amplification template containing three functional sequences: binding sequence to target microRNA, nicking endonuclease cutting sequence and DNA complementary sequence for synthesizing fluorescent nanoclusters. When the target microRNA is combined with the DNA amplification template, the constant temperature amplification reaction and the specific enzyme cleavage reaction of the nicking endonuclease are induced to obtain a large number of single-stranded DNA products, in which the DNA sequence of the synthetic fluorescent nano-silver cluster is mixed with silver nitrate solution Fluorescent nano-silver cluster probes were prepared under the reduction of sodium borohydride, the fluorescence signal of the reaction system was measured and the fluorescence change value was calculated, compared with the standard working curve, the concentration of the target microRNA was calculated. The method has the characteristics of high sensitivity, strong specificity, wide linear detection range, low background signal, simple operation, etc., and can be widely used in the detection of microRNA in biological samples of tissue, blood or cells.
Description
技术领域 technical field
本发明涉及了一种荧光纳米银簇探针检测microRNA的分析方法,属于检测分析领域。The invention relates to an analysis method for detecting microRNA with a fluorescent nano-silver cluster probe, belonging to the field of detection and analysis.
背景技术 Background technique
microRNA是在真核生物中发现的一类内源性的具有调控功能的非编码RNA,其大小长约18~25个核苷酸。它参与各种各样的调节途径,包括发育、病毒防御、造血过程、器官形成、细胞增殖和凋亡、脂肪代谢等。近期研究发现,microRNA在肿瘤发生过程中起至关重要的作用,已成为一类理想的肿瘤标记物。所以定量检测microRNA对了解其生物功能,癌症的早期诊断以及新药的开发,都具有十分重要的意义。与传统的核酸检测相比,microRNA其独有的特点,如序列短,家族序列同源性高及低丰度表达,增加了其检测的难度。目前检测microRNA的方法主要有Northern印迹分析,微阵列芯片技术,聚合酶链式反应(PCR)等。虽然Northern印迹是当前microRNA分析的标准方法,但操作繁琐,耗时长,灵敏度低,分析检测时需要大量的样品及分离富集步骤,而且对污染非常敏感,实验中每一步操作不当都会影响分析结果。微阵列芯片技术虽然可实现高通量,多组分同时检测,但是其制作和检测费用高;芯片上可利用的样品体积很小,导致灵敏度不高;此外,microRNA序列短,序列相似性高,不能同时优化所有待测的microRNA杂交环境,所以选择性不高。聚合酶链式反应(PCR)是现在定量检测microRNA的主要方法,包括引物延伸RT-PCR,茎环引物RT-PCR和microRNA加尾RT-PCR等方法。虽然基于聚合酶链式反应的microRNA检测方法具有快速、特异性强、灵敏度高等特点,但是需要逆转录操作,增加了实验的成本和设计的复杂性。随着新的microRNA序列不断发现和对microRNA功能研究的逐步深入,对microRNA的分析检测提出了新要求。因此,开发简单直接,灵敏度高,特异性强,准确检测microRNA的分析技术仍然是一个挑战。MicroRNA is a kind of endogenous non-coding RNA with regulatory function found in eukaryotes, and its size is about 18-25 nucleotides in length. It is involved in a wide variety of regulatory pathways, including development, viral defense, hematopoietic processes, organ formation, cell proliferation and apoptosis, fat metabolism, etc. Recent studies have found that microRNA plays a vital role in the process of tumorigenesis and has become an ideal tumor marker. Therefore, quantitative detection of microRNA is of great significance for understanding its biological function, early diagnosis of cancer and development of new drugs. Compared with traditional nucleic acid detection, the unique characteristics of microRNA, such as short sequence, high family sequence homology and low abundance expression, increase the difficulty of its detection. At present, the methods for detecting microRNA mainly include Northern blot analysis, microarray chip technology, polymerase chain reaction (PCR) and so on. Although Northern blot is the current standard method for microRNA analysis, the operation is cumbersome, time-consuming, and low-sensitivity. The analysis and detection requires a large number of samples and separation and enrichment steps, and is very sensitive to contamination. Improper operation of each step in the experiment will affect the analysis results. . Although microarray chip technology can achieve high throughput and simultaneous detection of multiple components, its production and detection costs are high; the sample volume available on the chip is small, resulting in low sensitivity; in addition, the microRNA sequence is short and has high sequence similarity , cannot simultaneously optimize all microRNA hybridization environments to be tested, so the selectivity is not high. Polymerase chain reaction (PCR) is now the main method for quantitative detection of microRNA, including primer extension RT-PCR, stem-loop primer RT-PCR and microRNA tailing RT-PCR and other methods. Although the polymerase chain reaction-based microRNA detection method has the characteristics of rapidity, strong specificity, and high sensitivity, it requires reverse transcription, which increases the cost of the experiment and the complexity of the design. With the continuous discovery of new microRNA sequences and the gradual deepening of microRNA function research, new requirements have been put forward for the analysis and detection of microRNA. Therefore, it is still a challenge to develop simple and direct analytical techniques with high sensitivity and specificity for accurate detection of microRNAs.
发明内容 Contents of the invention
本发明涉及一种利用恒温扩增反应合成荧光纳米银簇探针定量检测microRNA的分析方法,具有操作简单、灵敏度高、特异性强,背景信号低、线性检测范围宽、适用范围广等优点,是一种简便实用的分析技术。The present invention relates to an analytical method for the quantitative detection of microRNA by using a constant temperature amplification reaction to synthesize a fluorescent nano-silver cluster probe, which has the advantages of simple operation, high sensitivity, strong specificity, low background signal, wide linear detection range, and wide application range. It is a simple and practical analytical technique.
本发明利用靶标microRNA诱导恒温扩增反应合成荧光纳米银簇探针定量检测microRNA的分析方法如下。设计一条含有三种功能序列的DNA扩增模板:与靶标microRNA结合序列,nicking核酸内切酶酶切序列和合成荧光纳米簇的DNA互补序列。从3’端到5’端排列顺序为靶标microRNA结合序列,nicking核酸内切酶酶切序列,靶标microRNA结合序列,nicking核酸内切酶酶切序列,和合成荧光纳米簇的DNA互补序列。当靶标microRNA与DNA扩增模板结合后,诱导恒温扩增反应和nicking核酸内切酶特异性的酶切反应得到大量单链DNA产物,其中一种单链DNA产物能够与DNA扩增模板结合,继续充当靶标microRNA的引物作用,从而极大地提高扩增的效率。另一种单链DNA产物即为荧光纳米银簇的合成DNA序列,能与加入的硝酸银离子溶液在硼氢化钠还原作用下,合成荧光纳米银簇探针,在一定波长的入射光照射下,发射出相应的荧光,通过测定反应体系中的荧光信号并计算荧光改变值,与标准工作曲线比对,推算出靶标microRNA的浓度。此外,DNA扩增模板中功能序列也可以有不同的组合和排列模式,如从3’端到5’端排列顺序为靶标microRNA结合序列,nicking核酸内切酶酶切序列,合成荧光纳米簇的DNA互补序列,nicking核酸内切酶酶切序列,和合成荧光纳米簇的DNA互补序列。The present invention utilizes target microRNA to induce isothermal amplification reaction to synthesize fluorescent nano-silver cluster probes for quantitative detection of microRNA. The analysis method is as follows. Design a DNA amplification template containing three functional sequences: the target microRNA binding sequence, the nicking endonuclease digestion sequence and the DNA complementary sequence for the synthesis of fluorescent nanoclusters. The sequence from 3' end to 5' end is target microRNA binding sequence, nicking endonuclease cleavage sequence, target microRNA binding sequence, nicking endonuclease cleavage sequence, and DNA complementary sequence for synthesizing fluorescent nanoclusters. When the target microRNA is combined with the DNA amplification template, a large number of single-stranded DNA products are obtained by inducing the constant temperature amplification reaction and the specific cleavage reaction of the nickelase, and one of the single-stranded DNA products can be combined with the DNA amplification template. Continue to act as a primer for the target microRNA, thereby greatly improving the efficiency of amplification. Another single-stranded DNA product is the synthetic DNA sequence of fluorescent nano-silver clusters, which can be combined with the added silver nitrate ion solution under sodium borohydride reduction to synthesize fluorescent nano-silver cluster probes. , emit the corresponding fluorescence, by measuring the fluorescence signal in the reaction system and calculating the fluorescence change value, compared with the standard working curve, the concentration of the target microRNA is calculated. In addition, the functional sequences in the DNA amplification template can also have different combinations and arrangements, such as the sequence from the 3' end to the 5' end is the target microRNA binding sequence, the nicking endonuclease digestion sequence, and the synthesis of fluorescent nanoclusters DNA complementary sequences, nicking endonuclease cleavage sequences, and DNA complementary sequences for the synthesis of fluorescent nanoclusters.
本发明的方法可以进一步描述如下:The method of the present invention can be further described as follows:
利用靶标microRNA与DNA扩增模板结合后,诱导恒温扩增反应和nicking核酸内切酶特异性的酶切反应得到单链DNA产物,该单链DNA产物与加入的硝酸银溶液在硼氢化钠还原作用下制备荧光纳米银簇探针,测定反应体系中的荧光信号并计算荧光信号改变值,与标准工作曲线比对,推算出靶标microRNA的浓度。After the target microRNA is combined with the DNA amplification template, the constant temperature amplification reaction is induced and the specific enzyme cleavage reaction of the nicking endonuclease is used to obtain a single-stranded DNA product, and the single-stranded DNA product is reduced with the added silver nitrate solution in sodium borohydride Fluorescent nano-silver cluster probes are prepared under the action, the fluorescent signal in the reaction system is measured and the change value of the fluorescent signal is calculated, compared with the standard working curve, the concentration of the target microRNA is calculated.
所述荧光纳米银簇探针粒径为1~10nm,激发波长为500~680nm,发射波长为510~900nm。The particle diameter of the fluorescent nano-silver cluster probe is 1-10 nm, the excitation wavelength is 500-680 nm, and the emission wavelength is 510-900 nm.
本发明的靶标microRNA检测方法包括以下操作步骤:Target microRNA detection method of the present invention comprises the following steps:
步骤1将靶标microRNA加入到DNA扩增模板溶液中,进行孵育反应;Step 1: adding the target microRNA to the DNA amplification template solution to incubate the reaction;
步骤2向步骤1中所得的反应液中加入恒温扩增混合液,孵育反应后,热失活酶,终止反应;Step 2: Add a constant temperature amplification mixture to the reaction solution obtained in step 1, and after incubating the reaction, heat-inactivate the enzyme to terminate the reaction;
步骤3向步骤2中所得的反应液中加入硝酸银溶液与柠檬酸缓冲溶液,混匀后,离心取上清,然后加入硝酸银溶液和新鲜配制的硼氢化钠溶液,黑暗中反应后合成荧光纳米银簇;Step 3 Add silver nitrate solution and citric acid buffer solution to the reaction solution obtained in step 2, mix well, centrifuge to take the supernatant, then add silver nitrate solution and freshly prepared sodium borohydride solution, react in the dark to synthesize fluorescence nanosilver clusters;
步骤4测定步骤3中所得的荧光纳米银簇溶液的荧光信号。Step 4 measures the fluorescence signal of the fluorescent nano-silver cluster solution obtained in step 3.
所述步骤1中靶标microRNA来自于组织、血液或细胞的生物样本。The target microRNA in the step 1 comes from biological samples of tissue, blood or cells.
所述步骤1中的孵育反应在37℃~55℃和反应缓冲溶液中,步骤1中的DNA扩增模板反应液和靶标microRNA的体积比为0.1~10,反应时间为5~50分钟,所述的DNA扩增模板浓度为10~800nM;所述的靶标microRNA浓度为1aM~100nM;所述的DNA扩增模板含有三种功能序列:与靶标microRNA结合序列,nicking核酸内切酶酶切序列和合成荧光纳米簇的DNA互补序列,所述的反应缓冲溶液为25mM Tris-HNO3,50mM硝酸钠,5mM硝酸镁,0.5mM二硫苏糖醇和pH为6.0~8.9。The incubation reaction in step 1 is carried out at 37° C. to 55° C. in a reaction buffer solution, the volume ratio of the DNA amplification template reaction solution in step 1 to the target microRNA is 0.1 to 10, and the reaction time is 5 to 50 minutes. The concentration of the DNA amplification template is 10 to 800nM; the concentration of the target microRNA is 1aM to 100nM; the DNA amplification template contains three functional sequences: a binding sequence to the target microRNA, and a cleavage sequence by the nicking endonuclease and the DNA complementary sequence of the synthesized fluorescent nano-cluster, the reaction buffer solution is 25mM Tris-HNO 3 , 50mM sodium nitrate, 5mM magnesium nitrate, 0.5mM dithiothreitol and the pH is 6.0-8.9.
所述步骤2的孵育反应是在35℃~55℃和反应缓冲液中,步骤1所得的反应液和恒温扩增混合液体积比为0.1~10,反应20~200分钟,恒温扩增混合液中含有恒温聚合酶、nicking核酸内切酶、RNase抑制剂和dNTP;所述的恒温聚合酶浓度为0.01UμL-1~1.0U μL-1,nicking核酸内切酶浓度为0.1U μL-1~1.0UμL-1,RNase抑制剂浓度为0.1U μL-1~1.0UμL-1,dNTP溶液浓度为80~500μM;所述的反应缓冲液为10mM硝酸钠、20mM硝酸铵、20mM Tris-HNO3、2mM硝酸镁和0.1%Triton X-100和pH为6.0~8.9。The incubation reaction in step 2 is at 35°C to 55°C and reaction buffer, the volume ratio of the reaction solution obtained in step 1 to the constant temperature amplification mixture is 0.1 to 10, and the reaction is 20 to 200 minutes, and the constant temperature amplification mixture is Contains constant temperature polymerase, nicking endonuclease, RNase inhibitor and dNTP; the concentration of the constant temperature polymerase is 0.01UμL -1 ~1.0U μL -1 , the concentration of nicking endonuclease is 0.1U μL -1 ~ 1.0UμL -1 , the concentration of RNase inhibitor is 0.1U μL -1 ~1.0UμL -1 , the concentration of dNTP solution is 80 ~ 500μM; the reaction buffer is 10mM sodium nitrate, 20mM ammonium nitrate, 20mM Tris-HNO 3 , 2mM magnesium nitrate and 0.1% Triton X-100 and pH 6.0-8.9.
所述恒温聚合酶为商品化的(exo-)DNA聚合酶、phi29DNA聚合酶或Klenow Fragment聚合酶。The thermostatic polymerase is commercially available (exo-)DNA polymerase, phi29 DNA polymerase or Klenow Fragment polymerase.
所述nicking核酸内切酶为商品化的Nt.CviPII、Nb.BbvCI、Nb.BtsI、Nt.BsmAI、Nt.BbvCI、Nt.BspQI、Nt.AlwI或Nt.BstNBI。The nicking endonuclease is commercially available Nt.CviPII, Nb.BbvCI, Nb.BtsI, Nt.BsmAI, Nt.BbvCI, Nt.BspQI, Nt.AlwI or Nt.BstNBI.
所述的标准工作曲线是由已知浓度的靶标microRNA的标准溶液,按照所述操作步骤反应后,测定反应体系中的荧光信号并计算荧光改变值,然后根据标准溶液中microRNA的浓度和体系中荧光改变值制作标准工作曲线。The standard working curve is a standard solution of target microRNA with a known concentration. After reacting according to the operation steps, measure the fluorescence signal in the reaction system and calculate the fluorescence change value, and then according to the concentration of microRNA in the standard solution and the concentration in the system, Fluorescence change value to make a standard working curve.
所述步骤3中硝酸银浓度为10~800μM,硼氢化钠溶液为新鲜配制,其浓度为10~10mM,反应温度为25℃~55℃,反应时间为20~120分钟。In the step 3, the silver nitrate concentration is 10-800 μM, the sodium borohydride solution is freshly prepared, and its concentration is 10-10 mM, the reaction temperature is 25°C-55°C, and the reaction time is 20-120 minutes.
本发明的方法中DNA扩增模板中采用双nicking核酸内切酶酶切序列的设计,利用扩增得到的单链DNA序列与DNA扩增模板再结合,充当引物作用,极大地提高了扩增效率。DNA扩增模板中合成荧光纳米簇的DNA互补序列的设计,实现了一种新型的荧光纳米探针的应用。与传统的荧光探针相比,荧光纳米探针具有优良的光学特性,如高荧光强度、抗光漂白性、发光颜色可调、激发波长和发射波长可调等。In the method of the present invention, the design of double-nicking endonuclease cutting sequence is adopted in the DNA amplification template, and the single-stranded DNA sequence obtained by the amplification is combined with the DNA amplification template to act as a primer, which greatly improves the amplification efficiency. The design of DNA complementary sequences for the synthesis of fluorescent nanoclusters in DNA amplification templates enables the application of a novel fluorescent nanoprobe. Compared with traditional fluorescent probes, fluorescent nanoprobes have excellent optical properties, such as high fluorescence intensity, resistance to photobleaching, tunable emission color, and tunable excitation and emission wavelengths.
本发明的优点在于:The advantages of the present invention are:
(1)灵敏度高:DNA扩增模板中通过双microRNA结合序列(或双合成荧光纳米簇的DNA互补序列)和nicking核酸内切酶酶切序列的设计,使得扩增产物和靶标microRNA一样,能够与DNA扩增模板进行结合,启动恒温扩增反应,达到指数信号放大的作用,从而极大地提高了检测灵敏度。(1) High sensitivity: In the DNA amplification template, the double microRNA binding sequence (or the DNA complementary sequence of the double synthetic fluorescent nanocluster) and the design of the nicking endonuclease cutting sequence make the amplification product the same as the target microRNA, and can Combined with the DNA amplification template, the constant temperature amplification reaction is started to achieve the effect of exponential signal amplification, thereby greatly improving the detection sensitivity.
(2)选择性好:基于靶标miRNA与DNA扩增模板的特异性碱基互补配对原则,使得其它分子的干扰影响很小。(2) Good selectivity: Based on the principle of specific complementary base pairing between the target miRNA and the DNA amplification template, the interference of other molecules is very small.
(3)背景信号低:荧光纳米银簇的合成与DNA序列的碱基组成直接相关,只有碱基组成特异性的DNA序列才能合成稳定荧光信号的荧光纳米银簇。(3) Low background signal: the synthesis of fluorescent nano-silver clusters is directly related to the base composition of DNA sequences, and only DNA sequences with specific base composition can synthesize fluorescent nano-silver clusters with stable fluorescent signals.
(4)多重检测:利用不同碱基组成的DNA序列合成的纳米银簇探针光学特性的差异,针对不同的靶标microRNA,设计不同的DNA扩增模板,可以实现多重microRNA检测。(4) Multiplex detection: By using the differences in the optical properties of silver nanocluster probes synthesized by DNA sequences with different base compositions, and designing different DNA amplification templates for different target microRNAs, multiple microRNA detections can be realized.
(5)高通量检测:采用96或384酶标板,可以实现同时制作标准工作曲线和待测样本的检测,减少检测误差。(5) High-throughput detection: 96 or 384 microplates are used, which can realize the simultaneous production of standard working curves and detection of samples to be tested, reducing detection errors.
(6)操作过程简便快速:整个检测过程简单。(6) The operation process is simple and fast: the whole detection process is simple.
(7)无污染:整个检测过程不需要用到有机溶剂或是有毒试剂。(7) No pollution: The whole detection process does not need to use organic solvents or toxic reagents.
附图说明 Description of drawings
图1利用恒温扩增反应合成荧光纳米银簇探针定量检测miR-141的分析方法的原理示意图。Figure 1 is a schematic diagram of the principle of the analytical method for the quantitative detection of miR-141 by using the isothermal amplification reaction to synthesize fluorescent nano-silver cluster probes.
图2工作曲线制备。(A)不同浓度miR-141反应溶液的荧光光谱;(B)不同浓度miR-141反应溶液的荧光改变值(F/F0-1)与miR-141浓度对数值的工作曲线。Figure 2 Working curve preparation. (A) Fluorescence spectra of reaction solutions with different concentrations of miR-141; (B) Working curve of fluorescence change (F/F 0 -1) and logarithm value of miR-141 concentration in reaction solutions with different concentrations of miR-141.
图3特异性实验。(A)不同靶标microRNA反应溶液的荧光光谱;(B)实验数据比较柱状图(F/F0-1)。Figure 3 Specificity experiments. (A) Fluorescence spectra of different target microRNA reaction solutions; (B) Histogram of experimental data comparison (F/F 0 -1).
图4利用恒温扩增反应合成荧光纳米银簇探针定量检测miR-21的分析方法的原理示意图。Figure 4 is a schematic diagram of the principle of the analytical method for the quantitative detection of miR-21 by using the isothermal amplification reaction to synthesize fluorescent nano-silver cluster probes.
图5利用恒温扩增反应合成荧光纳米银簇探针定量检测let-7a的分析方法的原理示意图。Fig. 5 is a schematic diagram of the principle of an analysis method for the quantitative detection of let-7a synthesized by a fluorescent nano-silver cluster probe using an isothermal amplification reaction.
图6利用恒温扩增反应合成荧光纳米银簇探针定量检测miR-646的分析方法的原理示意图。Fig. 6 is a schematic diagram of the principle of an analysis method for the quantitative detection of miR-646 by using a constant temperature amplification reaction to synthesize a fluorescent nano-silver cluster probe.
图7利用恒温扩增反应合成荧光纳米银簇探针多重检测miR-141和miR-21的分析方法的原理示意图。Fig. 7 is a schematic diagram of the principle of an analysis method for multiplex detection of miR-141 and miR-21 by synthesizing fluorescent nano-silver cluster probes by constant temperature amplification reaction.
符号说明Symbol Description
附图1中,miR-141为5’-UAACACUGUCUGGUAAAGAUGG-3’,A为靶标miR-141结合序列(5’-CCATCTTTACCAGACAGTGTTA-3’),X为Nt.B stNBI酶切序列(5’-TCTTGACTC-3’),B为合成荧光纳米银簇的DNA互补序列(5’-TTGGGCGGGTGGGTGGG-3’),T为扩增产生与miR-14一致的DNA序列(5’-TAACACTGTCTGGTAAAGATGG-3’),R为合成荧光纳米银簇的DNA序列(5’-CCCACCCACCCGCCCAA-3’),C为Nt.BstNBI核酸内切酶,D为(exo-)DNA聚合酶。In Figure 1, miR-141 is 5'-UAACACUGUCUGGUAAAGAUGG-3', A is the target miR-141 binding sequence (5'-CCATCTTTACCAGACAGTGTTA-3'), and X is the Nt.B stNBI restriction sequence (5'-TCTTGACTC- 3'), B is the DNA complementary sequence (5'-TTGGGCGGGTGGGTGGG-3') of the synthetic fluorescent nano-silver cluster, T is the DNA sequence consistent with miR-14 generated by amplification (5'-TAACACTGTCTGGTAAAGATGG-3'), R is The DNA sequence of the synthetic fluorescent nano silver cluster (5'-CCCACCCACCCGCCCAA-3'), C is Nt.BstNBI endonuclease, D is (exo-)DNA polymerase.
附图2中,F为miR-141标准溶液在644nm处的荧光值,F0为空白样本(不含有miR-141)在644nm处的荧光值,(F/F0-1)表示miR-141标准溶液的荧光改变值。In accompanying drawing 2, F is the fluorescence value of miR-141 standard solution at 644nm, F 0 is the fluorescence value of blank sample (not containing miR-141) at 644nm, (F/F 0 -1) represents miR-141 The fluorescence change value of the standard solution.
附图3中,F为靶标microRNA溶液在644nm处的荧光值,F0为空白样本(不含有microRNA)在644nm处的荧光值,(F/F0-1)表示microRNA溶液的荧光改变值。In accompanying drawing 3, F is the fluorescence value of the target microRNA solution at 644nm, F 0 is the fluorescence value of the blank sample (without microRNA) at 644nm, (F/F 0 -1) represents the fluorescence change value of the microRNA solution.
附图4中,miR-21为5’-UAGCUUAUCAGACUGAUGUUGA-3’,A为靶标miR-21结合序列(5’-TCAACATCAGTCTGATAAGCTA-3’),X为Nt.BstNBI酶切序列(5’-ACGTGACTC-3’),B为合成荧光纳米银簇的DNA互补序列(5’-TTGGGCGGGTGGGTGGG-3’),T为扩增产生与miR-21一致的DNA序列(5’-TAGCTTATCAGACTGATGTTGA-3’),R为合成荧光纳米银簇的DNA序列(5’-CCCACCCACCCGCCCAA-3’),C为Nt.BstNBI核酸内切酶,D为(exo-)DNA聚合酶。In Figure 4, miR-21 is 5'-UAGCUUAUCAGACUGAUGUUGA-3', A is the target miR-21 binding sequence (5'-TCAACATCAGTCTGATAAGCTA-3'), X is the Nt.BstNBI restriction sequence (5'-ACGTGACTC-3 '), B is the DNA complementary sequence of the synthetic fluorescent nanosilver cluster (5'-TTGGGCGGGTGGGTGGG-3'), T is the DNA sequence consistent with miR-21 (5'-TAGCTTATCAGACTGATGTTGA-3'), R is the synthetic DNA sequence of fluorescent nanosilver cluster (5'-CCCACCCACCCGCCCAA-3'), C is Nt.BstNBI endonuclease, D is (exo-)DNA polymerase.
附图5中,let-7a为5’-UGAGGUAGUAGGUUGUAUAGUU-3’,A为靶标let-7a结合序列(5’-AACTATACAACCTACTACCTCA-3’),X为Nb.BbvCI酶切序列(5’-GCTGAGG-3’),B为合成荧光纳米银簇的DNA互补序列(5’-TTGGGCGGGTGGGTGGG-3’),T为扩增产生与let-7a一致的DNA序列(5’-TGAGGTAGTAGGTTGTATAGTT-3’),R为合成荧光纳米银簇的DNA序列(5’-CCCACCCACCCGCCCAA-3’),C为Nb.BbvCI核酸内切酶,D为(exo-)DNA聚合酶。In Figure 5, let-7a is 5'-UGAGGUAGUAGGUUGUAUAGUU-3', A is the target let-7a binding sequence (5'-AACTATACAACCTACTACCTCA-3'), and X is the Nb.BbvCI restriction sequence (5'-GCTGAGG-3 '), B is the DNA complementary sequence of the synthetic fluorescent nanosilver cluster (5'-TTGGGCGGGTGGGTGGG-3'), T is the DNA sequence consistent with let-7a produced by amplification (5'-TGAGGTAGTAGGTTGTATAGTT-3'), R is the synthetic The DNA sequence of the fluorescent nanosilver cluster (5'-CCCACCCACCCGCCCAA-3'), C is Nb.BbvCI endonuclease, D is (exo-)DNA polymerase.
附图6中,miR-646为5’-AAGCAGCUGCCUCUGAGGC-3’,A为靶标miR-646结合序列(5’-GCCTCAGAGGCAGCTGCTT-3’),X为Nb.BbvCI酶切序列(5’-GCTGAGG-3’),B为合成荧光纳米银簇的DNA互补序列(5’-TTGGGCGGGTGGGTGGG-3’),T为扩增产生与miR-646一致的DNA序列(5’-AAGCAGCTGCCTCTGAGGC-3’),R/R’:合成荧光纳米银簇的DNA序列(5’-CCCACCCACCCGCCCAA-3’),C为Nb.BbvCI核酸内切酶,D为phi29DNA聚合酶。In Figure 6, miR-646 is 5'-AAGCAGCUGCCUCUGAGGC-3', A is the target miR-646 binding sequence (5'-GCCTCAGAGGCAGCTGCTT-3'), and X is the Nb.BbvCI restriction sequence (5'-GCTGAGG-3 '), B is the DNA complementary sequence of the synthetic fluorescent nanosilver cluster (5'-TTGGGCGGGTGGGTGGG-3'), T is the DNA sequence consistent with miR-646 generated by amplification (5'-AAGCAGCTGCCTCTGAGGC-3'), R/R ': DNA sequence (5'-CCCACCCACCCGCCCAA-3') of the synthesized fluorescent nanosilver cluster, C is Nb.BbvCI endonuclease, D is phi29 DNA polymerase.
附图7中,miR-141为5’-UAACACUGUCUGGUAAAGAUGG-3’,miR-21序列为5’-UAGCUUAUCAGACUGAUGUUGA-3’,A为靶标miR-21结合序列(5’-UAGCUUAUCAGACUGAUGUUGA-3’),X为Nt.B stNBI酶切序列(5’-TCTTGACTC-3’),E 为靶标miR-141结合序列(5’-UAACACUGUCUGGUAAAGAUGG-3’),B为合成荧光纳米银簇的DNA互补序列(5’-TTGGGCGGGTGGGTGGG-3’),F为合成荧光纳米银簇的DNA互补序列(5’-ATCGGGGGCGA-3’),T为扩增产生与miR-21一致的DNA序列(5’-TAGCTTATCAGACTGATGTTGA-3’),U为扩增产生与miR-141一致的DNA序列(5’-TAACACTGTCTGGTAAAGATGG-3’),R为合成荧光纳米银簇的DNA序列(5’-ATCGCCCCCGAT-3’),S为合成荧光纳米银簇的DNA序列(5’-CCCACCCACCCGCCCAA-3’),C为Nt.BstNBI核酸内切酶,D为(exo-)DNA聚合酶。In accompanying drawing 7, miR-141 is 5'-UAACACUGUCUGGUAAAGAUGG-3', miR-21 sequence is 5'-UAGCUUAUCAGACUGAUGUUGA-3', A is target miR-21 binding sequence (5'-UAGCUUAUCAGACUGAUGUUGA-3'), X is Nt.B stNBI restriction sequence (5'-TCTTGACTC-3'), E is the target miR-141 binding sequence (5'-UAACACUGUCUGGUAAAGAUGG-3'), B is the DNA complementary sequence for the synthesis of fluorescent nanosilver clusters (5'- TTGGGCGGGTGGGTGGG-3'), F is the DNA complementary sequence (5'-ATCGGGGGCGA-3') of the synthetic fluorescent nano-silver cluster, T is the DNA sequence consistent with miR-21 produced by amplification (5'-TAGCTTATCAGACTGATGTTGA-3'), U is the amplified DNA sequence consistent with miR-141 (5'-TAACACTGTCTGGTAAAGATGG-3'), R is the DNA sequence of the synthetic fluorescent nano-silver cluster (5'-ATCGCCCCCGAT-3'), S is the synthetic fluorescent nano-silver cluster The DNA sequence (5'-CCCACCACCCGCCCAA-3'), C is Nt.BstNBI endonuclease, D is (exo-)DNA polymerase.
具体实施实例:Specific implementation examples:
通过下述实施例将有助于理解本发明,但是不能限制本发明的内容Will help to understand the present invention by following embodiment, but content of the present invention can not be limited
实施实例1:Implementation example 1:
利用恒温扩增反应合成荧光纳米银簇探针定量检测miR-141(5’-UAACACUGUCUGGUAAAGAUGG-3’)的分析方法,检测原理如附图1所示。采用(exo-)DNA聚合酶和Nt.BstNBI核酸内切酶。DNA扩增模板上的序列排布为靶标miR-141结合序列(5’-CCATCTTTACCAGACAGTGTTA-3’),Nt.BstNBI酶切序列(5’-TCTTGACTC-3’),miR-141结合序列(5’-CCATCTTTACCAGACAGTGTTA-3’),Nt.BstNBI酶切序列(5’-TCTTGACTC-3’),以及合成荧光纳米银簇的DNA互补序列(5’-TTGGGCGGGTGGGTGGG-3’),3’端磷酸化。The analysis method for the quantitative detection of miR-141 (5'-UAACACUGUCUGGUAAAGAUGG-3') synthesized by a constant temperature amplification reaction with a fluorescent nano-silver cluster probe, the detection principle is shown in Figure 1. use (exo-)DNA polymerase and Nt.BstNBI endonuclease. The sequence arrangement on the DNA amplification template is the target miR-141 binding sequence (5'-CCATCTTTACCAGACAGTGTTA-3'), the Nt.BstNBI restriction sequence (5'-TCTTGACTC-3'), the miR-141 binding sequence (5'-CCATCTTTACCAGACAGTGTTA-3'), Nt.BstNBI restriction sequence (5'-TCTTGACTC-3'), and the DNA complementary sequence for the synthesis of fluorescent nanosilver clusters (5'-TTGGGCGGGTGGGTGGG-3'), phosphorylated at the 3' end.
下面对miR-141检测的具体实施来进一步说明本发明。其中未注明具体条件的实验方法,通常按照常规条件或按照厂商所建议的条件。本发明中的室温是指进行实施操作的实验室温度23~28℃。具体操作步骤如下:在4μL DNA扩增模板溶液(200nM)中加入1μL 靶标miR-141溶液,反应缓冲溶液为25mMTris-HNO3,50mM硝酸钠,5mM硝酸镁,0.5mM二硫苏糖醇,pH为7.9。于88℃孵育10分钟后,然后加入恒温扩增混合液5μL,包括(exo-)DNA聚合酶(0.05U μL-1)、Nt.BstNBI核酸内切酶(0.4U μL-1)、RNase抑制剂(0.8U μL-1)和dNTP(250μM),反应缓冲液为10mM硝酸钠、20mM硝酸铵、20mM Tris-HNO3、2mM硝酸镁和0.1%Triton X-100,pH为8.8。于53℃孵育反应50分钟,然后于90℃孵育5分钟终止反应。向上述反应液中加入8μL硝酸银溶液(497.5μM)和100μL柠檬酸钠缓冲溶液(20mM,pH 7.0),震荡混匀后,12,000转离心10分钟后取上清溶液,于黑暗中放置15分钟后,加入新鲜配制的1μL硼氢化钠(3.6mM)溶液,混匀,于黑暗中放置1小时,测定溶液的荧光信号。The following specific implementation of miR-141 detection will further illustrate the present invention. For the experimental methods that do not indicate the specific conditions, usually follow the conventional conditions or the conditions suggested by the manufacturer. The room temperature in the present invention refers to the laboratory temperature of 23-28° C. for carrying out the operation. The specific operation steps are as follows: add 1 μL target miR-141 solution to 4 μL DNA amplification template solution (200 nM), the reaction buffer solution is 25 mM Tris-HNO 3 , 50 mM sodium nitrate, 5 mM magnesium nitrate, 0.5 mM dithiothreitol, pH is 7.9. After incubating at 88°C for 10 minutes, add 5 μL of constant temperature amplification mixture, including (exo-)DNA polymerase (0.05U μL -1 ), Nt.BstNBI endonuclease (0.4U μL -1 ), RNase inhibitor (0.8U μL -1 ) and dNTP (250μM), the reaction buffer is 10 mM sodium nitrate, 20 mM ammonium nitrate, 20 mM Tris- HNO3 , 2 mM magnesium nitrate and 0.1% Triton X-100, pH 8.8. Reactions were incubated at 53°C for 50 minutes and then terminated by incubation at 90°C for 5 minutes. Add 8 μL silver nitrate solution (497.5 μM) and 100 μL sodium citrate buffer solution (20 mM, pH 7.0) to the above reaction solution, shake and mix well, then centrifuge at 12,000 rpm for 10 minutes, take the supernatant solution, and place it in the dark for 15 minutes Afterwards, 1 μL of a freshly prepared sodium borohydride (3.6 mM) solution was added, mixed evenly, and left in the dark for 1 hour to measure the fluorescence signal of the solution.
工作曲线的制作:分别准备已知浓度的miR-141标准溶液,浓度分别为1aM,10aM,100aM,1fM,10fM,100fM,1pM,10pM,100pM,和1nM,以及空白样本(不含有miR-141,即miR-141浓度为0),按照上述步骤进行操作,测定各个反应液的荧光光谱,如图2(A)所示。计算其荧光改变值(F/F0-1),即miR-141标准溶液在644nm处的荧光值(F)与空白样本(不含有miR-141)在644nm处的荧光值(F0)的比值减1,然后根据miR-141标准溶液的浓度和其荧光改变值(F/F0-1)制作标准工作曲线,如图2(B)所示,miR-141标准溶液的浓度对数值与其荧光改变值(F/F0-1)在1aM~1nM范围内呈线性关系,线性方程为Y=10.57+1.25lgX。Preparation of the working curve: prepare miR-141 standard solutions of known concentrations, respectively, with concentrations of 1aM, 10aM, 100aM, 1fM, 10fM, 100fM, 1pM, 10pM, 100pM, and 1nM, and blank samples (not containing miR-141 , that is, the concentration of miR-141 is 0), and the above-mentioned steps are followed to measure the fluorescence spectrum of each reaction solution, as shown in FIG. 2(A). Calculate its fluorescence change value (F/F 0 -1), that is, the fluorescence value (F) of the miR-141 standard solution at 644nm and the fluorescence value (F 0 ) of the blank sample (without miR-141) at 644nm Ratio minus 1, then according to the concentration of miR-141 standard solution and its fluorescence change value (F/F 0 -1) make a standard working curve, as shown in Figure 2 (B), the concentration logarithmic value of miR-141 standard solution and its The fluorescence change value (F/F 0 -1) has a linear relationship in the range of 1aM-1nM, and the linear equation is Y=10.57+1.25lgX.
图3所示为该本发明方法的特异性实验,选取miR-429,miR-200b,let-7d,miR-21作为miR-141对照样本(检测浓度为1pM),以及空白样本(不含有miR-141,即miR-141浓度为0),miR-429序列为5’-UAAUACUGUCUGGUAAAACCGU-3’,miR-200b序列为5’-UAAUACUGCCUGGUAAUGAUGA-3’,let-7d序列为5’-AGAGGUAGUAGGUUGCAUAGUU-3’,miR-21序列为5’-UAGCUUAUCAGACUGAUGUUGA-3’,如图3(A)为各个靶标反应液的荧光光谱,如图3(B)为各个靶标反应液的荧光改变值(F/F0-1)的柱状图,实验结果表明该方法特异性强。Figure 3 shows the specificity experiment of the method of the present invention, select miR-429, miR-200b, let-7d, miR-21 as miR-141 control sample (detection concentration is 1pM), and blank sample (do not contain miR -141, that is, the concentration of miR-141 is 0), the sequence of miR-429 is 5'-UAAUACUGUCUGGUAAAACCGU-3', the sequence of miR-200b is 5'-UAAUACUGCCUGGUAAUGAUGA-3', and the sequence of let-7d is 5'-AGAGGUAGUAGGUUGCAUAGUU-3' , the miR-21 sequence is 5'-UAGCUUAUCAGACUGAUGUUGA-3', as shown in Figure 3 (A) is the fluorescence spectrum of each target reaction solution, and Figure 3 (B) is the fluorescence change value (F/F 0 - 1), the experimental results show that the method has strong specificity.
实施实例2:Implementation example 2:
利用恒温扩增反应合成荧光纳米银簇探针定量检测miR-21(5’-UAGCUUAUCAGACUGAUGUUGA-3’)的分析方法,检测原理如附图4所示。采用(exo-)DNA聚合酶和Nt.BstNBI核酸内切酶。DNA扩增模板上的序列排布为靶标miR-21结合序列(5’-TCAACATCAGTCTGATAAGCTA-3’),Nt.BstNBI 酶切序列(5’-ACGTGACTC-3’),miR-21结合序列(5’-TCAACATCAGTCTGATAAGCTA-3’),Nt.BstNBI酶切序列(5’-ACGTGACTC-3’),以及合成荧光纳米银簇的DNA互补序列(5’-TTGGGCGGGTGGGTGGG-3’),3’端磷酸化。The analytical method for the quantitative detection of miR-21 (5'-UAGCUUAUCAGACUGAUGUUGA-3') synthesized by a fluorescent nano-silver cluster probe using a constant temperature amplification reaction, the detection principle is shown in Figure 4. use (exo-)DNA polymerase and Nt.BstNBI endonuclease. The sequence arrangement on the DNA amplification template is the target miR-21 binding sequence (5'-TCAACATCAGTCTGATAAGCTA-3'), the Nt.BstNBI restriction sequence (5'-ACGTGACTC-3'), the miR-21 binding sequence (5'-TCAACATCAGTCTGATAAGCTA-3'), Nt.BstNBI restriction sequence (5'-ACGTGACTC-3'), and the DNA complementary sequence for the synthesis of fluorescent nanosilver clusters (5'-TTGGGCGGGTGGGTGGG-3'), phosphorylated at the 3' end.
下面对miR-21检测的具体实施来进一步说明本发明。其中未注明具体条件的实验方法,通常按照常规条件或按照厂商所建议的条件。本发明中的室温是指进行实施操作的实验室温度23~28℃。具体操作步骤如下:在4μLDNA扩增模板溶液(200nM)中加入1μL靶标miR-21溶液,反应缓冲溶液为25mMTris-HNO3,50mM硝酸钠,5mM硝酸镁,0.5mM二硫苏糖醇,pH为7.9。于88℃孵育10分钟后,然后加入恒温扩增混合液5μL,包括(exo-)DNA聚合酶(0.05U μL-1)、Nt.BstNBI核酸内切酶(0.4U μL-1)、RNase抑制剂(0.8U μL-1)和dNTP(250μM),反应缓冲液为10mM硝酸钠、20mM硝酸铵、20mMTris-HNO3、2mM硝酸镁和0.1%Triton X-100,pH为8.8。于53℃孵育反应50分钟,然后于90℃孵育5分钟终止反应。向上述反应液中加入8μL硝酸银溶液(497.5μM)和100μL柠檬酸钠缓冲溶液(20mM,pH 7.0),震荡混匀后,12,000转离心10分钟后取上清溶液,于黑暗中放置15分钟后,加入新鲜配制的1μL硼氢化钠(3.6mM)溶液,混匀,于黑暗中放置1小时,测定溶液的荧光信号。The following specific implementation of miR-21 detection will further illustrate the present invention. For the experimental methods that do not indicate the specific conditions, usually follow the conventional conditions or the conditions suggested by the manufacturer. The room temperature in the present invention refers to the laboratory temperature of 23-28° C. for carrying out the operation. The specific operation steps are as follows: add 1 μL target miR-21 solution to 4 μL DNA amplification template solution (200 nM), the reaction buffer solution is 25 mM Tris-HNO 3 , 50 mM sodium nitrate, 5 mM magnesium nitrate, 0.5 mM dithiothreitol, and the pH is 7.9. After incubating at 88°C for 10 minutes, add 5 μL of constant temperature amplification mixture, including (exo-)DNA polymerase (0.05U μL -1 ), Nt.BstNBI endonuclease (0.4U μL -1 ), RNase inhibitor (0.8U μL -1 ) and dNTP (250μM), the reaction buffer is 10 mM sodium nitrate, 20 mM ammonium nitrate, 20 mM Tris-HNO 3 , 2 mM magnesium nitrate and 0.1% Triton X-100, pH 8.8. Reactions were incubated at 53°C for 50 minutes and then terminated by incubation at 90°C for 5 minutes. Add 8 μL silver nitrate solution (497.5 μM) and 100 μL sodium citrate buffer solution (20 mM, pH 7.0) to the above reaction solution, shake and mix well, then centrifuge at 12,000 rpm for 10 minutes, take the supernatant solution, and place it in the dark for 15 minutes Afterwards, 1 μL of a freshly prepared sodium borohydride (3.6 mM) solution was added, mixed evenly, and left in the dark for 1 hour to measure the fluorescence signal of the solution.
工作曲线的制作:分别准备已知浓度的miR-21标准溶液和空白样本(不含有miR-21,即miR-21浓度为0),按照上述步骤进行操作,测定各个反应液的荧光光谱,计算其荧光改变值(F/F0-1),即miR-21标准溶液在644nm处的荧光值与空白样本在644nm处的荧光值的比值减1,然后根据miR-21标准溶液的浓度和其荧光改变值(F/F0-1)制作标准工作曲线。Preparation of the working curve: Prepare miR-21 standard solution and blank sample (without miR-21, i.e. the concentration of miR-21 is 0) of known concentration respectively, operate according to the above steps, measure the fluorescence spectrum of each reaction solution, and calculate Its fluorescence change value (F/F 0 -1), that is, the ratio of the fluorescence value of the miR-21 standard solution at 644nm to the fluorescence value of the blank sample at 644nm minus 1, and then according to the concentration of the miR-21 standard solution and its Fluorescence change value (F/F 0 -1) to make a standard working curve.
实施实例3:Implementation example 3:
利用恒温扩增反应合成荧光纳米银簇探针定量检测let-7a(5’-UGAGGUAGUAGGUUGUAUAGUU-3’)的分析方法,检测原理如附图5所示。采用phi29DNA聚合酶和Nb.BbvCI核酸内切酶。DNA扩增模板上的序列排布为靶标let-7a结合序列(5’-AACTATACAACCTACTACCTCA-3’),Nb.BbvCI 酶切序列(5’-GCTGAGG-3’),let-7a 结合序列(5’-AACTATACAACCTACTACCTCA-3’),Nb.BbvCI酶切序列(5’-GCTGAGG-3’),以及合成荧光纳米银簇的DNA互补序列(5’-TTGGGCGGGTGGGTGGG-3’),3’端磷酸化。The analytical method for the quantitative detection of let-7a (5'-UGAGGUAGUAGGUUGUAUAGUU-3') synthesized by a constant temperature amplification reaction with a fluorescent nano-silver cluster probe, the detection principle is shown in Figure 5. Using phi29 DNA polymerase and Nb.BbvCI endonuclease. The sequence arrangement on the DNA amplification template is the target let-7a binding sequence (5'-AACTATACAACCTACTACCTCA-3'), the Nb.BbvCI restriction sequence (5'-GCTGAGG-3'), the let-7a binding sequence (5' -AACTATACAACCTACTACCTCA-3'), Nb.BbvCI cleavage sequence (5'-GCTGAGG-3'), and the DNA complementary sequence of synthetic fluorescent nanosilver clusters (5'-TTGGGCGGGTGGGTGGG-3'), phosphorylated at the 3' end.
下面对let-7a检测的具体实施来进一步说明本发明。其中未注明具体条件的实验方法,通常按照常规条件或按照厂商所建议的条件。本发明中的室温是指进行实施操作的实验室温度23~28℃。具体操作步骤如下:在4μL DNA扩增模板溶液(200nM)中加入1μL 靶标let-7a溶液,反应缓冲溶液为25mM Tris-HNO3,50mM硝酸钠,5mM硝酸镁,0.5mM二硫苏糖醇,pH为7.9。于88℃孵育10分钟后,然后加入恒温扩增混合液5μL,包括phi29DNA聚合酶(0.05U μL-1)、Nb.BbvCI核酸内切酶(0.4U μL-1)、RNase抑制剂(0.8U μL-1)和dNTP(250μM),反应缓冲液为10mM硝酸钠、20mM硝酸铵、20mM Tris-HNO3、2mM硝酸镁和0.1%Triton X-100,pH为8.8。于37℃孵育反应50分钟,然后于90℃孵育5分钟终止反应。向上述反应液中加入8μL硝酸银溶液(497.5μM)和100μL柠檬酸钠缓冲溶液(20mM,pH 7.0),震荡混匀后,12,000转离心10分钟后取上清溶液,于黑暗中放置15分钟后,加入新鲜配制的1μL硼氢化钠(3.6mM)溶液,混匀,于黑暗中放置1小时,测定溶液的荧光信号。The following specific implementation of let-7a detection will further illustrate the present invention. For the experimental methods that do not indicate the specific conditions, usually follow the conventional conditions or the conditions suggested by the manufacturer. The room temperature in the present invention refers to the laboratory temperature of 23-28° C. for carrying out the operation. The specific operation steps are as follows: add 1 μL target let-7a solution to 4 μL DNA amplification template solution (200 nM), the reaction buffer solution is 25 mM Tris-HNO 3 , 50 mM sodium nitrate, 5 mM magnesium nitrate, 0.5 mM dithiothreitol, The pH is 7.9. After incubating at 88°C for 10 minutes, add 5 μL of constant temperature amplification mixture, including phi29 DNA polymerase (0.05U μL -1 ), Nb.BbvCI endonuclease (0.4U μL -1 ), RNase inhibitor (0.8U μL −1 ) and dNTP (250 μM), the reaction buffer was 10 mM sodium nitrate, 20 mM ammonium nitrate, 20 mM Tris-HNO 3 , 2 mM magnesium nitrate and 0.1% Triton X-100, pH 8.8. Reactions were incubated at 37°C for 50 minutes and then terminated by incubation at 90°C for 5 minutes. Add 8 μL silver nitrate solution (497.5 μM) and 100 μL sodium citrate buffer solution (20 mM, pH 7.0) to the above reaction solution, shake and mix well, then centrifuge at 12,000 rpm for 10 minutes, take the supernatant solution, and place it in the dark for 15 minutes Afterwards, 1 μL of a freshly prepared sodium borohydride (3.6 mM) solution was added, mixed evenly, and left in the dark for 1 hour to measure the fluorescence signal of the solution.
工作曲线的制作:分别准备已知浓度的let-7a标准溶液和空白样本(不含有let-7a,即let-7a浓度为0),按照上述步骤进行操作,测定各个反应液的荧光光谱,计算其荧光改变值(F/F0-1),即let-7a标准溶液在644nm处的荧光值与空白样本在644nm处的荧光值的比值减1,然后根据let-7a标准溶液的浓度和其荧光改变值(F/F0-1)制作标准工作曲线。Preparation of working curve: Prepare let-7a standard solution and blank sample with known concentration respectively (do not contain let-7a, that is, let-7a concentration is 0), operate according to the above steps, measure the fluorescence spectrum of each reaction solution, and calculate Its fluorescence change value (F/F 0 -1), i.e. the ratio of the fluorescence value of the let-7a standard solution at 644nm to the fluorescence value of the blank sample at 644nm minus 1, then according to the concentration of the let-7a standard solution and its Fluorescence change value (F/F 0 -1) to make a standard working curve.
实施实例4:Implementation example 4:
利用恒温扩增反应合成荧光纳米银簇探针定量检测miR-646(5’-AAGCAGCUGCCUCUGAGGC-3’)的分析方法,检测原理如附图6所示。采用phi29DNA聚合酶和Nb.BbvCI核酸内切酶。DNA扩增模板上的序列排布为靶标miR-646结合序列(5’-GCCTCAGAGGCAGCTGCTT-3’),Nb.BbvCI酶切序列(5’-GCTGAGG-3’),合成荧光纳米银簇的DNA互补序列(5’-GGGTGGGTGGGCGGGTT-3’),Nb.BbvCI酶切序列(5’-GCTGAGG-3’),以及合成荧光纳米银簇的DNA互补序列(5’-GGGTGGGTGGGCGGGTT-3’),3’端磷酸化。The analytical method for the quantitative detection of miR-646 (5'-AAGCAGCUGCCUCUGAGGC-3') synthesized by a constant temperature amplification reaction with a fluorescent nano-silver cluster probe, the detection principle is shown in Figure 6. Using phi29 DNA polymerase and Nb.BbvCI endonuclease. The sequence arrangement on the DNA amplification template is the target miR-646 binding sequence (5'-GCCTCAGAGGCAGCTGCTT-3'), the Nb.BbvCI restriction sequence (5'-GCTGAGG-3'), and the DNA complementation of the synthetic fluorescent nanosilver cluster Sequence (5'-GGGTGGGTGGGCGGGTT-3'), Nb.BbvCI restriction sequence (5'-GCTGAGG-3'), and DNA complementary sequence (5'-GGGTGGGTGGGCGGGTT-3') for the synthesis of fluorescent nanosilver clusters, 3' end Phosphorylation.
下面对miR-646检测的具体实施来进一步说明本发明。其中未注明具体条件的实验方法,通常按照常规条件或按照厂商所建议的条件。本发明中的室温是指进行实施操作的实验室温度23~28℃。具体操作步骤如下:在4μLDNA扩增模板溶液(200nM)中加入1μL靶标miR-646溶液,反应缓冲溶液为25mMTris-HNO3,50mM硝酸钠,5mM硝酸镁,0.5mM二硫苏糖醇,pH为7.9。于88℃孵育10分钟后,然后加入恒温扩增混合液5μL,包括phi29DNA聚合酶(0.05U μL-1)、Nb.BbvCI核酸内切酶(0.4UμL-1)、RNase抑制剂(0.8U μL-1)和dNTP(250μM),反应缓冲液为10mM硝酸钠、20mM硝酸铵、20mMTris-HNO3、2mM硝酸镁和0.1%Triton X-100,pH为8.8。于37℃孵育反应50分钟,然后于90℃孵育5分钟终止反应。向上述反应液中加入8μL硝酸银溶液(497.5μM)和100μL柠檬酸钠缓冲溶液(20mM,pH 7.0),震荡混匀后,12,000转离心10分钟后取上清溶液,于黑暗中放置15分钟后,加入新鲜配制的1μL硼氢化钠(3.6mM)溶液,混匀,于黑暗中放置1小时,测定溶液的荧光信号。The following specific implementation of miR-646 detection will further illustrate the present invention. For the experimental methods that do not indicate the specific conditions, usually follow the conventional conditions or the conditions suggested by the manufacturer. The room temperature in the present invention refers to the laboratory temperature of 23-28° C. for carrying out the operation. The specific operation steps are as follows: 1 μL target miR-646 solution was added to 4 μL DNA amplification template solution (200 nM), the reaction buffer solution was 25 mM Tris-HNO 3 , 50 mM sodium nitrate, 5 mM magnesium nitrate, 0.5 mM dithiothreitol, and the pH was 7.9. After incubating at 88°C for 10 minutes, add 5 μL of constant temperature amplification mixture, including phi29 DNA polymerase (0.05U μL -1 ), Nb.BbvCI endonuclease (0.4U μL -1 ), RNase inhibitor (0.8U μL -1 -1 ) and dNTP (250 μM), the reaction buffer was 10 mM sodium nitrate, 20 mM ammonium nitrate, 20 mM Tris-HNO 3 , 2 mM magnesium nitrate and 0.1% Triton X-100, pH 8.8. Reactions were incubated at 37°C for 50 minutes and then terminated by incubation at 90°C for 5 minutes. Add 8 μL silver nitrate solution (497.5 μM) and 100 μL sodium citrate buffer solution (20 mM, pH 7.0) to the above reaction solution, shake and mix well, then centrifuge at 12,000 rpm for 10 minutes, take the supernatant solution, and place it in the dark for 15 minutes Afterwards, 1 μL of a freshly prepared sodium borohydride (3.6 mM) solution was added, mixed evenly, and left in the dark for 1 hour to measure the fluorescence signal of the solution.
工作曲线的制作:分别准备已知浓度的miR-646标准溶液和空白样本(不含有miR-646,即miR-646浓度为0),按照上述步骤进行操作,测定各个反应液的荧光光谱,计算其荧光改变值(F/F0-1),即miR-646标准溶液在644nm处的荧光值与空白样本在644nm处的荧光值的比值减1,然后根据miR-646标准溶液的浓度和其荧光改变值(F/F0-1)制作标准工作曲线。Preparation of the working curve: prepare miR-646 standard solution and blank sample with known concentration respectively (does not contain miR-646, i.e. miR-646 concentration is 0), operate according to the above steps, measure the fluorescence spectrum of each reaction solution, and calculate Its fluorescence change value (F/F 0 -1), that is, the ratio of the fluorescence value of the miR-646 standard solution at 644nm to the fluorescence value of the blank sample at 644nm minus 1, and then according to the concentration of the miR-646 standard solution and its Fluorescence change value (F/F 0 -1) to make a standard working curve.
实施实例5:Implementation example 5:
利用恒温扩增反应合成荧光纳米银簇探针多重检测miR-141(5’-UAACACUGUCUGGUAAAGAUGG-3’)和miR-21(5’-UAGCUUAUCAGACUGAUGUUGA-3’)的分析方法,检测原理如附图7所示。采用(exo-)DNA聚合酶和Nt.BstNBI核酸内切酶。DNA扩增模板1上的序列排布为靶标miR-141结合序列(5’-CCATCTTTACCAGACAGTGTTA-3’),Nt.BstNBI 酶切序列(5’-TCTTGACTC-3’),miR-141结合序列(5’-CCATCTTTACCAGACAGTGTTA-3’),Nt.BstNBI酶切序列(5’-TCTTGACTC-3’),以及合成荧光纳米银簇的DNA互补序列(5’-TTGGGCGGGTGGGTGGG-3’),3’端磷酸化。DNA扩增模板2上的序列排布为靶标miR-21结合序列(5’-TCAACATCAGTCTGATAAGCTA-3’),Nt.BstNBI酶切序列(5’-ACGTGACTC-3’),miR-21结合序列(5’-TCAACATCAGTCTGATAAGCTA-3’),Nt.B stNBI酶切序列(5’-ACGTGACTC-3’),以及合成荧光纳米银簇的DNA互补序列(5’-TTGGGCGGGTGGGTGGG-3’),3’端磷酸化。Synthesis of fluorescent nano-silver cluster probes for multiple detection of miR-141 (5'-UAACACUGUCUGGUAAAGAUGG-3') and miR-21 (5'-UAGCUUAUCAGACUGAUGUUGA-3') analysis method using constant temperature amplification reaction, the detection principle is shown in Figure 7 Show. use (exo-)DNA polymerase and Nt.BstNBI endonuclease. The sequence arrangement on the DNA amplification template 1 is the target miR-141 binding sequence (5'-CCATCTTTACCAGACAGTGTTA-3'), the Nt.BstNBI restriction sequence (5'-TCTTGACTC-3'), the miR-141 binding sequence (5 '-CCATCTTTACCAGACAGTGTTA-3'), Nt.BstNBI restriction sequence (5'-TCTTGACTC-3'), and the DNA complementary sequence of synthetic fluorescent nanosilver clusters (5'-TTGGGCGGGTGGGTGGG-3'), phosphorylated at the 3' end. The sequence arrangement on the DNA amplification template 2 is the target miR-21 binding sequence (5'-TCAACATCAGTCTGATAAGCTA-3'), the Nt.BstNBI restriction sequence (5'-ACGTGACTC-3'), the miR-21 binding sequence (5'- '-TCAACATCAGTCTGATAAGCTA-3'), Nt.B stNBI restriction sequence (5'-ACGTGACTC-3'), and DNA complementary sequence for synthesizing fluorescent nanosilver clusters (5'-TTGGGCGGGTGGGTGGG-3'), phosphorylated at the 3' end .
下面对miR-141、miR-21检测的具体实施来进一步说明本发明。其中未注明具体条件的实验方法,通常按照常规条件或按照厂商所建议的条件。本发明中的室温是指进行实施操作的实验室温度23~28℃。具体操作步骤如下:在4μLDNA扩增模板1和DNA扩增模板2的混合溶液(各200nM)中加入1μL靶标miR-141或者miR-21或者二者的混合溶液,反应缓冲溶液为25mM Tris-HNO3,50mM硝酸钠,5mM硝酸镁,0.5mM二硫苏糖醇,pH为7.9。于88℃孵育10分钟后,然后加入恒温扩增混合液5μL,包括(exo-)DNA聚合酶(0.05U μL-1)、Nt.BstNBI核酸内切酶(0.4U μL-1)、RNase抑制剂(0.8U μL-1)和dNTP(250μM),反应缓冲液为10mM硝酸钠、20mM硝酸铵、20mMTris-HNO3、2mM硝酸镁和0.1%Triton X-100,pH为8.8。于53℃孵育反应50分钟,然后于90℃孵育5分钟终止反应。上述反应液中加入8μL硝酸银溶液(497.5μM)和100μL柠檬酸钠缓冲溶液(20mM,pH 7.0),震荡混匀后,12,000转离心10分钟后取上清溶液,于黑暗中放置15分钟后,加入新鲜配制的1μL硼氢化钠(3.6mM)溶液,混匀,于黑暗中放置1小时,测定溶液的荧光信号。The following specific implementation of miR-141 and miR-21 detection will further illustrate the present invention. For the experimental methods that do not indicate the specific conditions, usually follow the conventional conditions or the conditions suggested by the manufacturer. The room temperature in the present invention refers to the laboratory temperature of 23-28° C. for carrying out the operation. The specific operation steps are as follows: add 1 μL of target miR-141 or miR-21 or a mixture of the two into 4 μL of the mixed solution of DNA amplification template 1 and DNA amplification template 2 (each 200 nM), and the reaction buffer solution is 25 mM Tris-HNO 3 , 50mM sodium nitrate, 5mM magnesium nitrate, 0.5mM dithiothreitol, pH 7.9. After incubating at 88°C for 10 minutes, add 5 μL of constant temperature amplification mixture, including (exo-)DNA polymerase (0.05U μL -1 ), Nt.BstNBI endonuclease (0.4U μL -1 ), RNase inhibitor (0.8U μL -1 ) and dNTP (250μM), the reaction buffer is 10 mM sodium nitrate, 20 mM ammonium nitrate, 20 mM Tris-HNO 3 , 2 mM magnesium nitrate and 0.1% Triton X-100, pH 8.8. Reactions were incubated at 53°C for 50 minutes and then terminated by incubation at 90°C for 5 minutes. Add 8 μL of silver nitrate solution (497.5 μM) and 100 μL of sodium citrate buffer solution (20 mM, pH 7.0) to the above reaction solution, shake and mix well, centrifuge at 12,000 rpm for 10 minutes, take the supernatant solution, and place it in the dark for 15 minutes , add freshly prepared 1 μL of sodium borohydride (3.6 mM) solution, mix well, place in the dark for 1 hour, and measure the fluorescence signal of the solution.
工作曲线的制作:分别准备已知浓度的miR-141和miR-21标准溶液和空白样本(不含有miR-141和miR-21),按照上述步骤进行操作,测定各个反应液的荧光光谱,计算其荧光改变值(F/F0-1),即miR-141标准溶液在其特征性发射峰644nm处的荧光值与空白样本在644nm处的荧光值的比值减1,miR-21标准溶液在其特征性发射峰625nm处的荧光值与空白样本在625nm处的荧光值的比值减1,然后根据miR-141和miR-21标准溶液的浓度和其荧光改变值(F/F0-1)分别制作标准工作曲线。Preparation of the working curve: prepare standard solutions of miR-141 and miR-21 of known concentrations and blank samples (not containing miR-141 and miR-21), operate according to the above steps, measure the fluorescence spectrum of each reaction solution, and calculate Its fluorescence change value (F/F 0 -1), that is, the ratio of the fluorescence value of the miR-141 standard solution at its characteristic emission peak at 644nm to the fluorescence value of the blank sample at 644nm minus 1, the miR-21 standard solution at The ratio of the fluorescence value at 625nm of its characteristic emission peak to the fluorescence value of the blank sample at 625nm minus 1, and then according to the concentration of miR-141 and miR-21 standard solution and its fluorescence change value (F/F 0 -1) Make standard working curves respectively.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210107456.9A CN102719526B (en) | 2012-04-13 | 2012-04-13 | MicroRNA quantitative detection analytic method by utilizing isothermal amplification to synthesize fluorescent nano silver cluster probe |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210107456.9A CN102719526B (en) | 2012-04-13 | 2012-04-13 | MicroRNA quantitative detection analytic method by utilizing isothermal amplification to synthesize fluorescent nano silver cluster probe |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102719526A true CN102719526A (en) | 2012-10-10 |
CN102719526B CN102719526B (en) | 2014-12-24 |
Family
ID=46945391
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210107456.9A Expired - Fee Related CN102719526B (en) | 2012-04-13 | 2012-04-13 | MicroRNA quantitative detection analytic method by utilizing isothermal amplification to synthesize fluorescent nano silver cluster probe |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102719526B (en) |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103008682A (en) * | 2012-12-29 | 2013-04-03 | 湖南科技大学 | Method for synthesizing fluorescent silver nano clusters by taking general DNA (Deoxyribose Nucleic Acid) as stabilizer |
CN103074327A (en) * | 2013-01-11 | 2013-05-01 | 东南大学 | Application of triangular silver nano-sheet in separation of single-stranded DNA |
CN103537709A (en) * | 2013-09-10 | 2014-01-29 | 盐城工学院 | Preparation of water-soluble luminous silver nano cluster with double-stranded DNA as template |
CN103602670A (en) * | 2013-08-06 | 2014-02-26 | 江苏大学 | Preparation method of fluorescent nano nucleic acid silver used for detecting hypoxia-inducible factors |
CN105063190A (en) * | 2015-07-30 | 2015-11-18 | 中国人民解放军第三军医大学第一附属医院 | Solid chip constant temperature detection method of MiRNA |
CN105112507A (en) * | 2015-07-30 | 2015-12-02 | 中国人民解放军第三军医大学第一附属医院 | Digital constant-temperature detection method of miRNA |
CN105154556A (en) * | 2015-01-23 | 2015-12-16 | 中国人民解放军第三军医大学第一附属医院 | Real-time fluorescence constant temperature index amplification method |
CN105154534A (en) * | 2015-07-30 | 2015-12-16 | 中国人民解放军第三军医大学第一附属医院 | Real-time constant-temperature index amplification method of tiny RNAs |
CN105606574A (en) * | 2016-01-21 | 2016-05-25 | 湖南科技大学 | Method and kit for detecting T-2 toxins |
CN107543810A (en) * | 2017-08-11 | 2018-01-05 | 樊之雄 | A kind of detection method for the hypersensitive fluorescent optical sensor for determining kanamycins |
CN108152349A (en) * | 2016-12-06 | 2018-06-12 | 南京科技职业学院 | Colorimetric and electrochemistry binary channels aptamer sensor based on nano silver catalysis |
CN108474778A (en) * | 2015-12-09 | 2018-08-31 | 印度理工学院 | It carries out being based on reverse transcriptase polymerase chain reaction using integrated approach(RT-PCR)And/or the device of the analysis of DNA/ protein arrays |
CN108642137A (en) * | 2018-05-21 | 2018-10-12 | 福州大学 | A method of detecting Tumor biomarkers using palindrome padlock probe |
CN110358810A (en) * | 2019-07-29 | 2019-10-22 | 江苏省原子医学研究所 | A kind of bioprobe detecting miRNA and detection method and purposes |
US10464067B2 (en) | 2015-06-05 | 2019-11-05 | Miroculus Inc. | Air-matrix digital microfluidics apparatuses and methods for limiting evaporation and surface fouling |
CN110872627A (en) * | 2018-09-04 | 2020-03-10 | 复旦大学附属儿科医院 | miR-21 detection kit and its application in judging the prognosis of neuroblastoma |
US10596572B2 (en) | 2016-08-22 | 2020-03-24 | Miroculus Inc. | Feedback system for parallel droplet control in a digital microfluidic device |
US10695762B2 (en) | 2015-06-05 | 2020-06-30 | Miroculus Inc. | Evaporation management in digital microfluidic devices |
US11041187B2 (en) | 2017-10-26 | 2021-06-22 | The Board Of Trustees Of The University Of Illinois | Photonic resonator absorption microscopy (PRAM) for digital resolution biomolecular diagnostics |
US11253860B2 (en) | 2016-12-28 | 2022-02-22 | Miroculus Inc. | Digital microfluidic devices and methods |
US11311882B2 (en) | 2017-09-01 | 2022-04-26 | Miroculus Inc. | Digital microfluidics devices and methods of using them |
US11413617B2 (en) | 2017-07-24 | 2022-08-16 | Miroculus Inc. | Digital microfluidics systems and methods with integrated plasma collection device |
US11524298B2 (en) | 2019-07-25 | 2022-12-13 | Miroculus Inc. | Digital microfluidics devices and methods of use thereof |
US11623219B2 (en) | 2017-04-04 | 2023-04-11 | Miroculus Inc. | Digital microfluidics apparatuses and methods for manipulating and processing encapsulated droplets |
US11738345B2 (en) | 2019-04-08 | 2023-08-29 | Miroculus Inc. | Multi-cartridge digital microfluidics apparatuses and methods of use |
US11772093B2 (en) | 2022-01-12 | 2023-10-03 | Miroculus Inc. | Methods of mechanical microfluidic manipulation |
US11992842B2 (en) | 2018-05-23 | 2024-05-28 | Miroculus Inc. | Control of evaporation in digital microfluidics |
US12233390B2 (en) | 2020-01-31 | 2025-02-25 | Miroculus Inc. | Nonfouling compositions and methods for manipulating and processing encapsulated droplets |
-
2012
- 2012-04-13 CN CN201210107456.9A patent/CN102719526B/en not_active Expired - Fee Related
Non-Patent Citations (3)
Title |
---|
ELISABETH G.GWINN等: "Sequence-Dependent Fluorescence of DNA-Hosted Silver Nanoclusters", 《ADVANCED MATERIALS》 * |
金桥等: "磷酸胆碱两性离子修饰的水溶性纳米银", 《中国科学 B辑:化学》 * |
马占芳等: "三角银纳米柱的研究进展", 《化学进展》 * |
Cited By (46)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103008682B (en) * | 2012-12-29 | 2014-09-17 | 湖南科技大学 | Method for synthesizing fluorescent silver nano clusters by taking general DNA (Deoxyribose Nucleic Acid) as stabilizer |
CN103008682A (en) * | 2012-12-29 | 2013-04-03 | 湖南科技大学 | Method for synthesizing fluorescent silver nano clusters by taking general DNA (Deoxyribose Nucleic Acid) as stabilizer |
CN103074327A (en) * | 2013-01-11 | 2013-05-01 | 东南大学 | Application of triangular silver nano-sheet in separation of single-stranded DNA |
CN103074327B (en) * | 2013-01-11 | 2015-05-06 | 东南大学 | Application of triangular silver nano-sheet in separation of single-stranded DNA |
CN103602670A (en) * | 2013-08-06 | 2014-02-26 | 江苏大学 | Preparation method of fluorescent nano nucleic acid silver used for detecting hypoxia-inducible factors |
CN103537709A (en) * | 2013-09-10 | 2014-01-29 | 盐城工学院 | Preparation of water-soluble luminous silver nano cluster with double-stranded DNA as template |
CN105154556A (en) * | 2015-01-23 | 2015-12-16 | 中国人民解放军第三军医大学第一附属医院 | Real-time fluorescence constant temperature index amplification method |
CN105154556B (en) * | 2015-01-23 | 2018-10-30 | 中国人民解放军第三军医大学第一附属医院 | Real-time fluorescence constant temperature exponential amplification methods |
US11944974B2 (en) | 2015-06-05 | 2024-04-02 | Miroculus Inc. | Air-matrix digital microfluidics apparatuses and methods for limiting evaporation and surface fouling |
US11471888B2 (en) | 2015-06-05 | 2022-10-18 | Miroculus Inc. | Evaporation management in digital microfluidic devices |
US11097276B2 (en) | 2015-06-05 | 2021-08-24 | mirOculus, Inc. | Air-matrix digital microfluidics apparatuses and methods for limiting evaporation and surface fouling |
US10695762B2 (en) | 2015-06-05 | 2020-06-30 | Miroculus Inc. | Evaporation management in digital microfluidic devices |
US10464067B2 (en) | 2015-06-05 | 2019-11-05 | Miroculus Inc. | Air-matrix digital microfluidics apparatuses and methods for limiting evaporation and surface fouling |
US11890617B2 (en) | 2015-06-05 | 2024-02-06 | Miroculus Inc. | Evaporation management in digital microfluidic devices |
CN105112507A (en) * | 2015-07-30 | 2015-12-02 | 中国人民解放军第三军医大学第一附属医院 | Digital constant-temperature detection method of miRNA |
CN105063190A (en) * | 2015-07-30 | 2015-11-18 | 中国人民解放军第三军医大学第一附属医院 | Solid chip constant temperature detection method of MiRNA |
CN105154534A (en) * | 2015-07-30 | 2015-12-16 | 中国人民解放军第三军医大学第一附属医院 | Real-time constant-temperature index amplification method of tiny RNAs |
CN108474778A (en) * | 2015-12-09 | 2018-08-31 | 印度理工学院 | It carries out being based on reverse transcriptase polymerase chain reaction using integrated approach(RT-PCR)And/or the device of the analysis of DNA/ protein arrays |
CN108474778B (en) * | 2015-12-09 | 2020-07-24 | 印度理工学院 | Device for performing reverse transcription polymerase chain reaction and/or DNA/protein array based analysis using integrated methods |
CN105606574A (en) * | 2016-01-21 | 2016-05-25 | 湖南科技大学 | Method and kit for detecting T-2 toxins |
CN105606574B (en) * | 2016-01-21 | 2018-07-24 | 湖南科技大学 | The detection method and detection kit of T-2 toxin |
US10596572B2 (en) | 2016-08-22 | 2020-03-24 | Miroculus Inc. | Feedback system for parallel droplet control in a digital microfluidic device |
US11298700B2 (en) | 2016-08-22 | 2022-04-12 | Miroculus Inc. | Feedback system for parallel droplet control in a digital microfluidic device |
CN108152349B (en) * | 2016-12-06 | 2023-07-25 | 南京科技职业学院 | Colorimetric and electrochemical dual-channel nucleic acid aptamer sensor based on nanosilver catalysis |
CN108152349A (en) * | 2016-12-06 | 2018-06-12 | 南京科技职业学院 | Colorimetric and electrochemistry binary channels aptamer sensor based on nano silver catalysis |
US11833516B2 (en) | 2016-12-28 | 2023-12-05 | Miroculus Inc. | Digital microfluidic devices and methods |
US12172164B2 (en) | 2016-12-28 | 2024-12-24 | Miroculus Inc. | Microfluidic devices and methods |
US11253860B2 (en) | 2016-12-28 | 2022-02-22 | Miroculus Inc. | Digital microfluidic devices and methods |
US11623219B2 (en) | 2017-04-04 | 2023-04-11 | Miroculus Inc. | Digital microfluidics apparatuses and methods for manipulating and processing encapsulated droplets |
US11413617B2 (en) | 2017-07-24 | 2022-08-16 | Miroculus Inc. | Digital microfluidics systems and methods with integrated plasma collection device |
US11857969B2 (en) | 2017-07-24 | 2024-01-02 | Miroculus Inc. | Digital microfluidics systems and methods with integrated plasma collection device |
CN107543810A (en) * | 2017-08-11 | 2018-01-05 | 樊之雄 | A kind of detection method for the hypersensitive fluorescent optical sensor for determining kanamycins |
US11311882B2 (en) | 2017-09-01 | 2022-04-26 | Miroculus Inc. | Digital microfluidics devices and methods of using them |
US11591640B2 (en) | 2017-10-26 | 2023-02-28 | The Board Of Trustees Of The University Of Illinois | Photonic resonator absorption microscopy (PRAM) for digital resolution biomolecular diagnostics |
US11041187B2 (en) | 2017-10-26 | 2021-06-22 | The Board Of Trustees Of The University Of Illinois | Photonic resonator absorption microscopy (PRAM) for digital resolution biomolecular diagnostics |
CN108642137B (en) * | 2018-05-21 | 2021-11-30 | 福州大学 | Method for detecting tumor biomarkers by using palindromic padlock probes |
CN108642137A (en) * | 2018-05-21 | 2018-10-12 | 福州大学 | A method of detecting Tumor biomarkers using palindrome padlock probe |
US11992842B2 (en) | 2018-05-23 | 2024-05-28 | Miroculus Inc. | Control of evaporation in digital microfluidics |
CN110872627A (en) * | 2018-09-04 | 2020-03-10 | 复旦大学附属儿科医院 | miR-21 detection kit and its application in judging the prognosis of neuroblastoma |
US11738345B2 (en) | 2019-04-08 | 2023-08-29 | Miroculus Inc. | Multi-cartridge digital microfluidics apparatuses and methods of use |
US11524298B2 (en) | 2019-07-25 | 2022-12-13 | Miroculus Inc. | Digital microfluidics devices and methods of use thereof |
CN110358810A (en) * | 2019-07-29 | 2019-10-22 | 江苏省原子医学研究所 | A kind of bioprobe detecting miRNA and detection method and purposes |
CN110358810B (en) * | 2019-07-29 | 2023-06-23 | 江苏省原子医学研究所 | Biological probe for detecting miRNA, detection method and application |
US12233390B2 (en) | 2020-01-31 | 2025-02-25 | Miroculus Inc. | Nonfouling compositions and methods for manipulating and processing encapsulated droplets |
US11857961B2 (en) | 2022-01-12 | 2024-01-02 | Miroculus Inc. | Sequencing by synthesis using mechanical compression |
US11772093B2 (en) | 2022-01-12 | 2023-10-03 | Miroculus Inc. | Methods of mechanical microfluidic manipulation |
Also Published As
Publication number | Publication date |
---|---|
CN102719526B (en) | 2014-12-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102719526B (en) | MicroRNA quantitative detection analytic method by utilizing isothermal amplification to synthesize fluorescent nano silver cluster probe | |
Gines et al. | Emerging isothermal amplification technologies for microRNA biosensing: Applications to liquid biopsies | |
Li et al. | Ultrasensitive, colorimetric detection of microRNAs based on isothermal exponential amplification reaction-assisted gold nanoparticle amplification | |
Zhang et al. | Multiplexed detection of microRNAs by tuning DNA-scaffolded silver nanoclusters | |
Zhao et al. | Ultrasensitive detection of microRNA based on a homogeneous label-free electrochemical platform using G-triplex/methylene blue as a signal generator | |
Kim et al. | Electrochemical detection of zeptomolar miRNA using an RNA-triggered Cu2+ reduction method | |
Wang et al. | Engineered G-quadruplex-embedded self-quenching probes regulate single probe-based multiplex isothermal amplification to light road lamp probes for sensitized determination of microRNAs | |
Chi et al. | CRISPR-Cas14a-integrated strand displacement amplification for rapid and isothermal detection of cholangiocarcinoma associated circulating microRNAs | |
Zhu et al. | Highly sensitive and specific mass spectrometric platform for miRNA detection based on the multiple-metal-nanoparticle tagging strategy | |
Deng et al. | Ultrasensitive detection of gene-PIK3CAH1047R mutation based on cascaded strand displacement amplification and trans-cleavage ability of CRISPR/Cas12a | |
Liu et al. | A sensitive and specific method for microRNA detection and in situ imaging based on a CRISPR–Cas9 modified catalytic hairpin assembly | |
Sun et al. | A Cas12a-mediated cascade amplification method for microRNA detection | |
Ye et al. | A DNA–linker–DNA bifunctional probe for simultaneous SERS detection of miRNAs via symmetric signal amplification | |
Yoon et al. | Highly sensitive multiplex detection of microRNA using light-up RNA aptamers | |
Jiao et al. | A method to directly assay circRNA in real samples | |
Chen et al. | Intracellular self-enhanced rolling circle amplification to image specific miRNAs within tumor cells | |
Fu et al. | Dual cascade isothermal amplification reaction based glucometer sensors for point-of-care diagnostics of cancer-related microRNAs | |
Zhou et al. | A novel methyl-dependent DNA endonuclease GlaI coupling with double cascaded strand displacement amplification and CRISPR/Cas12a for ultra-sensitive detection of DNA methylation | |
Li et al. | Highly sensitive and label-free detection of DILI microRNA biomarker via target recycling and primer exchange reaction amplifications | |
Jiang et al. | Target-triggered assembly of functional G-quadruplex DNAzyme nanowires for sensitive detection of miRNA in lung tissues | |
Yuan et al. | One-step isothermal amplification strategy for microRNA specific and ultrasensitive detection based on nicking-assisted entropy-driven DNA circuit triggered exponential amplification reaction | |
Li et al. | Ultrasensitive detection of microRNAs based on click chemistry-terminal deoxynucleotidyl transferase combined with CRISPR/Cas12a | |
Pitikultham et al. | Ultrasensitive Detection of MicroRNA in Human Saliva via Rolling Circle Amplification Using a DNA-Decorated Graphene Oxide Sensor | |
Zhang et al. | Triple-hairpin mediated feedback system based on rolling circle amplification for enhanced imaging and detection of intracellular microRNA | |
Xie et al. | A dual-signal amplification strategy based on rolling circle amplification and APE1-assisted amplification for highly sensitive and specific miRNA analysis for early diagnosis of alzheimer's disease |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20141224 Termination date: 20210413 |