CN102660451B - Horizontal immersion cover type carbon supplement device and carbon supplement method used in culture of microalgae in open pond - Google Patents
Horizontal immersion cover type carbon supplement device and carbon supplement method used in culture of microalgae in open pond Download PDFInfo
- Publication number
- CN102660451B CN102660451B CN201210138845.8A CN201210138845A CN102660451B CN 102660451 B CN102660451 B CN 102660451B CN 201210138845 A CN201210138845 A CN 201210138845A CN 102660451 B CN102660451 B CN 102660451B
- Authority
- CN
- China
- Prior art keywords
- carbon
- cover
- open
- culture solution
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 118
- 229910052799 carbon Inorganic materials 0.000 title claims abstract description 118
- 238000000034 method Methods 0.000 title claims abstract description 30
- 238000007654 immersion Methods 0.000 title abstract description 29
- 239000013589 supplement Substances 0.000 title description 6
- 239000007789 gas Substances 0.000 claims description 96
- 241000195493 Cryptophyta Species 0.000 claims description 14
- 239000007788 liquid Substances 0.000 claims description 14
- 235000015097 nutrients Nutrition 0.000 claims description 13
- 240000002900 Arthrospira platensis Species 0.000 claims description 8
- 235000016425 Arthrospira platensis Nutrition 0.000 claims description 8
- 229940082787 spirulina Drugs 0.000 claims description 7
- 241000195649 Chlorella <Chlorellales> Species 0.000 claims description 4
- 238000010276 construction Methods 0.000 claims description 4
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 2
- 241000195585 Chlamydomonas Species 0.000 claims description 2
- 239000003546 flue gas Substances 0.000 claims description 2
- 230000008676 import Effects 0.000 claims 2
- 241000272165 Charadriidae Species 0.000 claims 1
- 150000003839 salts Chemical class 0.000 claims 1
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 abstract description 98
- 229910002092 carbon dioxide Inorganic materials 0.000 abstract description 49
- 239000001569 carbon dioxide Substances 0.000 abstract description 45
- 238000004519 manufacturing process Methods 0.000 abstract description 3
- 239000000243 solution Substances 0.000 description 84
- 239000001963 growth medium Substances 0.000 description 15
- 239000002609 medium Substances 0.000 description 12
- 238000010521 absorption reaction Methods 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 238000010586 diagram Methods 0.000 description 8
- 238000011081 inoculation Methods 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 229910000831 Steel Inorganic materials 0.000 description 6
- 238000009826 distribution Methods 0.000 description 6
- 229910001220 stainless steel Inorganic materials 0.000 description 6
- 239000010935 stainless steel Substances 0.000 description 6
- 239000010959 steel Substances 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 5
- 239000012530 fluid Substances 0.000 description 5
- 239000004033 plastic Substances 0.000 description 5
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 4
- 238000005273 aeration Methods 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical compound [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 description 4
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 239000013505 freshwater Substances 0.000 description 3
- 239000012510 hollow fiber Substances 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 230000001502 supplementing effect Effects 0.000 description 3
- 235000017166 Bambusa arundinacea Nutrition 0.000 description 2
- 235000017491 Bambusa tulda Nutrition 0.000 description 2
- 244000082204 Phyllostachys viridis Species 0.000 description 2
- 235000015334 Phyllostachys viridis Nutrition 0.000 description 2
- 241001466077 Salina Species 0.000 description 2
- 241000195663 Scenedesmus Species 0.000 description 2
- 239000011425 bamboo Substances 0.000 description 2
- 239000011449 brick Substances 0.000 description 2
- 239000004568 cement Substances 0.000 description 2
- 238000009776 industrial production Methods 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 230000029553 photosynthesis Effects 0.000 description 2
- 238000010672 photosynthesis Methods 0.000 description 2
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 2
- 235000017557 sodium bicarbonate Nutrition 0.000 description 2
- 235000010344 sodium nitrate Nutrition 0.000 description 2
- 239000002028 Biomass Substances 0.000 description 1
- 241001478240 Coccus Species 0.000 description 1
- 229920002527 Glycogen Polymers 0.000 description 1
- 241000168517 Haematococcus lacustris Species 0.000 description 1
- 235000009754 Vitis X bourquina Nutrition 0.000 description 1
- 235000012333 Vitis X labruscana Nutrition 0.000 description 1
- 240000006365 Vitis vinifera Species 0.000 description 1
- 235000014787 Vitis vinifera Nutrition 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 235000001014 amino acid Nutrition 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 150000001721 carbon Chemical class 0.000 description 1
- 235000021466 carotenoid Nutrition 0.000 description 1
- 150000001747 carotenoids Chemical class 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 239000012531 culture fluid Substances 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229940096919 glycogen Drugs 0.000 description 1
- -1 grape algae Chemical class 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M21/00—Bioreactors or fermenters specially adapted for specific uses
- C12M21/02—Photobioreactors
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M23/00—Constructional details, e.g. recesses, hinges
- C12M23/02—Form or structure of the vessel
- C12M23/18—Open ponds; Greenhouse type or underground installations
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M23/00—Constructional details, e.g. recesses, hinges
- C12M23/38—Caps; Covers; Plugs; Pouring means
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Organic Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Genetics & Genomics (AREA)
- Biotechnology (AREA)
- Sustainable Development (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Clinical Laboratory Science (AREA)
- Environmental & Geological Engineering (AREA)
- Molecular Biology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
Abstract
本发明涉及微藻培养领域,具体地,本发明涉及用于开放池培养微藻的水平浸没罩式补碳装置及其补碳方法。本发明的用于开放池培养微藻的水平浸没罩式补碳装置,包括一个或两个以上罩子(1)和气体分布器(2),所述气体分布器(2)设置于开放池底部,所述罩子(1)罩于气体分布器(2)上方,该罩子(1)呈两端开口的筒体,沿培养液流动方向布置,罩子(1)的两端口分别为培养液进口(3)和培养液出口(4);其中,所述气体分布器(2)与罩子(1)的培养液出口(4)距离40厘米以上。本发明,在开放池内培养微藻细胞时,能够有效利用二氧化碳进行补碳,大大降低了生产成本。
The invention relates to the field of microalgae cultivation, in particular, the invention relates to a horizontal immersion cover type carbon replenishing device and a carbon replenishing method for cultivating microalgae in an open pool. The horizontal immersion hood type carbon replenishment device for cultivating microalgae in an open pool of the present invention includes one or more covers (1) and a gas distributor (2), and the gas distributor (2) is arranged at the bottom of the open pool , the cover (1) is placed above the gas distributor (2), the cover (1) is a cylinder with two ends open, arranged along the flow direction of the culture solution, and the two ports of the cover (1) are the inlets of the culture solution ( 3) and the culture solution outlet (4); wherein, the distance between the gas distributor (2) and the culture solution outlet (4) of the cover (1) is more than 40 cm. In the present invention, when microalgae cells are cultivated in an open pool, carbon dioxide can be effectively used for carbon replenishment, and the production cost is greatly reduced.
Description
技术领域 technical field
本发明涉及微藻培养领域,具体地,本发明涉及用于开放池培养微藻的水平浸没罩式补碳装置及其补碳方法。The invention relates to the field of microalgae cultivation, in particular, the invention relates to a horizontal immersion cover type carbon replenishing device and a carbon replenishing method for cultivating microalgae in an open pool.
背景技术 Background technique
微藻可以通过光合作用固定二氧化碳生产多种化学品。有的可以产脂肪烃,如葡萄藻产烃量可达细胞干重的15%~75%,有的可积累糖原,有的可积累甘油,许多微藻含油脂可达干重的60%以上。藻类热解所获得的生物质燃油热值平均高达33MJ/kg。微藻可以在海水、碱水或半碱水中培养,不与农作物争夺土地和淡水资源,还可以利用废水,是淡水短缺、土地贫瘠地区获得有效生物资源的重要途径。微藻有望成为未来的能源和化学品的重要来源。Microalgae can fix carbon dioxide through photosynthesis to produce a variety of chemicals. Some can produce aliphatic hydrocarbons, such as grape algae, which can produce hydrocarbons up to 15% to 75% of dry cell weight, some can accumulate glycogen, and some can accumulate glycerol, and many microalgae contain oil up to 60% of dry weight above. The average calorific value of biomass fuel obtained from algae pyrolysis is as high as 33MJ/kg. Microalgae can be cultivated in seawater, alkaline water or semi-alkaline water, without competing with crops for land and freshwater resources, and can also use wastewater, which is an important way to obtain effective biological resources in areas with freshwater shortages and barren land. Microalgae promise to be an important source of future energy and chemicals.
微藻细胞中碳的含量占其细胞干重的一半以上,藻细胞在生长过程中通过光合作用将二氧化碳固定为自身的组成成分,故在藻类培养过程中需在培养液中保持碳源的供给。藻类培养液中的无机碳源以HCO3 -、CO3 2-和游离的CO2三种形式存在。三种形式的碳在水溶液中的含量比例随pH值的变化而变化。若使用小苏打(NaHCO3)为碳源,则随着HCO3 -的解离和CO2的利用,培养液的pH值逐渐升高,有超过一半的NaHCO3转化为Na2CO3而不能被利用,碳源消耗大,培养液pH升高导致水体难以循环利用。若直接以CO2为碳源,微藻利用的就是CO2,则可以避免培养液pH值升高的问题,有利于维持适宜的培养环境,使水可以长时间或者重复使用。The carbon content in microalgae cells accounts for more than half of its dry weight. During the growth process, algae cells fix carbon dioxide as their own components through photosynthesis. Therefore, it is necessary to maintain the supply of carbon sources in the culture medium during algae cultivation. . Inorganic carbon sources in algae culture fluid exist in three forms: HCO 3 - , CO 3 2- and free CO 2 . The proportions of the three forms of carbon in aqueous solutions vary with pH. If baking soda (NaHCO 3 ) is used as the carbon source, then with the dissociation of HCO 3 - and the utilization of CO 2 , the pH value of the culture solution will gradually increase, and more than half of the NaHCO 3 will be converted into Na 2 CO 3 and cannot If it is used, the consumption of carbon source is large, and the pH of the culture medium increases, which makes it difficult to recycle the water body. If CO 2 is directly used as the carbon source, the microalgae utilizes CO 2 , which can avoid the problem of increasing the pH value of the culture solution, and is conducive to maintaining a suitable culture environment, so that the water can be used for a long time or repeatedly.
开放式培养是传统而又简单的微藻培养模式,也是目前被大家公认为是成熟的微藻培养技术,优点是构建简单、操作简便,在螺旋藻、小球藻和盐藻的工业化生产中获得了应用(Chaumont D.,J.Appl.Phycol.,1993,5:593-604;Richmond A.,Progress in Physiological Research,Vol.7,Biopress,Bristol.,1990,269-330;BorowitzkaL.T.,Bioresource Technology,1991,38:251-252)。然而,传统开放池由于液层深度20~30cm,如果以鼓泡的方式直接向培养池中补加CO2,由于气泡在培养液中停留时间短,使得CO2的吸收率非常低,只有13%~20%的CO2被吸收(Becker EW,Microalgae:biotechnology and microbiology.Cambridge University Press,Cambridge,1994,pp293)。Open culture is a traditional and simple microalgae culture mode, and is currently recognized as a mature microalgae culture technology. The advantages are simple construction and easy operation. It is used in the industrial production of spirulina, chlorella and salina Applied (Chaumont D., J.Appl.Phycol., 1993, 5:593-604; Richmond A., Progress in Physiological Research, Vol.7, Biopress, Bristol., 1990, 269-330; BorowitzkaL.T ., Bioresource Technology, 1991, 38:251-252). However, because the depth of the liquid layer in the traditional open pool is 20-30 cm, if CO 2 is directly added to the culture tank by bubbling, the CO 2 absorption rate is very low, only 13 % to 20% of CO 2 is absorbed (Becker EW, Microalgae: biotechnology and microbiology. Cambridge University Press, Cambridge, 1994, pp293).
Ferreira等(Ferreira B S,Fernandes H L,Reis A and Mateus M.Microporous hollowfibres for carbon dioxide absorption:mass transfer model fitting and the supplying ofcarbon dioxide to microalgae cultures.Journal of Chemical Technology andBiotechnology,1998,71:61-70)利用中空纤维膜来强化气液传质,以提高CO2的吸收率,但该法造价高,中空纤维膜易受污染。Ferreira et al. (Ferreira B S, Fernandes H L, Reis A and Mateus M. Microporous hollow fibers for carbon dioxide absorption: mass transfer model fitting and the supplying of carbon dioxide to microalgae cultures. Journal of Chemical Technology and Biotechnology, 1998, 71: 61-70) used Hollow fiber membranes are used to enhance gas-liquid mass transfer to increase the absorption rate of CO 2 , but this method is expensive and the hollow fiber membranes are easily polluted.
气罩法(李夜光,胡鸿钧,张良军,陈志祥。以二氧化碳为碳源工业化生产螺旋藻工艺技术的研究。武汉植物学研究,1996,14(4):349-356)是在微藻养殖水面上扣一个几平米的罩子,将二氧化碳气体通入罩子内,依靠罩子扣住的水面向培养液传递二氧化碳。该方法的问题在于气液交换的比表面积小;气罩内会积累氧气、氮气从而降低传质速率,需要不断放空,从而损失气罩内的二氧化碳;对于含低浓度二氧化碳的气源,二氧化碳的吸收率很低;而且气罩内压力稍高时气体会从气罩下方穿过气罩外的液面漏出。槽式补碳(CN200610018771.9,微藻养殖池补充二氧化碳的装置)是在培养池边挖一个深槽,使培养液流过深槽,在槽底布置通气管,向培养液供应二氧化碳,该方法会打乱传统的开放池的空间布局,且在槽内缺少混合,一段时间后槽的底部被二氧化碳饱和后就成为传质的死区,失去了深槽的作用。The gas mask method (Li Yeguang, Hu Hongjun, Zhang Liangjun, Chen Zhixiang. Research on the technology of industrial production of spirulina with carbon dioxide as carbon source. Wuhan Botanical Research, 1996,14(4):349-356) is on the water surface of microalgae culture Buckle a cover of a few square meters, pass carbon dioxide gas into the cover, and rely on the water covered by the cover to transfer carbon dioxide to the culture solution. The problem with this method is that the specific surface area of gas-liquid exchange is small; Oxygen and nitrogen will accumulate in the gas hood to reduce the mass transfer rate, and it needs to be continuously vented, thereby losing the carbon dioxide in the gas hood; The absorption rate is very low; and when the pressure in the gas hood is slightly higher, the gas will leak from the bottom of the gas hood through the liquid surface outside the gas hood. Trough carbon replenishment (CN200610018771.9, a device for supplementing carbon dioxide in microalgae culture ponds) is to dig a deep groove at the side of the culture pond, let the culture solution flow through the deep groove, and arrange a ventilation pipe at the bottom of the groove to supply carbon dioxide to the culture solution. This method will disrupt the spatial layout of the traditional open pool, and there is a lack of mixing in the tank. After a period of time, the bottom of the tank is saturated with carbon dioxide and becomes a dead zone for mass transfer, losing the role of a deep tank.
丛威等(CN200510126465.2用于大规模培养微藻的补碳装置及其使用方法和用途)发明了在开放池直接为培养液补充CO2的阱式补碳装置,使培养液在阱式补碳装置内形成环流,大幅度延长了气液接触时间,并从阱式补碳装置的底部供气,大幅度提高了CO2的吸收率。但是此补碳装置增加了开放池内流体的流动阻力,导致在保持同样流速情况下叶轮驱动流体的电能消耗增加,此外施工的工程量偏大。Cong Wei et al. (CN200510126465.2 Carbon replenishment device for large-scale cultivation of microalgae and its use and application) invented a well-type carbon replenishment device that directly supplements CO2 for the culture solution in an open pool, so that the culture solution is in the well-type Circulation is formed in the carbon replenishment device, which greatly prolongs the gas-liquid contact time, and the gas is supplied from the bottom of the trap carbon replenishment device, which greatly improves the CO 2 absorption rate. However, this carbon replenishment device increases the flow resistance of the fluid in the open pool, resulting in an increase in the power consumption of the impeller-driven fluid while maintaining the same flow rate, and in addition, the construction workload is relatively large.
发明内容 Contents of the invention
本发明的目的在于,为解决上述问题,提供一种用于开放池培养微藻的水平浸没罩式补碳装置。The object of the present invention is, in order to solve the above problems, to provide a horizontal immersion hood type carbon replenishing device for cultivating microalgae in an open pond.
本发明的另一目的是提供一种用于开放池培养微藻的补碳方法。Another object of the present invention is to provide a method for supplementing carbon for cultivating microalgae in open ponds.
本发明的构思为:直接在开放池底布设气体分布器,为了延长气液接触时间,在气体分布器上方设置浸没于培养液内的罩子,罩子沿培养液流动方向充分延长,使得气泡被封在罩子内,与培养液在罩子内一同流动时有充分的接触时间,从而提高气体的吸收率。The idea of the present invention is: directly arrange the gas distributor at the bottom of the open pool, in order to prolong the gas-liquid contact time, set a cover immersed in the culture solution above the gas distributor, and the cover is fully extended along the direction of the culture solution flow, so that the air bubbles are sealed. In the cover, there is sufficient contact time when the culture solution flows together in the cover, thereby improving the gas absorption rate.
本发明的用于开放池培养微藻的水平浸没罩式补碳装置,包括1个或2个以上的罩子1和气体分布器2,所述气体分布器2设置于开放池底部,所述罩子1罩于气体分布器2上方,罩子1呈两端开口的筒体,沿培养液流动方向布置,罩子1的两端口分别为培养液进口3和培养液出口4;其中,所述气体分布器2与罩子1的培养液出口4距离40厘米以上。The horizontal immersion hood type carbon replenishment device for cultivating microalgae in open ponds of the present invention includes one or
气体分布器2可以位于罩子1的培养液进口3或罩子其他部位的下方,只要保证从气体分布器2到罩子1的培养液出口4的距离在40厘米以上即可。优选气体分布器2位于罩子1的培养液进口3的下方。The
根据本发明的补碳装置,优选气体分布器2与培养液出口4距离60~750厘米。为了施工方便并保证足够的二氧化碳吸收率,罩子1沿培养液流动方向的长度应保证气液接触时间在3秒~15秒,所以优选的从气体分布器2到罩子1的培养液出口4的距离是流道内培养液在3秒~15秒内的流动距离。一般开放池内培养液的流速为20~50厘米/秒,所以优选的从气体分布器2到罩子1的培养液出口4的距离是60~750厘米。According to the carbon replenishment device of the present invention, the distance between the
根据本发明的补碳装置,其中,所述罩子1直接固定于开放池底或架空设置于开放池底。According to the carbon replenishment device of the present invention, the
根据本发明的补碳装置,其中,所述罩子1的底部可以敞开也可以为封闭结构。According to the carbon replenishment device of the present invention, the bottom of the
根据本发明的补碳装置,其中,所述罩子1的主体呈半圆形筒体、弧形筒体、矩形筒体或梯形筒体。According to the carbon replenishment device of the present invention, the main body of the
根据本发明的补碳装置,为了降低罩子1内的流体流动阻力,所述罩子1的培养液进口3和/或培养液出口4可以为锥形或喇叭形的扩口结构。According to the carbon replenishment device of the present invention, in order to reduce the fluid flow resistance in the
根据本发明的补碳装置,其中,所述罩子1高度为2~20厘米,以被培养液浸没为准。According to the carbon replenishment device of the present invention, the height of the
根据本发明的补碳装置,其中,所述罩子1宽度大于等于2厘米。每个罩子的宽度可以小到2厘米(如罩住一根气体分布管),大到接近开放池的宽度(如罩住多根气体分布管或多个气体分布器)。According to the carbon replenishing device of the present invention, the width of the
根据本发明的补碳装置,所述的气体分布器的气体分布面(板)为多孔材质,可以是管状气体分布器或联在输气管上的一个或多个气体分布头。可以是硬体的,如多孔陶瓷管或玻璃砂芯,或软体的,如市售的曝气软管或可变孔曝气软管。According to the carbon replenishing device of the present invention, the gas distribution surface (plate) of the gas distributor is made of porous material, which can be a tubular gas distributor or one or more gas distribution heads connected to the gas pipeline. They can be rigid, such as porous ceramic tubes or glass sand cores, or soft, such as commercially available aeration hoses or variable-porosity aeration hoses.
根据本发明的补碳装置,其中,所述2个以上的罩子1可以联体加工,形成联体结构。According to the carbon replenishment device of the present invention, the two or
所述的罩子1的壁厚为1毫米~10毫米。The wall thickness of the
所述的罩子材质可以为塑料板、不锈钢板、木板等材料,能加工成型、有一定强度即可;可以为透明或不透明。The material of the cover can be plastic board, stainless steel board, wood board and other materials, which can be processed into shapes and have a certain strength; it can be transparent or opaque.
本发明的基于上述补碳装置的用于开放池培养微藻的补碳方法,其特征在于,将水平浸没罩式补碳装置沿开放池流道方向设置于开放池底部,使培养液浸没过罩子顶端;培养液在开放池原有的搅拌器9的推动下从罩子1的培养液进口3流入,在补碳装置内与气体分布器放出的CO2接触后从罩子1的培养液出口4流出。The carbon replenishment method for cultivating microalgae in an open pond based on the above carbon replenishment device of the present invention is characterized in that a horizontal immersion cover type carbon replenishment device is arranged on the bottom of the open pond along the direction of the flow path of the open pond, so that the culture solution is submerged The top of the cover; the culture solution flows in from the
所述开放池内的培养液流速为20~50厘米/秒。The flow velocity of the culture solution in the open pool is 20-50 cm/s.
所述水平浸没罩式补碳装置内的CO2流量,折合标准状况的纯CO2,为每米开放池宽度0.1~20升/分钟。The CO 2 flow rate in the horizontal immersion hood carbon replenishing device is equivalent to the pure CO 2 in standard conditions, and is 0.1-20 liters/minute per meter of open pool width.
所述的开放池内培养液的流动可以依靠开放池原有的搅拌器驱动实现,如叶轮或搅拌臂,搅拌器的材质可以为竹片、塑料、不锈钢、其它金属材料等。The flow of the culture solution in the open pool can be driven by the original agitator in the open pool, such as an impeller or an agitator arm, and the agitator can be made of bamboo chips, plastic, stainless steel, or other metal materials.
所述的开放池内培养液的深度可以是2~30厘米。The depth of the culture solution in the open pool can be 2-30 cm.
根据本发明的补碳方法,当采用的开放池内的培养液的深度较浅时,可以将开放池原有的搅拌器下降到搅拌器叶尖低于开放池底的位置,即,搅拌器9叶尖低于开放池底。According to the carbon replenishment method of the present invention, when the depth of the nutrient solution in the open pool used is relatively shallow, the original agitator of the open pool can be lowered to a position where the tip of the agitator is lower than the bottom of the open pool, that is, the 9 blades of the agitator are lower than the bottom of the open pool. Pointed below open pool bottom.
根据本发明的补碳方法,当采用的开放池内的培养液的深度较浅时,可以将开放池中拟安放补碳装置的池底区域挖出浅槽以安放补碳装置,即,将补碳装置安装于低于开放池底的位置。According to the carbon replenishing method of the present invention, when the depth of the culture solution in the open pool used is relatively shallow, shallow grooves can be dug out in the bottom area of the pool where the carbon replenishing device is to be placed in the open pool to place the carbon replenishing device, that is, the carbon replenishing device will be placed. The carbon unit is installed below the open pool floor.
所述的安放补碳装置的浅槽的底部可以是平底、带圆角的平底,也可以是半圆底;材质为水泥、塑料板、不锈钢板、砖或与开放池底同样的材料等。The bottom of the shallow tank for placing the carbon replenishing device can be flat bottom, flat bottom with rounded corners, or semicircular bottom; the material is cement, plastic plate, stainless steel plate, brick or the same material as the bottom of the open pool.
当气体分布器的外形是长形时,优选的气体分布器布设方式是将气体分布器的长的方向布设为与培养液流动方向一致。When the shape of the gas distributor is elongated, the preferred arrangement of the gas distributor is to arrange the long direction of the gas distributor to be consistent with the flow direction of the culture solution.
根据本发明的补碳方法,其中,所述CO2为净化烟道气、工业CO2气体、纯净的CO2气体或混合有CO2的空气中的一种或多种或液态CO2。According to the carbon replenishing method of the present invention, the CO 2 is one or more of purified flue gas, industrial CO 2 gas, pure CO 2 gas or air mixed with CO 2 or liquid CO 2 .
用于培养微藻的培养基可以是本领域熟知的任意适合微藻生长的培养基,如Zarrouk培养基、SM培养基、ASP2培养基、BG-11培养基等,也可以是针对某种藻特殊需要的、培养过程需要CO2的培养基。The medium for cultivating microalgae can be any suitable medium for the growth of microalgae known in the art, such as Zarrouk medium, SM medium, ASP 2 medium, BG-11 medium, etc. Algae special needs, the culture process requires CO 2 medium.
本发明的水平浸没罩式补碳装置及补碳方法能够用于在开放池内大规模培养各种微藻过程中补充CO2,包括螺旋藻、栅藻、雨生红球藻、盐藻、小球藻、衣藻等各种微藻。The horizontal immersion hood type carbon replenishment device and carbon replenishment method of the present invention can be used to supplement CO 2 in the process of large-scale cultivation of various microalgae in open pools, including spirulina, Scenedesmus, Haematococcus pluvialis, salina, microalgae Various microalgae such as coccus and Chlamydomonas.
在开放池内培养微藻过程中,用CO2补碳时碳源利用率非常低的主要原因是培养液层比较浅,气液接触时间短,二氧化碳气体来不及被吸收即溢出。本发明的补碳装置不仅克服了上述缺点,而且比气罩法(李夜光,胡鸿钧,张良军,陈志祥。以二氧化碳为碳源工业化生产螺旋藻工艺技术的研究。武汉植物学研究,1996,14(4):349-356)吸收效率高,比槽式补碳(专利CN200610018771.9)操作方便,比阱式补碳装置(专利CN200510126465.2)降低了流体流动阻力、节省能耗。本发明,在开放池内培养微藻细胞时,能够有效利用二氧化碳进行补碳,大大降低了生产成本。In the process of culturing microalgae in an open pond, the main reason for the very low utilization rate of carbon sources when supplementing carbon with CO2 is that the culture solution layer is relatively shallow, the gas-liquid contact time is short, and the carbon dioxide gas overflows before it can be absorbed. The carbon replenishing device of the present invention not only overcomes the above-mentioned shortcoming, but also is better than the gas mask method (Li Yeguang, Hu Hongjun, Zhang Liangjun, Chen Zhixiang. Take carbon dioxide as the research on the carbon source industrialized production of spirulina technology. Wuhan Botany Research, 1996,14( 4): 349-356) has high absorption efficiency, and is more convenient to operate than the trough carbon supplement (patent CN200610018771.9), and reduces the fluid flow resistance and saves energy consumption than the trap carbon supplement (patent CN200510126465.2). In the present invention, when microalgae cells are cultivated in an open pool, carbon dioxide can be effectively used for carbon replenishment, and the production cost is greatly reduced.
附图说明 Description of drawings
图1为本发明的用于开放池培养微藻的水平浸没罩式补碳装置示意图。Fig. 1 is a schematic diagram of a horizontal immersion hood type carbon replenishment device for cultivating microalgae in an open pond according to the present invention.
图2为本发明的用于开放池培养微藻的水平浸没罩式补碳装置在开放池流道内的位置示意图。Fig. 2 is a schematic diagram of the position of the horizontal immersion hood-type carbon replenishing device for cultivating microalgae in an open pond in the flow channel of the open pond according to the present invention.
图3为本发明的用于开放池培养微藻的水平浸没罩式补碳装置使用时顺培养液流动方向视图。Fig. 3 is a view along the flow direction of the culture solution when the horizontal immersion hood carbon replenishment device for cultivating microalgae in an open pond of the present invention is in use.
图4为本发明的用于开放池培养微藻的水平浸没罩式补碳装置使用时侧视图。Fig. 4 is a side view of the horizontal immersion hood-type carbon replenishing device used for cultivating microalgae in an open pond according to the present invention when in use.
图5为本发明的补碳装置罩子的主体不同截面形状示意图(示罩子直接落在开放池底、示每个罩子下有一个或多个气体分布器、示罩子的截面形状)。Fig. 5 is a schematic diagram of different cross-sectional shapes of the main body of the cover of the carbon replenishment device of the present invention (showing that the cover falls directly on the bottom of the open pool, showing that there are one or more gas distributors under each cover, showing the cross-sectional shape of the cover).
图6为本发明的补碳装置的不同设置方式示意图(示罩子架空、示罩子底部敞开或封闭、示罩子联体、示气体分布器落地或架空)。Fig. 6 is a schematic diagram of different installation methods of the carbon replenishment device of the present invention (showing that the cover is overhead, showing that the bottom of the cover is open or closed, showing the combination of covers, and showing that the gas distributor is on the ground or overhead).
图7为本发明的补碳装置的罩子采用扩口结构示意图。Fig. 7 is a schematic diagram of a flared structure for the cover of the carbon replenishing device of the present invention.
图8为本发明的补碳装置用于培养液的深度较浅时与搅拌器叶尖低于开放池底的搅拌器配合使用示意图。Fig. 8 is a schematic diagram showing that the carbon replenishing device of the present invention is used in conjunction with an agitator whose blade tip is lower than the bottom of the open pool when the depth of the culture solution is relatively shallow.
图9为本发明的补碳装置安装于低于开放池底的位置顺培养液流动方向的视图。Fig. 9 is a view along the flow direction of the culture solution in which the carbon replenishing device of the present invention is installed at a position lower than the open pool bottom.
图10为本发明的补碳装置安装于低于开放池底的位置侧视图。Fig. 10 is a side view of the carbon replenishing device of the present invention installed at a position lower than the open pool bottom.
图11为本发明的补碳装置用于开放池培养微藻的总体布局示意图(俯视图)。Fig. 11 is a schematic diagram (top view) of the general layout of the carbon replenishing device of the present invention for cultivating microalgae in open ponds.
图12为利用本发明的补碳装置自动补碳的系统示意图。Fig. 12 is a schematic diagram of a system for automatic carbon replenishment using the carbon replenishment device of the present invention.
附图标记reference sign
1、罩子 2、气体分布器 3、培养液进口 4、培养液出口1.
5、培养液流动方向 6、开放池底部 7、开放池壁 8、微藻培养液液面5. The flow direction of the
9、搅拌器 10、弧形容器 11、浅槽 12、pH传感器9.
13、控制装置 14、CO2气源 15、执行机构 16、流量计13.
17、压力表17. Pressure gauge
具体实施方式 Detailed ways
本发明的用于开放池培养微藻的水平浸没罩式补碳装置,包括1个或2个以上的罩子1和气体分布器2(图1、图6),所述气体分布器2设置于开放池底部6,所述罩子1罩于气体分布器2上方,该罩子1呈两端开口的筒体,沿培养液流动方向5布置,两端口分别为培养液进口3和培养液出口4(图2、图3);其中,所述气体分布器2与罩子1的培养液出口4距离40厘米以上。所述气体分布器2与罩子1的培养液出口4距离优选60~750厘米。罩子1可以直接固定于开放池底(图5)或架空设置于开放池底(图6,略去支撑装置),罩子1底部可以敞开也可以为封闭结构(图6)。罩子1的主体可以呈半圆形筒体、弧形筒体、矩形筒体或梯形筒体(图5)。为了降低罩子内的流体流动阻力,所述罩子1的培养液进口3和/或培养液出口4可以为锥形或喇叭形的扩口结构(图7)。罩子1高度为2~20厘米,以被微藻培养液液面8浸没为准。罩子1的宽度可以小到2厘米(如罩住一根气体分布管),可以大到接近开放池流道的宽度(即流道两侧开放池壁7的距离)(如罩住多根气体分布管或多个气体分布器)。所述2个以上的罩子1可以联体加工,形成联体结构(图6)。The horizontal immersion hood type carbon replenishing device for cultivating microalgae in open ponds of the present invention includes one or
本发明的用于开放池培养微藻的补碳方法,其特征在于,在开放池内沿流道方向设置一组或多组水平浸没罩式补碳装置,每组包含一个或多个水平浸没罩式补碳装置,每个水平浸没罩式补碳装置含一个顺培养液流动方向的罩子和被其罩住的一个或多个气体分布器,气体分布器优选设置在罩子的培养液进口3处,总体布局见图11,水平浸没罩式补碳装置的组数、每组含水平浸没罩式补碳装置的个数、每个罩子下的气体分布器的个数依据单个水平浸没罩式补碳装置的补碳速率、开放池的大小、培养对象的生长速率及工艺要求而设定。培养液在搅拌器(本领域常规使用的搅拌器是叶轮)的推动下在开放池内流动时,部分培养液由罩子的培养液进口3流入水平浸没罩式补碳装置中,与气体分布器放出的被封在罩子下方的含二氧化碳的气体接触,流经罩子下方的空间,再由水平浸没罩式补碳装置的培养液出口4流出,这样大大延长了气液接触时间;另一方面,含二氧化碳的气体通过气体分布器后,变成很小的气泡,气液接触面积急剧增大,这样就大大提高了二氧化碳的吸收率。The carbon replenishing method for cultivating microalgae in an open pool of the present invention is characterized in that one or more groups of horizontal immersion hood carbon replenishment devices are arranged along the direction of the flow channel in the open pool, and each group includes one or more horizontal immersion hoods Each horizontal immersion hood carbon replenishment device contains a cover along the flow direction of the culture solution and one or more gas distributors covered by it. The gas distributor is preferably arranged at the
培养液的流动可以依靠开放池原有的的搅拌器驱动实现,如叶轮或搅拌臂,搅拌器的材质可以为竹片、塑料、不锈钢、其它金属材料等。The flow of the culture medium can be driven by the original agitator in the open pool, such as impeller or stirring arm, and the material of the agitator can be bamboo chips, plastic, stainless steel, or other metal materials.
使用该水平浸没罩式补碳装置时的开放池内的培养液流速一般为20~50厘米/秒,CO2流量(折合标准状况的纯CO2)为每米开放池宽度上0.1~20升/分钟。When using the horizontal immersion hood carbon replenishing device, the flow rate of the culture solution in the open pool is generally 20-50 cm/s, and the CO 2 flow rate (pure CO 2 equivalent to standard conditions) is 0.1-20 liters/meter per meter of open pool width. minute.
所述的开放池内的培养液的深度可以是2~30厘米。The depth of the culture solution in the open pool can be 2-30 cm.
当采用的开放池内的培养液的深度较浅时,可以将开放池原有的搅拌器9设置在弧形容器10的上方,搅拌器叶尖低于开放池底(图8);可以将开放池中拟安放补碳装置的池底区域挖出浅槽11以安放补碳装置,即,将补碳装置安装于低于开放池底的位置(图9、图10)。所述的安放补碳装置的浅槽11的底部可以是平底、带圆角的平底,也可以是半圆底(图9);材质为水泥、塑料板、不锈钢板、砖或与开放池底同样的材料等。When the depth of the nutrient solution in the open pool adopted is relatively shallow, the
实施例1Example 1
如图11所示,在跑道式培养池(最常见的一种开放池,简称跑道池)内进行螺旋藻培养。跑道池流道周长70米、宽3米,搅拌器9为由一根转轴带动的4组钢制叶轮,每个叶轮有4个叶片,相互间隔90度角,相邻叶轮的叶片交错45度角,转轴由交流电机及减速机带动,搅拌器9的自转半径为50厘米。As shown in Figure 11, Spirulina is cultivated in a track-type culture pool (the most common open pool, referred to as the track pool). The circumference of the runway pool flow channel is 70 meters and the width is 3 meters. The
在跑道池内沿流道方向设置一组6个水平浸没罩式补碳装置,每个水平浸没罩式补碳装置含一个顺培养液流动方向的罩子1和被其罩住的一个气体分布器2。每个罩子由1毫米厚的不锈钢板制成,罩子的主体截面形状为半圆,每个罩子长度400厘米,宽10厘米,高5厘米。气体分布器2为微孔橡胶膜曝气管,长50厘米,其外径16毫米,内径10毫米,孔径约为30~60微米,顺培养液流动方向设置在罩子下方的培养液进口0~50厘米之间、径向位置居中。培养液被搅拌器9推动顺流道流动,部分培养液进入补碳装置的培养液进口3,与气体分布器2放出的气泡接触,流经罩子1下方的空间,流出补碳装置的培养液出口4,与未进入补碳装置的培养液混合后在流道内继续循环流动。A group of 6 horizontal immersion hood carbon replenishment devices are set along the flow path in the runway pool, and each horizontal immersion hood carbon replenishment device includes a
补碳采用自动控制,自动控制方法见申请号CN200410009360.4的专利,实施方案系统参见图12。其中,pH传感器12为市售pH电极,控制装置13为带开关控制的pH计,CO2气源14为来自钢瓶的纯净的二氧化碳气体,执行机构15是两位常闭电磁阀(通径8毫米)。依据培养液的pH值控制二氧化碳进气阀门(执行机构15)的开启与关闭。CO2气体的流量及压力通过流量计16和压力表17监测。The carbon replenishment adopts automatic control, the automatic control method is shown in the patent of application number CN200410009360.4, and the implementation scheme system is shown in Figure 12. Among them, the
藻种为钝顶螺旋藻(Spirulina Platensis),来自中国科学院水生生物研究所淡水藻种库,编号439,培养基为Zarrouk培养基,其中碳酸氢钠的初始浓度为0.05mol/L。跑道池内培养液平均深度15厘米,藻细胞接种密度0.40g(干重)/L。pH的控制范围设定为9.6~9.7,当培养液的pH升高到9.6时启动自动补碳,每个气体分布器的二氧化碳气体的流量(执行机构15开)为1升/分钟(纯二氧化碳,标况)。调节电机的转速使得跑道池内培养液的流速为25厘米/秒左右。The algal species is Spirulina Platensis, which comes from the freshwater algae species bank of the Institute of Hydrobiology, Chinese Academy of Sciences, No. 439. The medium is Zarrouk medium, and the initial concentration of sodium bicarbonate is 0.05mol/L. The average depth of the culture medium in the raceway pool is 15 cm, and the inoculation density of algae cells is 0.40 g (dry weight)/L. The pH control range is set at 9.6 to 9.7. When the pH of the culture medium rises to 9.6, automatic carbon replenishment is started, and the flow rate of carbon dioxide gas in each gas distributor (executor 15K) is 1 liter/min (pure carbon dioxide , standard condition). Adjust the rotation speed of the motor so that the flow rate of the culture solution in the raceway pool is about 25 cm/s.
每天定时检测其他营养盐的浓度并及时补充,并补充少量水以弥补水的蒸发损耗。持续培养6天,藻细胞密度达到0.70g(干重)/L,单位面积藻细胞的产量达到13.3g(干重)/m2.d。获得螺旋藻藻粉的常规成分、氨基酸、脂肪酸以及类胡萝卜素的组成及含量与文献报道基本一致。经过物料衡算得出钢瓶二氧化碳的利用率为92%。Regularly detect the concentration of other nutrients every day and replenish them in time, and add a small amount of water to make up for the evaporation loss of water. After continuous cultivation for 6 days, the algal cell density reaches 0.70g (dry weight)/L, and the yield of algal cells per unit area reaches 13.3g (dry weight)/m 2 .d. The composition and content of conventional components, amino acids, fatty acids and carotenoids obtained from Spirulina algae powder are basically consistent with those reported in the literature. Through material balance calculation, the utilization rate of carbon dioxide in the steel cylinder is 92%.
实施例2.Example 2.
其他同实施例1。在开放池内培养小球藻,培养液是以NaNO3为氮源的BG-11培养基。跑道池内培养液平均深度12厘米。藻细胞接种密度0.5g(干重)/L。pH的控制范围设定为7.5~7.6。每个气体分布器的二氧化碳气体的流量(执行机构15开)为0.5升/分钟(纯二氧化碳,标况)。跑道池内培养液的流速为30厘米/秒左右。持续培养6天,钢瓶二氧化碳的利用率为90%。Others are the same as
实施例3.Example 3.
其他同实施例1。每个罩子长度800厘米,宽6厘米,高3厘米。跑道池内培养液平均深度10厘米。藻细胞接种密度0.6g(干重)/L。pH的控制范围设定为9.5~9.6。每个气体分布器的二氧化碳气体的流量(执行机构15开)为1升/分钟(纯二氧化碳,标况)。跑道池内培养液的流速为50厘米/秒左右。持续培养6天,钢瓶二氧化碳的利用率为98%。Others are the same as
实施例4.Example 4.
其他同实施例1。设置一组3个水平浸没罩式补碳装置,每个水平浸没罩式补碳装置含1个顺培养液流动方向的罩子和被其罩住的4个气体分布器。罩子的主体截面形状为弧形,每个罩子长度200厘米,宽40厘米,高10厘米。在开放池内培养小球藻,培养液是以NaNO3为氮源的BG-11培养基。跑道池内培养液平均深度20厘米。藻细胞接种密度0.3g(干重)/L。pH的控制范围设定为7.5~7.6。每个气体分布器的二氧化碳气体的流量(执行机构15开)为0.5升/分钟(纯二氧化碳,标况)。跑道池内培养液的流速为25厘米/秒左右。持续培养6天,钢瓶二氧化碳的利用率为86%。Others are the same as
实施例5.Example 5.
其他同实施例1。在搅拌器下方挖出半径为52厘米、深度10厘米的半圆弧形槽,使搅拌器的叶尖下降到低于跑道池底8厘米。每个水平浸没罩式补碳装置含1个顺培养液流动方向的罩子和被其罩住的2个气体分布器。罩子的主体截面形状为弧形,每个罩子长度200厘米,宽15厘米,高3厘米。每个补碳装置下方的池底区域挖出2厘米深的平底斜坡的浅槽,每个罩子及气体分布器直接设置于浅槽的平底上(图9、图10)。在开放池内培养栅藻,培养液是以NaNO3为氮源的BG-11培养基。跑道池内培养液平均深度5厘米。藻细胞接种密度1.2g(干重)/L。pH的控制范围设定为7.4~7.5。每个气体分布器的二氧化碳气体的流量(执行机构15开)为0.5升/分钟(纯二氧化碳,标况)。跑道池内培养液的流速为25厘米/秒左右。持续培养6天,钢瓶二氧化碳的利用率为85%。Others are the same as
实施例6.Example 6.
其他同实施例1。在搅拌器下方挖出半径为52厘米、深度10厘米的半圆弧形槽,使搅拌器的叶尖下降到低于跑道池底8厘米。每个水平浸没罩式补碳装置含1个顺培养液流动方向的罩子和被其罩住的2个气体分布器。罩子的主体截面形状为弧形,每个罩子长度200厘米,宽10厘米,高2厘米。每个补碳装置下方的池底区域挖出3厘米深的平底斜坡的浅槽,每个罩子及气体分布器架空1厘米设置于浅槽的平底上(图9、图10、图6)。跑道池内培养液平均深度3厘米。藻细胞接种密度2g(干重)/L。pH的控制范围设定为9.7~9.8。每个气体分布器的二氧化碳气体的流量(执行机构15开)为0.5升/分钟(纯二氧化碳,标况)。跑道池内培养液的流速为25厘米/秒左右。持续培养6天,钢瓶二氧化碳的利用率为88%。Others are the same as
实施例7.Example 7.
其他同实施例1。罩子的主体截面形状为梯形,每个罩子长度100厘米,宽15厘米,高15厘米。气体分布器是直径65mm的可变孔曝气软管,长40厘米,顺培养液流动方向设置在罩子下方的培养液进口0~40厘米之间。跑道池内培养液平均深度25厘米。藻细胞接种密度0.24g(干重)/L。pH的控制范围设定为9.8~9.9。每个气体分布器的二氧化碳气体的流量(执行机构15开)为1升/分钟(纯二氧化碳,标况)。跑道池内培养液的流速为20厘米/秒左右。持续培养6天,钢瓶二氧化碳的利用率为79%。Others are the same as
实施例8.Example 8.
其他同实施例1。每个水平浸没罩式补碳装置含1个顺培养液流动方向的罩子和被其罩住的2个气体分布器。罩子的主体截面形状为矩形,每个罩子长度50厘米,宽20厘米,高20厘米。气体分布器是直径30毫米的砂芯,高70毫米,垂直于培养液流动方向并排设置在罩子下方的培养液进口5~10厘米之间。跑道池内培养液平均深度30厘米。藻细胞接种密度0.2g(干重)/L。pH的控制范围设定为9.9~10.0。每个气体分布器的二氧化碳气体的流量(执行机构15开)为0.5升/分钟(纯二氧化碳,标况)。跑道池内培养液的流速为15厘米/秒左右。持续培养6天,钢瓶二氧化碳的利用率为75%。Others are the same as
Claims (15)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210138845.8A CN102660451B (en) | 2012-05-07 | 2012-05-07 | Horizontal immersion cover type carbon supplement device and carbon supplement method used in culture of microalgae in open pond |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210138845.8A CN102660451B (en) | 2012-05-07 | 2012-05-07 | Horizontal immersion cover type carbon supplement device and carbon supplement method used in culture of microalgae in open pond |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102660451A CN102660451A (en) | 2012-09-12 |
CN102660451B true CN102660451B (en) | 2014-04-30 |
Family
ID=46770033
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210138845.8A Active CN102660451B (en) | 2012-05-07 | 2012-05-07 | Horizontal immersion cover type carbon supplement device and carbon supplement method used in culture of microalgae in open pond |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102660451B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105018331B (en) * | 2015-07-16 | 2017-07-21 | 中国海洋大学 | A kind of multidirectional turbulent flow, the raceway pond microalgae culture system of mixing |
CN105002086B (en) * | 2015-07-16 | 2017-12-01 | 中国海洋大学 | A kind of raceway pond microalgae cultivating system for continuing aerating collecting frustule using microbubble |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1982432A (en) * | 2005-12-12 | 2007-06-20 | 中国科学院过程工程研究所 | Carbon compensator for large-scale culturing micro-algae, its utilization and use |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001269161A (en) * | 2000-03-29 | 2001-10-02 | Research Institute Of Innovative Technology For The Earth | Dome light culture device |
JP2010500883A (en) * | 2006-08-17 | 2010-01-14 | アルジパワー, エルエルシー | Hydroponics facilities and methods for cultivation, harvesting, processing and transport of algae related to microorganisms and their by-products |
NO328141B1 (en) * | 2007-09-12 | 2009-12-14 | Norsk Hydro As | Apparatus and method for mixing at least two fluid streams |
CN101463321A (en) * | 2009-01-07 | 2009-06-24 | 福清市新大泽螺旋藻有限公司 | Gas distribution method and apparatus for carbon dioxide of big pool cultivated Spirulina |
-
2012
- 2012-05-07 CN CN201210138845.8A patent/CN102660451B/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1982432A (en) * | 2005-12-12 | 2007-06-20 | 中国科学院过程工程研究所 | Carbon compensator for large-scale culturing micro-algae, its utilization and use |
Non-Patent Citations (2)
Title |
---|
汪芳明 等.螺旋藻生产中两种碳营养源的对比研究.《江苏科技大学学报》.2006,第20卷(第1期),89-92. |
螺旋藻生产中两种碳营养源的对比研究;汪芳明 等;《江苏科技大学学报》;20060228;第20卷(第1期);第90页1.1实验材料,1.2实验内容和方法,图1 * |
Also Published As
Publication number | Publication date |
---|---|
CN102660451A (en) | 2012-09-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8241634B2 (en) | Carbon supply device for cultivating micro-algae in large scale and its application method and use | |
CN101838606B (en) | Airlift loop bioreactor through microalgae photoautotrophic-photoheterotrophic coupling for carbon emission reduction in sewage treatment | |
CN102206570B (en) | Apparatus and cultivating method for scaled cultivation of microalgae | |
CN101870950B (en) | Device for culturing microalgae | |
CN102382755B (en) | Microalgae culturing device and microalgae culturing method | |
CN102329720B (en) | Photobioreactor capable of realizing high-efficiency carbon dioxide immobilization | |
CN105331517B (en) | Microalgae cultivation system, cavity type photobioreactor and microalgae cultivation method | |
CN111704990B (en) | Tube-pool combined flash bioreactor system and its microalgae growth and carbon fixation method | |
CN103525686B (en) | Composite reinforced microalgae photobioreactor based on hollow light pipes | |
MX2012005674A (en) | Algae culture system. | |
CN104726321B (en) | A kind of racetrack bioreactor suitable for sunlight batch production | |
CN102643741B (en) | Trap type carbon replenishing device for culturing microalgae of opened pool and carbon replenishing method thereof | |
CN205420364U (en) | Microalgae cultivation system, cavity photobioreactor | |
US10160945B2 (en) | Horizontal immersion cover type carbon supplement device and carbon supplement method used for microalgae culture in open pond | |
CN102660451B (en) | Horizontal immersion cover type carbon supplement device and carbon supplement method used in culture of microalgae in open pond | |
US9567557B2 (en) | Trap-type carbon replenishing device for culturing microalgae of opened pool and carbon replenishing method thereof | |
CN203462055U (en) | Photobioreactor for preventing microalgae attachment to wall in airlift mixing way | |
CN105950441B (en) | A kind of microalgae mass culture apparatus for being applied to improve carbon sequestration efficiency | |
CN202297574U (en) | Shower type photo-bioreactor | |
CN203238251U (en) | Microalgae culture pond with novel aeration device | |
CN106244426A (en) | High density Large-scale microalgae culture apparatus | |
CN205999378U (en) | High density Large-scale microalgae culture apparatus | |
CN204022811U (en) | A kind of open raceway pond improving both culturing microalgae efficiency | |
CN204529835U (en) | A kind of gas lift racetrack bio-reactor | |
CN106434278B (en) | A kind of two sections of multi-stage aeration large size gas lift flat plate photobioreactors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |