CN102631710A - Preparation method of precursor of composite tissues and organs with multichannel multilayer cell structure - Google Patents
Preparation method of precursor of composite tissues and organs with multichannel multilayer cell structure Download PDFInfo
- Publication number
- CN102631710A CN102631710A CN2012101103881A CN201210110388A CN102631710A CN 102631710 A CN102631710 A CN 102631710A CN 2012101103881 A CN2012101103881 A CN 2012101103881A CN 201210110388 A CN201210110388 A CN 201210110388A CN 102631710 A CN102631710 A CN 102631710A
- Authority
- CN
- China
- Prior art keywords
- cell
- mold
- channel
- cells
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 210000000056 organ Anatomy 0.000 title claims abstract description 51
- 239000002243 precursor Substances 0.000 title claims abstract description 34
- 239000002131 composite material Substances 0.000 title claims abstract description 31
- 238000002360 preparation method Methods 0.000 title claims description 19
- 210000004027 cell Anatomy 0.000 claims abstract description 120
- 238000000034 method Methods 0.000 claims abstract description 32
- 239000011159 matrix material Substances 0.000 claims abstract description 31
- 229920001059 synthetic polymer Polymers 0.000 claims abstract description 26
- 210000000130 stem cell Anatomy 0.000 claims abstract description 21
- 239000000243 solution Substances 0.000 claims description 62
- 210000001519 tissue Anatomy 0.000 claims description 55
- 239000002861 polymer material Substances 0.000 claims description 27
- 239000000463 material Substances 0.000 claims description 25
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 23
- 229920005615 natural polymer Polymers 0.000 claims description 22
- 239000000203 mixture Substances 0.000 claims description 20
- 239000002953 phosphate buffered saline Substances 0.000 claims description 12
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims description 11
- 239000003102 growth factor Substances 0.000 claims description 11
- 239000003960 organic solvent Substances 0.000 claims description 11
- 108010049003 Fibrinogen Proteins 0.000 claims description 10
- 102000008946 Fibrinogen Human genes 0.000 claims description 10
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 claims description 10
- 229940012952 fibrinogen Drugs 0.000 claims description 10
- 239000004814 polyurethane Substances 0.000 claims description 9
- 102000008186 Collagen Human genes 0.000 claims description 8
- 108010035532 Collagen Proteins 0.000 claims description 8
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 claims description 8
- 229920001436 collagen Polymers 0.000 claims description 8
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 7
- 229920002635 polyurethane Polymers 0.000 claims description 7
- 239000002904 solvent Substances 0.000 claims description 7
- 229920002307 Dextran Polymers 0.000 claims description 6
- 108010010803 Gelatin Proteins 0.000 claims description 6
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 6
- 241001465754 Metazoa Species 0.000 claims description 6
- 239000006285 cell suspension Substances 0.000 claims description 6
- 229920000159 gelatin Polymers 0.000 claims description 6
- 239000008273 gelatin Substances 0.000 claims description 6
- 235000019322 gelatine Nutrition 0.000 claims description 6
- 235000011852 gelatine desserts Nutrition 0.000 claims description 6
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 claims description 6
- 239000002577 cryoprotective agent Substances 0.000 claims description 5
- 229920000747 poly(lactic acid) Polymers 0.000 claims description 5
- 229920000728 polyester Polymers 0.000 claims description 5
- 239000004626 polylactic acid Substances 0.000 claims description 5
- 210000004413 cardiac myocyte Anatomy 0.000 claims description 4
- 230000010261 cell growth Effects 0.000 claims description 4
- 235000011187 glycerol Nutrition 0.000 claims description 4
- 210000003494 hepatocyte Anatomy 0.000 claims description 4
- 210000001082 somatic cell Anatomy 0.000 claims description 4
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 claims description 3
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 claims description 3
- 229920001661 Chitosan Polymers 0.000 claims description 3
- 102100037362 Fibronectin Human genes 0.000 claims description 3
- 108010067306 Fibronectins Proteins 0.000 claims description 3
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Natural products OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 claims description 3
- 108090000100 Hepatocyte Growth Factor Proteins 0.000 claims description 3
- 210000004102 animal cell Anatomy 0.000 claims description 3
- 210000004369 blood Anatomy 0.000 claims description 3
- 239000008280 blood Substances 0.000 claims description 3
- 210000001185 bone marrow Anatomy 0.000 claims description 3
- 238000010382 chemical cross-linking Methods 0.000 claims description 3
- 229940045110 chitosan Drugs 0.000 claims description 3
- 229960005188 collagen Drugs 0.000 claims description 3
- 229920001577 copolymer Polymers 0.000 claims description 3
- 238000013461 design Methods 0.000 claims description 3
- BTVWZWFKMIUSGS-UHFFFAOYSA-N dimethylethyleneglycol Natural products CC(C)(O)CO BTVWZWFKMIUSGS-UHFFFAOYSA-N 0.000 claims description 3
- 229940014259 gelatin Drugs 0.000 claims description 3
- 239000004310 lactic acid Substances 0.000 claims description 3
- 235000014655 lactic acid Nutrition 0.000 claims description 3
- 229910052751 metal Inorganic materials 0.000 claims description 3
- 239000002184 metal Substances 0.000 claims description 3
- 210000002569 neuron Anatomy 0.000 claims description 3
- 235000010413 sodium alginate Nutrition 0.000 claims description 3
- 239000000661 sodium alginate Substances 0.000 claims description 3
- 229940005550 sodium alginate Drugs 0.000 claims description 3
- 239000011780 sodium chloride Substances 0.000 claims description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 3
- KIUKXJAPPMFGSW-DNGZLQJQSA-N (2S,3S,4S,5R,6R)-6-[(2S,3R,4R,5S,6R)-3-Acetamido-2-[(2S,3S,4R,5R,6R)-6-[(2R,3R,4R,5S,6R)-3-acetamido-2,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-2-carboxy-4,5-dihydroxyoxan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylic acid Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 KIUKXJAPPMFGSW-DNGZLQJQSA-N 0.000 claims description 2
- 108090000386 Fibroblast Growth Factor 1 Proteins 0.000 claims description 2
- 102100031706 Fibroblast growth factor 1 Human genes 0.000 claims description 2
- 102000010780 Platelet-Derived Growth Factor Human genes 0.000 claims description 2
- 108010038512 Platelet-Derived Growth Factor Proteins 0.000 claims description 2
- 108010074506 Transfer Factor Proteins 0.000 claims description 2
- 239000006143 cell culture medium Substances 0.000 claims description 2
- 239000003795 chemical substances by application Substances 0.000 claims description 2
- 150000001875 compounds Chemical class 0.000 claims description 2
- 229920002674 hyaluronan Polymers 0.000 claims description 2
- 229960003160 hyaluronic acid Drugs 0.000 claims description 2
- FZWBNHMXJMCXLU-BLAUPYHCSA-N isomaltotriose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1OC[C@@H]1[C@@H](O)[C@H](O)[C@@H](O)[C@@H](OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C=O)O1 FZWBNHMXJMCXLU-BLAUPYHCSA-N 0.000 claims description 2
- 239000002504 physiological saline solution Substances 0.000 claims description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims 2
- 102000003974 Fibroblast growth factor 2 Human genes 0.000 claims 1
- 108090000379 Fibroblast growth factor 2 Proteins 0.000 claims 1
- 102100021866 Hepatocyte growth factor Human genes 0.000 claims 1
- 102000009618 Transforming Growth Factors Human genes 0.000 claims 1
- 108010009583 Transforming Growth Factors Proteins 0.000 claims 1
- 238000005138 cryopreservation Methods 0.000 claims 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 claims 1
- 229920002521 macromolecule Polymers 0.000 claims 1
- 239000005416 organic matter Substances 0.000 claims 1
- 230000001939 inductive effect Effects 0.000 abstract description 4
- 235000015097 nutrients Nutrition 0.000 abstract description 4
- 238000012258 culturing Methods 0.000 abstract description 3
- 238000009826 distribution Methods 0.000 abstract description 3
- 239000010410 layer Substances 0.000 description 40
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 11
- 229920000642 polymer Polymers 0.000 description 7
- UWHCKJMYHZGTIT-UHFFFAOYSA-N Tetraethylene glycol, Natural products OCCOCCOCCOCCO UWHCKJMYHZGTIT-UHFFFAOYSA-N 0.000 description 6
- 108090000190 Thrombin Proteins 0.000 description 5
- 210000002889 endothelial cell Anatomy 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 238000000605 extraction Methods 0.000 description 5
- 239000002344 surface layer Substances 0.000 description 5
- 229960004072 thrombin Drugs 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 229920001606 poly(lactic acid-co-glycolic acid) Polymers 0.000 description 4
- 229920001223 polyethylene glycol Polymers 0.000 description 4
- 229930012538 Paclitaxel Natural products 0.000 description 3
- 229960001592 paclitaxel Drugs 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 description 3
- 229910001369 Brass Inorganic materials 0.000 description 2
- 102000003745 Hepatocyte Growth Factor Human genes 0.000 description 2
- 239000012620 biological material Substances 0.000 description 2
- 239000010951 brass Substances 0.000 description 2
- 238000004113 cell culture Methods 0.000 description 2
- 239000012930 cell culture fluid Substances 0.000 description 2
- 230000015271 coagulation Effects 0.000 description 2
- 238000005345 coagulation Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 210000004153 islets of langerhan Anatomy 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- -1 polytetrafluoroethylene Polymers 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 210000000329 smooth muscle myocyte Anatomy 0.000 description 2
- 239000001509 sodium citrate Substances 0.000 description 2
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 108010081589 Becaplermin Proteins 0.000 description 1
- 102000018233 Fibroblast Growth Factor Human genes 0.000 description 1
- 108050007372 Fibroblast Growth Factor Proteins 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 206010053159 Organ failure Diseases 0.000 description 1
- 102000046299 Transforming Growth Factor beta1 Human genes 0.000 description 1
- 101800002279 Transforming growth factor beta-1 Proteins 0.000 description 1
- LEHOTFFKMJEONL-UHFFFAOYSA-N Uric Acid Chemical compound N1C(=O)NC(=O)C2=C1NC(=O)N2 LEHOTFFKMJEONL-UHFFFAOYSA-N 0.000 description 1
- TVWHNULVHGKJHS-UHFFFAOYSA-N Uric acid Natural products N1C(=O)NC(=O)C2NC(=O)NC21 TVWHNULVHGKJHS-UHFFFAOYSA-N 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 238000007605 air drying Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000004900 autophagic degradation Effects 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 210000000845 cartilage Anatomy 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000012407 engineering method Methods 0.000 description 1
- 229940126864 fibroblast growth factor Drugs 0.000 description 1
- 210000003904 glomerular cell Anatomy 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 229920000669 heparin Polymers 0.000 description 1
- 229960002897 heparin Drugs 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 210000005229 liver cell Anatomy 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- 230000035790 physiological processes and functions Effects 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 210000003491 skin Anatomy 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000002407 tissue scaffold Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 229940099456 transforming growth factor beta 1 Drugs 0.000 description 1
- 238000002054 transplantation Methods 0.000 description 1
- 229940116269 uric acid Drugs 0.000 description 1
Images
Landscapes
- Materials For Medical Uses (AREA)
Abstract
多通道多层细胞结构的复合组织器官前体的制备方法,该方法首先制备一种或多种细胞基质溶液和合成高分子溶液,将合成高分子溶液罐注到主模具中形成支架下表面,将一种或多种细胞基质溶液分层灌注到组合模具中交联形成多层细胞基质层;移除内模具,将合成高分子溶液灌注到细胞基质层外表面和周边空隙处形成外支架,去除组合模具即可。本发明可成形含均匀内部通道的不同细胞基质材料与合成高分子支架外壳结合的复杂多通道三维结构,克服了组织工程存在的在三维支架中诱导培养细胞需要时间长、细胞种类单一、细胞分布不均匀、细胞层超过一定厚度后密闭其中的细胞不易成活、无营养液通道、干细胞分层分化困难、支架外形局限性强等缺点。
A method for preparing a composite tissue and organ precursor with a multi-channel multilayer cell structure, the method first prepares one or more cell matrix solutions and a synthetic polymer solution, and pours the synthetic polymer solution into a master mold to form the lower surface of the scaffold, One or more cell matrix solutions are layered and poured into the composite mold to cross-link to form a multilayer cell matrix layer; the inner mold is removed, and the synthetic polymer solution is poured into the outer surface of the cell matrix layer and the surrounding space to form an outer scaffold, Just remove the combination mold. The invention can form a complex multi-channel three-dimensional structure that combines different cell matrix materials with uniform internal channels and a synthetic polymer scaffold shell, which overcomes the long time required for inducing and culturing cells in a three-dimensional scaffold, single cell types, and cell distribution in tissue engineering. Inhomogeneous, the cells in which the cell layer exceeds a certain thickness are not easy to survive, there is no nutrient solution channel, it is difficult to stratify and differentiate stem cells, and the shape of the scaffold is limited.
Description
技术领域 technical field
本发明属于生物组织和器官的人工制造技术领域,特别涉及利用合成高分子材料、细胞基质材料制备组织器官前体的工艺方法,属于生物组织工程技术领域。The invention belongs to the technical field of artificial manufacturing of biological tissues and organs, in particular to a process for preparing tissue and organ precursors by using synthetic polymer materials and cell matrix materials, and belongs to the technical field of biological tissue engineering.
背景技术 Background technique
世界上每年患有组织缺损或器官衰竭的病人数逾千万。然而,活体供体器官有限,现有的机械装置不具备器官的所有功能,不能防止患者的病情进一步恶化。据此,以提高此类疾患治疗水平为宗旨的组织工程(Tissue Engineering)技术应运而生。Tens of millions of patients suffer from tissue defect or organ failure every year in the world. However, living donor organs are limited, and existing mechanical devices do not have all the functions of the organs and cannot prevent further deterioration of the patient's condition. Accordingly, the tissue engineering (Tissue Engineering) technology with the purpose of improving the treatment level of such diseases came into being.
组织工程学是由美国国家科学基金委员会于1987年正式提出和确定的,是应用细胞生物学、生物材料和工程学的原理,研究开发用于修复或改善人体病损组织或器官的结构、功能的科学。组织工程是一门由生物学、医学、材料学、工程学等多学科交叉产生的高新技术学科。其含义是应用生命科学与工程学的原理与技术,在正确认识哺乳动物的正常及病理两种状态下的组织结构与功能关系的基础上,研究、开发用于修复、维护、促进人体各种组织或器官损伤后的功能和形态的生物替代物。Wolter在1984年正式提出“组织工程”一词,1987年美国国家科学基金委员会正式确定组织工程学成为一门新学科。多年来科学家们运用组织工程技术,利用人体残余器官的少量正常细胞进行体外繁殖,希望获得患者所需的、具有相同功能的器官,并不存在排斥反应,取得了可喜的成果。Tissue engineering was officially proposed and determined by the National Science Foundation of the United States in 1987. It is the application of the principles of cell biology, biomaterials and engineering to research and develop the structure and function of human diseased tissues or organs. science. Tissue engineering is a high-tech discipline produced by the intersection of biology, medicine, materials science, engineering and other disciplines. Its meaning is to apply the principles and technologies of life science and engineering, and on the basis of a correct understanding of the relationship between the tissue structure and function of mammals in both normal and pathological states, research and develop for the repair, maintenance, and promotion of various diseases in the human body. Biological substitutes for function and morphology after tissue or organ injury. Wolter formally proposed the term "tissue engineering" in 1984, and in 1987, the National Science Foundation of the United States formally confirmed that tissue engineering became a new discipline. Over the years, scientists have used tissue engineering technology to reproduce in vitro using a small amount of normal cells from human residual organs, hoping to obtain organs with the same functions that patients need without rejection, and have achieved gratifying results.
但现存的组织工程技术面临许多困难和限制,组织工程应用研究所取得的成功均是在那些结构与生理功能较为简单的组织器官如骨骼、软骨、皮肤。传统组织工程方法一般先制备结构支架,在进行细胞培养过程中由于上层细胞消耗大部分的氧气和营养,限制了这些组分向底层扩散,从而限制了细胞向支架深层的迁移等,达不到及时治疗临床病人的要求。传统的单一组织支架制备技术很难形成具有营养供应通道分层组织并可诱导分化的组织器官前体。同时传统的组织工程技术不能满足将不同的细胞在空间准确定位与定点放置,构建复杂组织器官的功能梯度结构的需求。据统计中国已成为器官移植第二大国,每年接受器官移植的患者在一万例左右,但我国每年约有一百五十万例患者需要进行器官移植,急需新型科技手段出现用以大量快速有效的培育出自体器官。一种多通道多细胞复合组织器官前体的制备方法恰好可以满足这一巨大市场的前期关键需求,并为随后的完整组织器官生长提供了必要的准备。However, the existing tissue engineering technology faces many difficulties and limitations. The success of tissue engineering application research is in those tissues and organs with relatively simple structure and physiological functions, such as bone, cartilage, and skin. The traditional tissue engineering method generally prepares the structural scaffold first. During the cell culture process, the cells in the upper layer consume most of the oxygen and nutrients, which limits the diffusion of these components to the bottom layer, thereby limiting the migration of cells to the deep layer of the scaffold. Timely treatment of clinical patient requirements. Traditional single tissue scaffold preparation technology is difficult to form tissue and organ precursors with nutrient supply channel layered organization and inducible differentiation. At the same time, traditional tissue engineering techniques cannot meet the needs of accurately positioning and placing different cells in space and constructing functionally graded structures of complex tissues and organs. According to statistics, China has become the second largest country in organ transplantation. There are about 10,000 organ transplant patients each year, but about 1.5 million patients in my country need organ transplants each year. There is an urgent need for new scientific and technological means to emerge quickly and effectively in large quantities. grow autologous organs. A preparation method of multi-channel multi-cell composite tissue and organ precursor can just meet the early key needs of this huge market, and provide the necessary preparation for the subsequent growth of complete tissue and organ.
发明内容 Contents of the invention
本发明的目的是提供一种多通道多层细胞结构的复合组织器官前体的制备方法,旨在前人工作的基础上,利用组合模具分步灌注,实现多层细胞结构和支架材料在空间的准确定位,成形多营养物质通道多种生长因子的复合组织器官前体。利用模具组合、高分子凝固成形等原理实现复杂组织器官的重建,本发明可成形含不同细胞基质材料与合成高分子支架的复杂三维结构,克服了组织工程存在的在三维支架中诱导培养细胞需要时间长、细胞分布不均匀,细胞很难渗入到内层结构中等缺点。The purpose of the present invention is to provide a method for preparing composite tissue and organ precursors with multi-channel and multi-layered cell structures, aiming at using a combined mold to perfuse step by step on the basis of predecessors' work to realize the multi-layered cell structure and scaffold material in space. Precisely localized, multi-nutrient pathways and multiple growth factors in complex tissue-organ precursors. The reconstruction of complex tissues and organs is realized by using the principles of mold combination and polymer coagulation forming. The invention can form complex three-dimensional structures containing different cell matrix materials and synthetic polymer scaffolds, which overcomes the need for inducing and culturing cells in three-dimensional scaffolds in tissue engineering. Long time, uneven distribution of cells, and it is difficult for cells to penetrate into the inner structure.
本发明的技术方案如下:Technical scheme of the present invention is as follows:
一种多通道多层细胞结构的复合组织器官前体的制备方法,其特征在于该方法包括如下步骤进行:A method for preparing a composite tissue and organ precursor with a multi-channel multilayer cell structure, characterized in that the method includes the following steps:
1)将合成高分子材料溶于有机溶剂中,制成质量百分浓度为20%~50%的合成高分子溶液;1) Dissolving the synthetic polymer material in an organic solvent to prepare a synthetic polymer solution with a concentration of 20% to 50% by mass;
2)分别制备质量百分浓度为1%~30%的多种天然高分子溶液,将多种天然高分子溶液与不同种类动物细胞悬浮液分别按1~9∶9~1体积比混合制成多种细胞基质溶液;动物体细胞悬浮液中细胞浓度为1×104个/mL~1×107个/mL;2) Prepare a variety of natural polymer solutions with a mass percentage concentration of 1% to 30%, respectively, and mix the various natural polymer solutions with different types of animal cell suspensions at a volume ratio of 1 to 9:9 to 1. A variety of cell matrix solutions; the cell concentration in animal somatic cell suspension is 1×10 4 cells/mL~1×10 7 cells/mL;
3)预先设计好主模具和与主模具周向内表面贴合的内模具,所述主模具底部设有阵列布置的棒状结构,将内模具嵌入主模具形成组合模具,将一部分合成高分子溶液罐注到组合模具中,通过干膜法或湿膜法除去有机溶剂,形成底层合成高分子材料支架;3) Pre-design the main mold and the inner mold attached to the circumferential inner surface of the main mold. The bottom of the main mold is provided with a rod-shaped structure arranged in an array. The inner mold is embedded in the main mold to form a combined mold, and a part of the synthetic polymer solution Pouring into the combination mold, removing the organic solvent by dry film method or wet film method to form the underlying synthetic polymer material scaffold;
4)将一种或多种细胞基质溶液分层罐注到组合模具中,再经物理或化学交联方法,使细胞基质溶液中的天然高分子交联,形成多层稳定的细胞基质层结构;4) One or more cell matrix solutions are poured into the combined mold in layers, and then the natural polymers in the cell matrix solution are cross-linked by physical or chemical cross-linking methods to form a multi-layer stable cell matrix layer structure ;
5)将内模具从组合模具中移除,将合成高分子溶液灌入内模具遗留的缝隙和多层细胞基质层结构的上表面,通过干膜法或湿膜法除去有机溶剂,然后去除主模具,制成多通道及多层细胞结构的复杂组织器官前体。5) Remove the inner mold from the combined mold, pour the synthetic polymer solution into the gap left by the inner mold and the upper surface of the multilayer cell matrix layer structure, remove the organic solvent by dry film method or wet film method, and then remove the main mold , to make complex tissue and organ precursors with multi-channel and multi-layer cell structures.
所述的一种多通道多层细胞结构的复合组织器官前体的制备方法,其特征在于:所述的合成高分子材料采用聚氨酯、乳酸与乙醇酸共聚物、聚乳酸和聚酯中的一种或几种材料的复合物。所述的一种多通道多层细胞结构的复合组织器官前体的制备方法,其特征在于:所述的天然高分子材料采用明胶、纤维蛋白原、胶原、壳聚糖、海藻酸钠、透明质酸和纤粘连蛋白中的至少一种。The method for preparing a composite tissue and organ precursor with a multi-channel multilayer cell structure is characterized in that: the synthetic polymer material is one of polyurethane, lactic acid and glycolic acid copolymer, polylactic acid and polyester. A composite of one or more materials. The preparation method of a composite tissue and organ precursor with a multi-channel multilayer cell structure is characterized in that: the natural polymer material adopts gelatin, fibrinogen, collagen, chitosan, sodium alginate, transparent At least one of uric acid and fibronectin.
所述的一种多通道多层细胞结构的复合组织器官前体的制备方法,其特征在于:在细胞基质溶液中还加入体积百分比为1%~30%的冻存保护剂,所述的冻存保护剂采用甘油、二甲基亚砜、乙二醇和葡聚糖中的一种或两种材料的混合物。The method for preparing a composite tissue and organ precursor with a multi-channel multilayer cell structure is characterized in that: a cryoprotectant with a volume percentage of 1% to 30% is added to the cell matrix solution, and the cryoprotectant The preservation agent adopts one or a mixture of two materials in glycerin, dimethyl sulfoxide, ethylene glycol and dextran.
所述的一种多通道多层细胞结构的复合组织器官前体的制备方法,其特征在于:在细胞基质溶液中加入体积百分比为0.001%~0.1%细胞生长因子;所述生长因子采用内皮细胞生长因子、细胞转移因子和肝细胞生长因子中的一种或几种。The preparation method of a composite tissue and organ precursor with a multi-channel multi-layered cell structure is characterized in that: a volume percentage of 0.001% to 0.1% cell growth factor is added to the cell matrix solution; the growth factor adopts endothelial cells One or more of growth factors, cell transfer factors and hepatocyte growth factors.
所述的一种多通道多层细胞结构的复合组织器官前体的制备方法,其特征在于:所述动物体细胞采用干细胞或成体细胞,所述干细胞为脂肪干细胞、血液干细胞或骨髓干细胞,所述成体细胞为肝细胞、心肌细胞或神经细胞。The preparation method of a composite tissue and organ precursor with a multi-channel multi-layered cell structure is characterized in that: the animal body cells are stem cells or adult cells, and the stem cells are fat stem cells, blood stem cells or bone marrow stem cells. The adult cells are hepatocytes, cardiomyocytes or nerve cells.
所述的一种多通道多层细胞结构的复合组织器官前体的制备方法,其特征在于:步骤1)中用于溶解所述合成高分子材料的有机溶剂采用四乙二醇、乙二醇、异丙醇或1,4-二氧六环;步骤2)中用于溶解所述天然高分子材料的溶剂采用水、生理盐水、PBS溶液、pH=6~8的0.09M氯化钠、3-羟甲基氨基甲烷盐酸溶液或细胞培养液。The preparation method of the composite tissue and organ precursor of a multi-channel multi-layer cell structure is characterized in that: the organic solvent used to dissolve the synthetic polymer material in step 1) adopts tetraethylene glycol, ethylene glycol , isopropanol or 1,4-dioxane; the solvent used to dissolve the natural polymer material in step 2) adopts water, normal saline, PBS solution, 0.09M sodium chloride with pH=6~8, 3-Hydroxymethylaminomethane hydrochloric acid solution or cell culture medium.
所述的一种多通道多层细胞结构的复合组织器官前体的制备方法,其特征在于:所述的主模具由金属或硬质高分子材料制成,所述的主模具及内模具的截面形状为圆形、椭圆形、多边形,或类似器官表面形状的结构。The preparation method of a composite tissue and organ precursor with a multi-channel multilayer cell structure is characterized in that: the main mold is made of metal or hard polymer material, and the main mold and the inner mold are The cross-sectional shape is circular, oval, polygonal, or a structure similar to the surface shape of an organ.
本发明所制备的带有多通道多层细胞结构的复合组织器官前体中合成高分子支架材料具备优异的机械性能,这种内部细胞基质外部复合高分子材料中间孔隙贯通的结构可避免单纯细胞基质植入体内散落进而被自体吞噬这一难题。其中细胞基质溶液具有优异的生物相容性,多层细胞结构可以在其中形成多种组织。本发明可以实现多层细胞结构/天然高分子材料与合成高分子支架材料在空间的准确定位,克服了组织工程存在的在三维支架中诱导培养细胞需要时间长、细胞种类单一、细胞分布不均匀、细胞层超过一定厚度后密闭其中的细胞不易成活、无营养液通道、干细胞分层分化困难、支架外形局限性强等缺点。本发明利用组合模具法、高分子凝固成形等原理达到复杂器官中不同部位不同细胞类型及结构类型的要求,为实现复杂组织器官的重建打下基础。The synthetic polymer scaffold material in the composite tissue and organ precursor with multi-channel multi-layer cell structure prepared by the present invention has excellent mechanical properties. The problem of stroma implants being scattered in the body and then being autophagy. Among them, the cell matrix solution has excellent biocompatibility, and the multilayer cell structure can form various tissues in it. The present invention can realize the accurate spatial positioning of the multilayer cell structure/natural polymer material and the synthetic polymer scaffold material, and overcomes the long time required for inducing and culturing cells in the three-dimensional scaffold, the single type of cells, and the uneven distribution of cells existing in tissue engineering 1. After the cell layer exceeds a certain thickness, the cells sealed in it are not easy to survive, there is no nutrient solution channel, it is difficult to differentiate stem cells in layers, and the shape of the scaffold is limited. The invention utilizes the principles of combination mold method, polymer coagulation forming, etc. to meet the requirements of different cell types and structure types in different parts of complex organs, and lays a foundation for realizing the reconstruction of complex tissues and organs.
附图说明 Description of drawings
图1是本发明中主模具与内模具的三维示意图(以圆柱体形状为例)。Fig. 1 is a three-dimensional schematic diagram of a main mold and an inner mold in the present invention (taking the shape of a cylinder as an example).
图2a是本发明中组合模具的主视图(以圆柱体形状为例)。Fig. 2a is the front view of the composite mold in the present invention (taking the shape of a cylinder as an example).
图2b是图2a的A-A剖视图。Fig. 2b is a sectional view along line A-A of Fig. 2a.
图3a是本发明中主模具的主视图(以圆柱体形状为例)。Fig. 3a is a front view of the main mold in the present invention (taking the shape of a cylinder as an example).
图3b是图3a的A-A剖视图。Fig. 3b is a sectional view along line A-A of Fig. 3a.
图4是多通道多层细胞结构复合组织器官前体的剖面分层图(以双层细胞基质层为例)。Fig. 4 is a cross-sectional layered diagram of a composite tissue and organ precursor with a multi-channel multi-layer cell structure (taking a double-layer cell matrix layer as an example).
在图1至图4中:In Figures 1 to 4:
1-内模具;2-主模具;3-底层高分子材料支架;4-细胞基质层结构。1-Inner mold; 2-Main mold; 3-Bottom polymer material support; 4-Cell matrix layer structure.
具体实施方法Specific implementation method
本发明提供的一种多通道多细胞复合组织器官前体的制备方法,其具体工艺步骤如下:The preparation method of a multi-channel multi-cell composite tissue and organ precursor provided by the present invention, the specific process steps are as follows:
1)将合成高分子材料溶于有机溶剂中,制成质量百分浓度为20%~50%的合成高分子溶液;1) Dissolving the synthetic polymer material in an organic solvent to prepare a synthetic polymer solution with a concentration of 20% to 50% by mass;
2)分别制备质量百分浓度为1%~30%的多种天然高分子溶液,将多种天然高分子溶液与不同种类动物细胞悬浮液分别按1~9∶9~1体积比混合制成多种细胞基质溶液;动物体细胞悬浮液中细胞浓度为1×104个/mL~1×107个/mL;2) Prepare a variety of natural polymer solutions with a mass percentage concentration of 1% to 30%, respectively, and mix the various natural polymer solutions with different types of animal cell suspensions at a volume ratio of 1 to 9:9 to 1. A variety of cell matrix solutions; the cell concentration in animal somatic cell suspension is 1×10 4 cells/mL~1×10 7 cells/mL;
3)预先设计好主模具2和与主模具周向内表面贴合的内模具1,所述主模具底部布置有阵列的棒状结构,将内模具1内嵌入主模具2形成组合模具,将合成高分子溶液罐注到组合模具中,通过干膜法或湿膜法除去有机溶剂,形成底层合成高分子材料支架3;3) Pre-design the
4)将一种或多种细胞基质溶液分层罐注到组合模具中,再经物理或化学交联方法,使细胞基质溶液中的天然高分子交联,形成多层稳定的细胞基质层结构4;4) One or more cell matrix solutions are poured into the combined mold in layers, and then the natural polymers in the cell matrix solution are cross-linked by physical or chemical cross-linking methods to form a multi-layer stable cell matrix layer structure 4;
5)将内模具1从组合模具中移除,再将合成高分子溶液灌入内模具1遗留的缝隙与多层细胞基质层结构上表面,通过干膜法或湿膜法除去有机溶剂,去除主模具2,制成多通道及多层细胞结构的复杂组织器官前体。5) Remove the inner mold 1 from the composite mold, and then pour the synthetic polymer solution into the gap left by the inner mold 1 and the upper surface of the multi-layer cell matrix layer structure, and remove the organic solvent by dry film method or wet film method to remove the
本发明的优选方案是在所述的细胞基质溶液中还加入体积百分比为1%~30%的冻存保护剂,所述的冻存保护剂采用甘油、二甲基亚砜、乙二醇和葡聚糖中的一种或两种材料的混合物。在所述的细胞基质溶液中加入体积百分比为0.001%~0.1%细胞生长因子。所述的细胞生长因子采用内皮细胞生长因子、细胞转移因子或肝细胞生长因子等单一或复合生长因子。所述的合成高分子材料采用聚氨酯、乳酸与乙醇酸共聚物、聚乳酸和聚酯中的一种或几种材料的复合物。所述的天然高分子材料采用明胶、纤维蛋白原、胶原、壳聚糖、海藻酸钠、透明质酸和纤粘连蛋白中的至少一种。所述动物体细胞采用干细胞或成体细胞,所述干细胞为脂肪干细胞、血液干细胞或骨髓干细胞,所述成体细胞为肝细胞、心肌细胞或神经细胞。步骤1)中用于溶解所述合成高分子材料的有机溶剂采用四乙二醇、乙二醇、异丙醇或1,4-二氧六环;步骤2)中用于溶解所述天然高分子材料的溶剂采用水、生理盐水、PBS溶液、pH=6~8的0.09M氯化钠、3-羟甲基氨基甲烷盐酸溶液或细胞培养液。The preferred solution of the present invention is to also add a cryoprotectant with a volume percentage of 1% to 30% in the cell matrix solution, and the cryoprotectant uses glycerol, dimethyl sulfoxide, ethylene glycol and glucose One or a mixture of two materials in a polysaccharide. The volume percentage of 0.001%-0.1% cell growth factor is added to the cell matrix solution. The cell growth factor adopts single or compound growth factors such as endothelial cell growth factor, cell transfer factor or hepatocyte growth factor. The synthetic macromolecular material adopts one or more composites of polyurethane, lactic acid and glycolic acid copolymer, polylactic acid and polyester. The natural polymer material adopts at least one of gelatin, fibrinogen, collagen, chitosan, sodium alginate, hyaluronic acid and fibronectin. The animal somatic cells are stem cells or adult cells, the stem cells are fat stem cells, blood stem cells or bone marrow stem cells, and the adult cells are liver cells, cardiomyocytes or nerve cells. In step 1), the organic solvent used to dissolve the synthetic polymer material adopts tetraethylene glycol, ethylene glycol, isopropanol or 1,4-dioxane; in step 2), it is used to dissolve the natural polymer The solvent of the molecular material is water, physiological saline, PBS solution, 0.09M sodium chloride with pH=6-8, 3-hydroxymethylaminomethane hydrochloric acid solution or cell culture fluid.
所述的一种多通道多层细胞结构的复合组织器官前体的制备方法,其特征在于:所述的主模具2由金属或硬质高分子材料制成,所述的主模具2及内模具1的截面形状为圆形、椭圆形、多边形,或类似器官表面形状的结构。The method for preparing a composite tissue and organ precursor with a multi-channel multilayer cell structure is characterized in that: the
实施例1:1)制备一系列尺寸不等的黄铜材质配套组合模具;2)配制50%(W/V)的PLGA/一四二氧六环溶液,加入1%(W/W)的肝素,灌入主模具内。使用自然风干的干膜法形成PLGA底层支架;2)配制纤维蛋白原溶液,将内模具套入主模具内部,在组合模具中注入明胶/纤维蛋白原与内皮细胞的混合物,细胞密度为1×107个/mL;3)加入肝细胞生长因子(HGF0.5ng/mL)、人血小板衍化生长因子(BB或PDGF-BB 50ng/mL)、转化生长因子β1(TGFβ1 10ng/mL)和碱性成纤维细胞生长因子(b-FGF 2.5ng/mL)。使细胞天然高分子材料分布均匀,注入凝血酶溶液(20IU/mL)使细胞/天然高分子材料层形成稳定结构;4)移除内模具,在细胞/天然高分子材料层上表面及内模具遗留空隙处灌注PLGA/一四二氧六环溶液,风干形成PLGA表层及周向支架;5)移除主模具,用缝合线贯穿通道固定,完成多通道多细胞复合组织器官前体的制备。Embodiment 1: 1) Prepare a series of brass material matching combination molds with different sizes; 2) Prepare 50% (W/V) PLGA/14dioxane solution, add 1% (W/W) Heparin is poured into the master mold. Use the dry film method of natural air drying to form the PLGA bottom support; 2) Prepare the fibrinogen solution, put the inner mold into the main mold, and inject the mixture of gelatin/fibrinogen and endothelial cells into the combined mold, and the cell density is 1× 10 7 cells/mL; 3) add hepatocyte growth factor (HGF0.5ng/mL), human platelet-derived growth factor (BB or PDGF-BB 50ng/mL), transforming growth factor β1 (TGFβ1 10ng/mL) and alkaline Fibroblast Growth Factor (b-FGF 2.5ng/mL). Make the cell natural polymer material evenly distributed, inject thrombin solution (20IU/mL) to make the cell/natural polymer material layer form a stable structure; 4) remove the inner mold, and place the cell/natural polymer material layer on the surface and the inner mold The remaining gaps were perfused with PLGA/14dioxane solution, and air-dried to form the PLGA surface layer and circumferential support; 5) Remove the main mold, and fix it with suture thread through the channel to complete the preparation of the multi-channel multi-cellular composite tissue and organ precursor.
实施例2:1)用硅橡胶制备多通道组织器官前体的配套组合模具;2)配制25%的聚氨酯/乙二醇溶液,加入5%的紫杉醇搅拌均匀,灌入主模具内。使用细胞培养液萃取法形成外层聚氨酯层,套入内模具;3)配制含5%紫杉醇的纤维蛋白原/内皮细胞混合物(细胞密度为1×107个/mL),灌注至组合模具中加凝血酶溶液(20IU/mL),形成第一层主体材料;4)在第一层主体材料上注入明胶/纤维蛋白原与脂肪干细胞的混合物,细胞密度为1×106个/mL,形成第二层主体材料;5)在第二层主体材料上注入纤维蛋白原/肝细胞混合物(细胞密度为1×107个/mL),用凝血酶溶液(10IU/mL)浸泡成形物1分钟,形成三层结构材料;6)移除内模具,在细胞/天然高分子材料层上表面及内模具遗留空隙处灌注聚氨酯/乙二醇溶液,经过细胞培养液萃取形成表层及周向聚氨酯层支架;7)移除主模具,在通道处涂覆可诱导为血管的生长因子,促进附近组织血管化,完成可植入型人工肝脏前体的制备。Example 2: 1) Silicon rubber is used to prepare a matching combined mold for multi-channel tissue and organ precursors; 2) 25% polyurethane/ethylene glycol solution is prepared, 5% paclitaxel is added, stirred evenly, and poured into the main mold. The outer polyurethane layer was formed by cell culture fluid extraction, and inserted into the inner mold; 3) a fibrinogen/endothelial cell mixture containing 5% paclitaxel was prepared (cell density was 1×10 7 cells/mL), poured into the combination mold and added Thrombin solution (20IU/mL) to form the first layer of main material; 4) Inject the mixture of gelatin/fibrinogen and adipose stem cells on the first layer of main material with a cell density of 1×10 6 cells/mL to form the second layer of main material. Two layers of main material; 5) Inject fibrinogen/hepatocyte mixture (cell density: 1×10 7 cells/mL) on the second layer of main material, soak the molded object with thrombin solution (10IU/mL) for 1 minute, Form a three-layer structural material; 6) Remove the inner mold, pour polyurethane/ethylene glycol solution on the upper surface of the cell/natural polymer material layer and the gap left by the inner mold, and form the surface layer and the circumferential polyurethane layer support through extraction of the cell culture solution ; 7) removing the main mold, coating the channel with a growth factor that can induce blood vessels, promoting the vascularization of nearby tissues, and completing the preparation of the implantable artificial liver precursor.
实施例3:1)制备一系列尺寸不等的聚四氟乙烯配套组合模具;2)配制浓度为30%的聚乳酸/异丙醇溶液,加入30%的柠檬酸钠,搅拌均匀,灌入主模具内。使用PBS萃取法形成底层支架,套入内模具;3)配制1%柠檬酸钠的胶原/内皮细胞混合物(细胞密度为1×107个/mL),灌注至组合模具中,37℃下放置10分钟,使胶原/内皮细胞混合物结构稳定,形成第一层主体材料;4)在第一层主体材料上注入胶原/平滑肌细胞混合物(细胞密度为1×107个/mL);37℃下放置10分钟,使胶原/平滑肌细胞混合物结构稳定,形成第二层主体材料;5)在第二层主体材料上注入胶原与脂肪干细胞/乳鼠心肌细胞(1∶1)的混合物,细胞密度为1×106个/mL,37℃孵化箱中放置10分钟,形成第三层主体材料;6)移除内模具,在细胞/天然高分子材料层上表面及内模具遗留空隙处灌注聚乳酸/异丙醇溶液,经过PBS萃取形成表层及周向支架;7)移除主模具,完成可植入型人工心脏前体的制备。Embodiment 3: 1) Prepare a series of polytetrafluoroethylene matching combination molds with different sizes; 2) Prepare a polylactic acid/isopropanol solution with a concentration of 30%, add 30% sodium citrate, stir evenly, pour into inside the master mold. Use the PBS extraction method to form the bottom bracket, and insert it into the inner mold; 3) Prepare a collagen/endothelial cell mixture with 1% sodium citrate (cell density is 1× 107 cells/mL), pour it into the combined mold, and place it at 37°C for 10 Minutes to stabilize the structure of the collagen/endothelial cell mixture to form the first layer of main material; 4) Inject the collagen/smooth muscle cell mixture (cell density is 1×10 7 /mL) on the first layer of main material; place at 37°C 10 minutes, the structure of the collagen/smooth muscle cell mixture was stabilized to form the second layer of the main material; 5) the mixture of collagen and adipose stem cells/nursal mouse cardiomyocytes (1:1) was injected on the second layer of the main material, and the cell density was 1 ×10 6 cells/mL, placed in an incubator at 37°C for 10 minutes to form the third layer of main material; 6) Remove the inner mold, and pour polylactic acid/ The isopropanol solution is extracted with PBS to form the surface layer and the circumferential support; 7) The main mold is removed to complete the preparation of the implantable artificial heart precursor.
实施例4:1)用聚四氟乙烯制备配套的主模具及内模具;2)配制30%PU/四乙二醇溶液,灌入主模具内。使用PBS萃取形成底层支架,套入内模具;3)配制下列溶液:纤维蛋白原和明胶两种天然生物材料分别溶于磷酸缓冲液(PBS)溶液中制成10%和30%的高分子溶液,再按1∶1(v/v)比例混合均匀。然后按体积比加入10%的二甲基亚砜、5%葡聚糖;将脂肪干细胞与肾小球细胞按1∶1比例混合均匀,加至高分子溶液中,得到脂肪干细胞-肾小球细胞-明胶-纤维蛋白原-二甲基亚砜-葡聚糖混合物(细胞密度为1×104个/mL),灌注至组合模具中,并用凝血酶溶液(30IU/mL)固定2分钟;4)移除内模具,在细胞/天然高分子材料层上表面及内模具遗留空隙处灌注PU/四乙二醇溶液,经过PBS萃取溶剂,形成表层及周向支架;5)移除主模具,将上述三维结构体在4℃下放置半小时,后置于-20℃冰箱中半小时,最后放入-70℃低温冰箱液氮中低温保存,使用时快速复温,培养以备使用。Embodiment 4: 1) prepare matching main mold and inner mold with polytetrafluoroethylene; 2) prepare 30% PU/tetraethylene glycol solution, pour into the main mold. Use PBS extraction to form the bottom bracket, and put it into the inner mold; 3) prepare the following solutions: two natural biological materials, fibrinogen and gelatin, are respectively dissolved in phosphate buffered saline (PBS) solution to make 10% and 30% polymer solutions, Then mix evenly in a ratio of 1:1 (v/v). Then add 10% dimethyl sulfoxide and 5% dextran according to the volume ratio; mix the adipose stem cells and glomerular cells evenly at a ratio of 1:1, add them to the polymer solution, and obtain adipose stem cells-glomerular cells - gelatin-fibrinogen-dimethyl sulfoxide-dextran mixture (cell density: 1× 104 cells/mL), perfuse into the composite mold, and fix with thrombin solution (30IU/mL) for 2 minutes; 4 ) Remove the inner mold, pour PU/tetraethylene glycol solution on the upper surface of the cell/natural polymer material layer and the gap left by the inner mold, and extract the solvent with PBS to form the surface layer and the circumferential support; 5) Remove the main mold, The above-mentioned three-dimensional structure was placed at 4°C for half an hour, then placed in a -20°C refrigerator for half an hour, and finally placed in a -70°C low-temperature refrigerator in liquid nitrogen for low-temperature storage. When used, it was quickly rewarmed and cultivated for use.
实施例5:1)制备一系列尺寸不等的黄铜材质配套组合模具;2)配制含3%紫杉醇的30%聚酯/四乙二醇溶液,灌入主模具内,经过PBS萃取溶剂,形成底层支架,套入内模具;3)将纤维蛋白原溶于磷酸缓冲液(PBS)溶液中制成10%高分子溶液。然后按体积比加入20%的甘油、5%葡聚糖;将脂肪干细胞与胰岛细胞按2∶1比例混合均匀,加入高分子混合溶液中(细胞密度为1×107个/mL),得到脂肪干细胞-胰岛细胞、明胶-纤维蛋白原-二甲基亚砜-葡聚糖混合物,灌注至组合模具中,用凝血酶溶液(10IU/mL)固定2分钟;4)移除内模具,在细胞/天然高分子材料层上表面及内模具遗留空隙处灌注聚酯/四乙二醇溶液,经过PBS萃取溶剂,形成表层及周向支架;5)移除主模具,将上述三维结构体在4℃下放置半小时,后置于-20℃冰箱中半小时,最后放入-196℃液氮中低温保存,使用时快速复温,加入培养液于37℃、5%CO2条件下培养备用。Embodiment 5: 1) Prepare a series of brass materials supporting combination molds with different sizes; 2) Prepare 30% polyester/tetraethylene glycol solution containing 3% paclitaxel, pour it into the main mold, and extract it through PBS solvent, Form the bottom bracket and insert it into the inner mold; 3) dissolving the fibrinogen in a phosphate buffer (PBS) solution to prepare a 10% polymer solution. Then add 20% glycerol and 5% dextran according to the volume ratio; mix the adipose-derived stem cells and islet cells uniformly at a ratio of 2:1, add them into the polymer mixed solution (cell density is 1×10 7 cells/mL), and obtain Adipose stem cells-pancreatic islet cells, gelatin-fibrinogen-dimethyl sulfoxide-dextran mixture, poured into the combined mold, fixed with thrombin solution (10IU/mL) for 2 minutes; 4) Remove the inner mold, The upper surface of the cell/natural polymer material layer and the gap left by the inner mold are perfused with polyester/tetraethylene glycol solution, and the surface layer and the circumferential support are formed through PBS extraction solvent; 5) Remove the main mold, and place the above three-dimensional structure in Place it at 4°C for half an hour, then place it in a -20°C refrigerator for half an hour, and finally put it in liquid nitrogen at -196°C for low temperature storage. When using it, quickly rewarm it, add culture medium and culture it at 37°C and 5% CO 2 spare.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012101103881A CN102631710A (en) | 2012-04-13 | 2012-04-13 | Preparation method of precursor of composite tissues and organs with multichannel multilayer cell structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012101103881A CN102631710A (en) | 2012-04-13 | 2012-04-13 | Preparation method of precursor of composite tissues and organs with multichannel multilayer cell structure |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102631710A true CN102631710A (en) | 2012-08-15 |
Family
ID=46616394
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2012101103881A Pending CN102631710A (en) | 2012-04-13 | 2012-04-13 | Preparation method of precursor of composite tissues and organs with multichannel multilayer cell structure |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102631710A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103710263A (en) * | 2012-09-28 | 2014-04-09 | 江苏吉锐生物技术有限公司 | Cell culture apparatus |
CN105343937A (en) * | 2015-11-10 | 2016-02-24 | 武汉华一同信生物科技有限公司 | Composite porous sponge material and preparation method thereof |
CN107929808A (en) * | 2017-10-11 | 2018-04-20 | 西南大学 | A kind of preparation method of calcium alginate nerve trachea and Nerve Scaffold |
CN109486675A (en) * | 2018-10-19 | 2019-03-19 | 天津大学 | A kind of skull vascular compound rest dynamic device for casting |
CN111139213A (en) * | 2020-01-06 | 2020-05-12 | 清华大学 | Multilayer structure stent and preparation method and application thereof |
CN112154201A (en) * | 2018-05-22 | 2020-12-29 | 形态细胞科技公司 | Perfusion bioreactor, perfusion device, artificial liver system and related methods |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1609210A (en) * | 2004-11-12 | 2005-04-27 | 清华大学 | A three-dimensional controlled stacking method of cell-material unit |
US20070141166A1 (en) * | 2005-12-20 | 2007-06-21 | Guo-Feng Xu | Biological artificial nerve guide and method of making |
CN101623515A (en) * | 2009-07-31 | 2010-01-13 | 清华大学 | Method for preparing complicated tissue organ precursor with multilayer structure |
-
2012
- 2012-04-13 CN CN2012101103881A patent/CN102631710A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1609210A (en) * | 2004-11-12 | 2005-04-27 | 清华大学 | A three-dimensional controlled stacking method of cell-material unit |
US20070141166A1 (en) * | 2005-12-20 | 2007-06-21 | Guo-Feng Xu | Biological artificial nerve guide and method of making |
CN101623515A (en) * | 2009-07-31 | 2010-01-13 | 清华大学 | Method for preparing complicated tissue organ precursor with multilayer structure |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103710263A (en) * | 2012-09-28 | 2014-04-09 | 江苏吉锐生物技术有限公司 | Cell culture apparatus |
CN103710263B (en) * | 2012-09-28 | 2015-05-27 | 江苏吉锐生物技术有限公司 | Cell culture apparatus |
CN105343937A (en) * | 2015-11-10 | 2016-02-24 | 武汉华一同信生物科技有限公司 | Composite porous sponge material and preparation method thereof |
CN105343937B (en) * | 2015-11-10 | 2018-05-29 | 武汉华一同信生物科技有限公司 | Composite porous sponge material and preparation method thereof |
CN107929808A (en) * | 2017-10-11 | 2018-04-20 | 西南大学 | A kind of preparation method of calcium alginate nerve trachea and Nerve Scaffold |
CN107929808B (en) * | 2017-10-11 | 2020-09-29 | 西南大学 | Preparation method of calcium alginate nerve conduit and nerve scaffold |
CN112154201A (en) * | 2018-05-22 | 2020-12-29 | 形态细胞科技公司 | Perfusion bioreactor, perfusion device, artificial liver system and related methods |
CN109486675A (en) * | 2018-10-19 | 2019-03-19 | 天津大学 | A kind of skull vascular compound rest dynamic device for casting |
CN111139213A (en) * | 2020-01-06 | 2020-05-12 | 清华大学 | Multilayer structure stent and preparation method and application thereof |
CN111139213B (en) * | 2020-01-06 | 2022-02-01 | 清华大学 | Multilayer structure stent and preparation method and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102631709B (en) | Method for preparing complex organ precursor with branch vessel network | |
Badylak et al. | RETRACTED: engineered whole organs and complex tissues | |
Camci-Unal et al. | Hydrogels for cardiac tissue engineering | |
CN101623515A (en) | Method for preparing complicated tissue organ precursor with multilayer structure | |
CN111065422A (en) | Method of making a multilayered tubular tissue construct | |
CN111139213B (en) | Multilayer structure stent and preparation method and application thereof | |
CN101147810B (en) | Cell-biodegradable material composite and its preparation method and application | |
Bijonowski et al. | Bioreactor design for perfusion-based, highly vascularized organ regeneration | |
CN102631710A (en) | Preparation method of precursor of composite tissues and organs with multichannel multilayer cell structure | |
CN104490489A (en) | Method for preparing tissue engineering blood vessel based on 3D bioprinting technology | |
CN107988158A (en) | A kind of three-dimensional nodule model takes off cell porous support, construction method and its application | |
CN111450319B (en) | A biomimetic pre-vascularized material and its preparation method and application | |
CN104940997A (en) | Human tissue-engineered cardiac muscle tissue | |
Kalhori et al. | Cardiovascular 3D bioprinting: A review on cardiac tissue development | |
CN102512261B (en) | Preparation method for complex organ precursors on basis of combination molds | |
CN102871771B (en) | Method for Preparing Spindle-shaped Complex Organ Precursor Using Rotating Combined Mold | |
CN107693844A (en) | A kind of composition gels and application | |
CN106178107A (en) | A kind of silkworm silk/collagen composite support and preparation and application thereof | |
Pushp et al. | Cardiac tissue engineering: A role for natural biomaterials | |
CN104324417A (en) | Tissue engineering neural restoration material constructed by autologous plasma and preparation method thereof | |
CN101148657A (en) | Construction of Tissue Engineered Cartilage Modified by Transforming Growth Factor beta2 Gene | |
CN111407922A (en) | Black phosphorus composition, biological material containing black phosphorus composition, preparation method and application | |
Li et al. | On-Site Differentiation of Human Mesenchymal Stem Cells Into Vascular Cells on Extracellular Matrix Scaffold Under Mechanical Stimulations for Vascular Tissue Engineering | |
Odedra et al. | Cardiac tissue engineering | |
Bülow et al. | Three-Dimensional Bioprinting in Soft Tissue Engineering for Plastic and Reconstructive Surgery. Bioengineering 2023, 10, 1232 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20120815 |