[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN102604911B - Highly active Rhizopus chinensis lipase mutant - Google Patents

Highly active Rhizopus chinensis lipase mutant Download PDF

Info

Publication number
CN102604911B
CN102604911B CN 201210083913 CN201210083913A CN102604911B CN 102604911 B CN102604911 B CN 102604911B CN 201210083913 CN201210083913 CN 201210083913 CN 201210083913 A CN201210083913 A CN 201210083913A CN 102604911 B CN102604911 B CN 102604911B
Authority
CN
China
Prior art keywords
mutant
lipase
ser
thr
val
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN 201210083913
Other languages
Chinese (zh)
Other versions
CN102604911A (en
Inventor
喻晓蔚
徐岩
王睿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangnan University
Original Assignee
Jiangnan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangnan University filed Critical Jiangnan University
Priority to CN 201210083913 priority Critical patent/CN102604911B/en
Publication of CN102604911A publication Critical patent/CN102604911A/en
Application granted granted Critical
Publication of CN102604911B publication Critical patent/CN102604911B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

高活力华根霉脂肪酶突变体,属于酶的基因工程技术领域。本发明公开了一种由华根霉(Rhizopus chinensis)CCTCC M 201021脂肪酶基因经定向进化而获得的一系列脂肪酶突变体。在各突变体的氨基酸序列中,涉及到的氨基酸突变为Ala129Ser、Lys161Arg、Thr195Tyr、Ala230Thr、Val261Gly、Lys322Arg、Ser373Asn以及上述氨基酸两个、三个或四个突变的组合。以转换数K cat表示,这些突变体的酶活较出发菌株得到了提高。The high-activity Rhizopus chinensis lipase mutant belongs to the technical field of enzyme genetic engineering. The invention discloses a series of lipase mutants obtained from Rhizopus chinensis CCTCC M 201021 lipase gene through directed evolution. In the amino acid sequence of each mutant, the amino acid mutations involved are Ala129Ser, Lys161Arg, Thr195Tyr, Ala230Thr, Val261Gly, Lys322Arg, Ser373Asn and combinations of two, three or four mutations of the above amino acids. The enzyme activity of these mutants was improved compared with the starting strain, expressed by the turnover number K cat .

Description

高活力华根霉脂肪酶突变体Highly active Rhizopus chinensis lipase mutant

本申请是原申请号200910235185.3的分案申请,申请日2009.11.11,发明名称“通过定向进化构建的活力提高的脂肪酶突变体”。 This application is a divisional application of the original application number 200910235185.3, the filing date is 2009.11.11, and the invention title is "a lipase mutant with improved activity constructed by directed evolution".

技术领域 technical field

本发明属于酶的基因工程技术领域,具体地说涉及酶活力提高的华根霉脂肪酶突变体。 The invention belongs to the technical field of gene engineering of enzymes, and in particular relates to a lipase mutant of Rhizopus sinensis with improved enzyme activity.

背景技术 Background technique

脂肪酶(EC 3.1.1.3)不仅能催化油脂水解,也能在非水相中催化酯合成、转酯化、酸解等反应,被广泛地应用于化学,食品,制药和洗涤剂或生物能源工业中。微生物是脂肪酶的一个重要来源,而根霉又是微生物脂肪酶的重要生产菌。如今,已有超过30种根霉脂肪酶实现了商品化生产。根霉脂肪酶大都具有高度1,3-位置选择性,因此常用于油脂加工中。此外,根霉脂肪酶还具有稳定性佳,转化效率高等优点,被广泛应用于芳香酯、生物柴油、手性化合物的生产中。 Lipase (EC 3.1.1.3) can not only catalyze the hydrolysis of oil, but also catalyze ester synthesis, transesterification, acid hydrolysis and other reactions in non-aqueous phase. It is widely used in chemistry, food, pharmaceutical and detergent or bioenergy in industry. Microorganisms are an important source of lipase, and Rhizopus is an important producer of microbial lipase. Today, more than 30 Rhizopus lipases have been commercially produced. Most Rhizopus lipases have high 1,3-position selectivity, so they are often used in oil processing. In addition, Rhizopus lipase has the advantages of good stability and high conversion efficiency, and is widely used in the production of aromatic esters, biodiesel, and chiral compounds.

目前为止,国内外已报道了多个根霉脂肪酶的基因序列。日本、德国对米根霉脂肪酶(Rhizopus oryzae lipase, ROL)的基因序列和表达做了比较深入的研究,并先后用大肠杆菌、酿酒酵母和巴斯德毕赤酵母成功表达了脂肪酶基因(Minning S et al. J Biotechnol, 1998, 66 : 147-156; Beer HD et al. Biochim Biophys Acta, 1998, 1399 : 173-180; Ueda M et al. J Mol Catal B: Enzym, 2002, 17 : 113-124)。发明人在前期研究中成功从酿造浓香型大曲酒的酒曲中筛选到一株高产脂肪酶的华根霉(Rhizopus chinensis CCTCC M 201021)菌株,并从该菌株中克隆得到脂肪酶基因序列(Genbank登录号EF405962),并实现该脂肪酶在巴斯德毕赤酵母(Pichia pastoris)中的高水平分泌表达(Yu Xiao-Wei et al. J Mol Catal B: Enzym, 2009, 57:304-311)。 So far, many gene sequences of Rhizopus lipase have been reported at home and abroad. Japan and Germany have done in-depth research on the gene sequence and expression of Rhizopus oryzae lipase ( Rhizopus oryzae lipase, ROL ), and have successfully expressed the lipase gene with Escherichia coli, Saccharomyces cerevisiae and Pichia pastoris successively ( Minning S et al. J Biotechnol , 1998, 66 : 147-156; Beer HD et al. Biochim Biophys Acta , 1998, 1399 : 173-180; Ueda M et al. J Mol Catal B: Enzym , 2002, 17 : 113 -124). In the previous research, the inventor successfully screened a strain of Rhizopus chinensis CCTCC M 201021 with high lipase production from the koji for brewing Luzhou-flavor Daqu liquor, and cloned the lipase gene sequence from the strain (Genbank accession number EF405962), and achieved high-level secretory expression of the lipase in Pichia pastoris (Yu Xiao-Wei et al. J Mol Catal B: Enzym , 2009, 57:304-311) .

定向进化属于非理性设计,是指通过在实验室中模拟达尔文自然进化过程,针对某一蛋白质酶的基因,通过改进的诱变技术改造的酶的基因,然后根据特定的改造目的,筛选有价值的天然酶。近10年来,定向进化技术已经在酯酶和脂肪酶性质改造领域取得巨大的成功,主要集中于提高酶的催化反应活性,改进底物特异性,提高热稳定性,对映立体选择性等方面(Johannes TW et al. Curr. Opin. Microbiol, 2006, 9: 261-267)。  Directed evolution is an irrational design, which means that by simulating Darwin's natural evolution process in the laboratory, the gene of a certain protein enzyme is modified by an improved mutagenesis technology, and then screened for the specific purpose of transformation. of natural enzymes. In the past 10 years, directed evolution technology has achieved great success in the field of esterase and lipase property modification, mainly focusing on improving the catalytic activity of enzymes, improving substrate specificity, improving thermal stability, enantioselectivity, etc. (Johannes TW et al. Curr. Opin. Microbiol , 2006, 9: 261-267).

酶活力的提高可以用酶的动力学参数K cat值来表示。K cat又称转化数,指每分子酶或每个酶活性中心在单位时间内能催化的底物分子数(TN),也称为催化常数。因此,K cat值的提高即代表了酶活的提高。 The improvement of enzyme activity can be expressed by the kinetic parameter K cat value of the enzyme. K cat , also known as the conversion number, refers to the number of substrate molecules (TN) that can be catalyzed per molecule of enzyme or each enzyme active center per unit time, also known as the catalytic constant. Therefore, an increase in K cat value represents an increase in enzyme activity.

发明内容 Contents of the invention

本发明解决的技术问题是提供酶活力提高的华根霉脂肪酶。 The technical problem solved by the invention is to provide rhizopus sinorius lipase with improved enzyme activity.

本发明的技术方案:通过定向进化构建的活力提高的脂肪酶突变体,由华根霉(Rhizopus chinensis)CCTCC M 201021脂肪酶基因(Genbank登录号EF405962),运用易错PCR方法,通过多轮重组和定点突变,经定向进化而获得的脂肪酶突变体,在突变体的氨基酸序列中,包含氨基酸突变Ala129Ser、Lys161Arg、Thr195Tyr、Ala230Thr、Val261Gly、Lys322Arg、Ser373Asn以及上述氨基酸两个、三个或四个突变的组合;以转换数K cat表示,脂肪酶突变体的酶活较出发菌株得到了提高;突变体的测序结果及其K cat提高的倍数为: The technical solution of the present invention: the lipase mutant with improved activity constructed by directed evolution is composed of Rhizopus chinensis CCTCC M 201021 lipase gene (Genbank accession number EF405962), using error-prone PCR method, through multiple rounds of recombination And site-directed mutation, the lipase mutant obtained by directed evolution, in the amino acid sequence of the mutant, contains amino acid mutations Ala129Ser, Lys161Arg, Thr195Tyr, Ala230Thr, Val261Gly, Lys322Arg, Ser373Asn and two, three or four of the above amino acids The combination of mutations; represented by the conversion number K cat , the enzyme activity of the lipase mutant has been improved compared with the starting strain; the sequencing results of the mutant and the multiples of its K cat improvement are:

脂肪酶突变体lipase mutant 氨基酸取代位置amino acid substitution position K cat(/min) K cat (/min) K cat提高的倍数The multiple of K cat improvement 出发菌株脂肪酶Starting strain lipase -- 11381138 1.01.0 突变体1-1Mutant 1-1 Ala129SerAla129Ser 12521252 1.11.1 突变体1-2Mutant 1-2 Lys161ArgLys161Arg 14791479 1.31.3 突变体1-3Mutant 1-3 Thr195TyrThr195Tyr 14791479 1.31.3 突变体1-4 Mutant 1-4 Ala230ThrAla230Thr 18211821 1.61.6 突变体1-5Mutant 1-5 Val261GlyVal261Gly 19351935 1.71.7 突变体1-6Mutant 1-6 Lys322ArgLys322Arg 13661366 1.21.2 突变体1-7Mutant 1-7 Ser373Asn Ser373Asn 17071707 1.51.5 突变体2-1Mutant 2-1 Ala129Ser / Lys161ArgAla129Ser/Lys161Arg 22782278 22 突变体2-2Mutant 2-2 Ala129Ser / Ala230ThrAla129Ser / Ala230Thr 13651365 1.21.2 突变体2-3Mutant 2-3 Ala129Ser / Val261GlyAla129Ser/Val261Gly 15931593 1.41.4 突变体2-4Mutant 2-4 Lys161Arg/Thr195TyrLys161Arg/Thr195Tyr 28452845 2.52.5 突变体2-5Mutant 2-5 Lys161Arg / Lys322ArgLys161Arg / Lys322Arg 17071707 1.51.5 突变体2-6Mutant 2-6 Lys161Arg / Ser373AsnLys161Arg/Ser373Asn 20482048 1.81.8 突变体2-7Mutant 2-7 Ala230Thr /Ser373AsnAla230Thr /Ser373Asn 17071707 1.51.5 突变体2-8Mutant 2-8 Val261Gly/ Ser373AsnVal261Gly/ Ser373Asn 37263726 3.33.3 突变体3-1Mutant 3-1 Ala129Ser/Ala230Thr /Val261GlyAla129Ser/Ala230Thr/Val261Gly 31863186 2.82.8 突变体3-2Mutant 3-2 Ala129Ser/Ala230Thr/Lys322ArgAla129Ser/Ala230Thr/Lys322Arg 22782278 22 突变体3-3Mutant 3-3 Lys161Arg/Thr195Tyr/Ser373AsnLys161Arg/Thr195Tyr/Ser373Asn 26172617 2.32.3 突变体3-4Mutant 3-4 Lys161Arg/Ala230Thr/Ser373AsnLys161Arg/Ala230Thr/Ser373Asn 22782278 22 突变体3-5Mutant 3-5 Lys161Arg/Val261Gly/Lys322ArgLys161Arg/Val261Gly/Lys322Arg 27312731 2.42.4 突变体3-6Mutant 3-6 Ala230Thr/Lys322Arg/Ser373AsnAla230Thr/Lys322Arg/Ser373Asn 28452845 2.52.5 突变体4-1Mutant 4-1 Ala129Ser/Lys161Arg/Ala230Thr/ Lys322ArgAla129Ser/Lys161Arg/Ala230Thr/Lys322Arg 20732073 1.81.8

华根霉脂肪酶氨基酸原始序列为:SEQ ID NO: 1;华根霉脂肪酶氨基酸突变序列为:SEQ ID NO:2,7个突变氨基酸用底色标记显示。 The original amino acid sequence of Rhizopus sinensis lipase is: SEQ ID NO: 1; the amino acid mutant sequence of Rhizopus sinensis lipase is: SEQ ID NO: 2, and the 7 mutated amino acids are marked with background color.

本发明的有益效果:本发明运用易错PCR方法对华根霉脂肪酶基因(Genbank登录号EF405962)进行定向进化,通过多轮重组和定点突变,获得华根霉脂肪酶突变体,这些突变体包含氨基酸突变Ala129Ser、Lys161Arg、Thr195Tyr、Ala230Thr、Val261Gly、Lys322Arg、Ser373Asn以及上述氨基酸突 Beneficial effects of the present invention: the present invention uses the error-prone PCR method to carry out directed evolution to Rhizopus sinensis lipase gene (Genbank accession number EF405962), and obtains Rhizopus sinensis lipase mutants through multiple rounds of recombination and site-directed mutation. These mutants Contains amino acid mutations Ala129Ser, Lys161Arg, Thr195Tyr, Ala230Thr, Val261Gly, Lys322Arg, Ser373Asn and the above amino acid mutations

变的组合。以转换数K cat表示,脂肪酶突变体的酶活得到了提高。 changing combination. The enzyme activity of the lipase mutant was improved, expressed by the turnover number K cat .

具体实施方式 Detailed ways

实施例中涉及到的培养基配方如下: The medium formula involved in the embodiment is as follows:

LB液体培养基:蛋白胨 1%,酵母提取物 0.5%,NaCl 1%,pH7.0。 LB liquid medium: peptone 1%, yeast extract 0.5%, NaCl 1%, pH7.0.

YPD(Yeast Extract Peptone Dextrose Medium): Yeast Extract 1%, Trypton 2%, Dextrose  2%,制作平板时加入Agar 2%。121 °C高压灭菌20 min。用于筛选G418抗性时加入G418至终浓度为0.25 mg/mL-1.0 mg/mL,即YPD-G418平板。 YPD(Yeast Extract Peptone Dextrose Medium): Yeast Extract 1%, Trypton 2%, Dextrose 2%, add Agar 2% when making the tablet. Autoclave at 121 °C for 20 min. When used to screen G418 resistance, add G418 to a final concentration of 0.25 mg/mL-1.0 mg/mL, that is, YPD-G418 plate.

MD(Minimal Dextrose Medium): YNB 1.34%, Biotin 4×10-5%, Dextrose 2%, Agar 2%。 MD (Minimal Dextrose Medium): YNB 1.34%, Biotin 4×10 -5 %, Dextrose 2%, Agar 2%.

MM(Minimal Methanol Medium): YNB1.34%, Biotin4×10-5%, Methanol 0.5%, Agar2%。 MM (Minimal Methanol Medium): YNB1.34%, Biotin4× 10-5 %, Methanol 0.5%, Agar2%.

BMGY(Buffered Glycerol-complex Medium): Yeast Extract 1%, Trypton 2%, YNB 1.34%, Biotin 4×10-5%, Glycerol 1%, 磷酸钾溶液100 mmol/L。 BMGY (Buffered Glycerol-complex Medium): Yeast Extract 1%, Trypton 2%, YNB 1.34%, Biotin 4× 10-5 %, Glycerol 1%, potassium phosphate solution 100 mmol/L.

BMMY(Buffered Methanol-complex Medium): Yeast Extract 1%, Trypton 2%, YNB 1.34%, Biotin 4×10-5%, Methanol 0.5%, 磷酸钾溶液100 mmol/L。 BMMY (Buffered Methanol-complex Medium): Yeast Extract 1%, Trypton 2%, YNB 1.34%, Biotin 4× 10-5 %, Methanol 0.5%, potassium phosphate solution 100 mmol/L.

培养基中的单位为%(W/V) The unit in the medium is % (W/V)

实施例1、利用易错PCR方法构建华根霉脂肪酶突变文库 Embodiment 1, utilize the error-prone PCR method to construct Rhizopus sinica lipase mutant library

利用易错PCR技术在体外向华根霉脂肪酶基因proRCL引入核苷酸突变。易错PCR的反应条件如下: Nucleotide mutations were introduced into the lipase gene proRCL of Rhizopus sinensis in vitro by error-prone PCR. The reaction conditions for error-prone PCR are as follows:

Figure DEST_PATH_IMAGE001
Figure DEST_PATH_IMAGE001

其中,引物F和R序列为: Wherein, the sequences of primers F and R are:

上游引物 F: 5'-TCAAGATCCCTAGGGTTCCTGTTGGTCATAAAGGTTC-3';  Upstream primer F: 5'-TCAAGATCCCTAGGGTTCCTGTTGGTCATAAAGGTTC-3';

下游引物 R: 5'-AATTCCAGTGCGGCCGCTTACAAACAGCTTCCTTCG-3'。 Downstream primer R: 5'-AATTCCAGTGCGGCCGCTTACAAACAGCTTCCTTCG-3'.

PCR扩增条件:94℃ 3min;94℃ 1 min,59℃ 1 min,72℃ 2 min,30个循环;72℃10 min。 PCR amplification conditions: 94°C for 3 min; 94°C for 1 min, 59°C for 1 min, 72°C for 2 min, 30 cycles; 72°C for 10 min.

易错PCR扩增产物经DNA纯化试剂盒纯化后,限制性内切酶AvrⅡ和NotI分别对易错PCR扩增产物和质粒pPIC9K进行消化,连接,转化至E .coli JM109感受态细胞。涂布于LB(含100 μg/μL的Amp) 平板。生长12 h后,将转化子转移至LB液体培养基中培养,获得突变质粒。 After the error-prone PCR amplification product was purified by a DNA purification kit, the restriction endonucleases Avr Ⅱ and Not I digested the error-prone PCR amplification product and plasmid pPIC9K respectively, ligated, and transformed into E.coli JM109 competent cells. Spread on LB (containing 100 μg/μL of Amp) plate. After 12 h of growth, the transformants were transferred to LB liquid medium for culture to obtain mutant plasmids.

将突变质粒经限制性内切酶SalI线性化后,电转化毕赤酵母GS115感受态细胞。将转化液涂布于MD平板上,30℃培养2天,构成突变文库。 After the mutant plasmid was linearized by the restriction endonuclease Sal I, the competent cells of Pichia pastoris GS115 were electrotransformed. Spread the transformation solution on the MD plate and incubate at 30°C for 2 days to form a mutant library.

利用上述同样的方法,以突变体基因组为模版进行多轮易错PCR,构建突变文库。 Using the same method as above, multiple rounds of error-prone PCR were performed using the mutant genome as a template to construct a mutant library.

实施例2、高酶活脂肪酶突变体的筛选 Embodiment 2, the screening of lipase mutant with high enzymatic activity

用灭菌牙签将MD平板上生长出的His+转化子复制到YPD和BMMY平板的相同位置,同时将对照菌GS115/ pPIC9K-proRCL接种至BMMY平板上。30°C培养2天。 Use a sterilized toothpick to copy the His + transformant grown on the MD plate to the same position on the YPD and BMMY plates, and at the same time inoculate the control bacteria GS115/pPIC9K-proRCL on the BMMY plate. Incubate at 30°C for 2 days.

平板初筛:保存生长完毕的YPD平板。每12 h向BMMY平皿盖上补加200 μL甲醇诱导重组脂肪酶表达。诱导2-3 天。向酶活测定底物pNPP中加入0.6%琼脂,混合均匀后,倒于BMMY平板形成顶层琼脂。2 min内出现明显黄色的菌株为初筛目的突变菌株。相同条件下,对照菌GS115/ pPIC9K-proRCL不能显示出明显黄色。 Plate primary screening: save the grown YPD plate. Every 12 h, 200 μL of methanol was added to the cover of the BMMY plate to induce the expression of recombinant lipase. Induce for 2-3 days. Add 0.6% agar to the enzyme activity assay substrate pNPP, mix well, and pour it on the BMMY plate to form the top layer of agar. The strains that showed obvious yellow within 2 min were the mutant strains of primary screening purpose. Under the same conditions, the control bacteria GS115/pPIC9K-proRCL could not show obvious yellow color.

96孔板复筛:向1.8 mL/孔(平底)的96孔板中加入300 μL BMGY培养基,121℃灭菌20 min。向其中接入保藏于YPD平板上的初筛目的菌株(同时接入GS115/ pPIC9K-proRCL作为对照),30℃ 250 r/min振荡培养至OD600为2-6(约16-18 h)。离心,弃上清,用900 μL BMMY培养基重悬菌体,并加入1%(V/V)甲醇诱导脂肪酶表达。此后每24 h补加 100 μL BMMY培养基和1 % (V/V)甲醇,诱导4 天。将诱导表达96 h的96孔板发酵液3000 r/min离心10 min,收集上清。取1 μL上清液稀释500倍后,取5 μL于另一96孔板中,用排枪加入底物,振荡混匀。2 min内迅速显示明显黄色的菌株为复筛目的菌株。相同条件下,对照菌GS115/ pPIC9K-proRCL的发酵上清液不能显示明显黄色。 96-well plate re-screening: Add 300 μL of BMGY medium to a 1.8 mL/well (flat-bottomed) 96-well plate, and sterilize at 121°C for 20 min. Insert the target strain of primary screening preserved on the YPD plate (incorporate GS115/pPIC9K-proRCL at the same time as a control), and shake at 250 r/min at 30°C until the OD600 is 2-6 (about 16-18 h). Centrifuge, discard the supernatant, resuspend the cells with 900 μL BMMY medium, and add 1% (V/V) methanol to induce lipase expression. After that, 100 μL of BMMY medium and 1% (V/V) methanol were added every 24 h for induction for 4 days. The 96-well plate fermentation broth induced for 96 h was centrifuged at 3000 r/min for 10 min, and the supernatant was collected. Take 1 μL of the supernatant and dilute 500 times, take 5 μL into another 96-well plate, add the substrate with a row gun, shake and mix. The strains that quickly show obvious yellow color within 2 minutes are the strains for re-screening. Under the same conditions, the fermentation supernatant of the control bacterium GS115/pPIC9K-proRCL could not show obvious yellow color.

以易错PCR构建的突变文库为基础进行筛选,获得6株酶活明显提高的菌株,测定脂肪酶核苷酸序列,利用三联体密码子推测脂肪酶的氨基酸序列,脂肪酶突变体的氨基酸取代及K cat值提高倍数如表1所示。根据实施例3的方法测定脂肪酶突变体的K cat值。 Based on the screening of the mutant library constructed by error-prone PCR, 6 strains with significantly improved enzyme activity were obtained, the nucleotide sequence of lipase was determined, the amino acid sequence of lipase was deduced by using triplet codons, and the amino acid substitution of lipase mutants And K cat value increase times are shown in Table 1. The K cat value of the lipase mutant was determined according to the method in Example 3.

表1 突变体的测序结果 Table 1 Sequencing results of mutants

脂肪酶突变体lipase mutant 氨基酸取代位置amino acid substitution position K cat(/min) K cat (/min) K cat提高的倍数The multiple of K cat improvement 出发菌株脂肪酶Starting strain lipase -- 11381138 1.01.0 突变体2-1Mutant 2-1 Ala129Ser / Lys161ArgAla129Ser/Lys161Arg 22782278 22 突变体2-4Mutant 2-4 Lys161Arg/Thr195TyrLys161Arg/Thr195Tyr 28452845 2.52.5 突变体2-7Mutant 2-7 Ala230Thr /Ser373AsnAla230Thr /Ser373Asn 17071707 1.51.5 突变体2-8Mutant 2-8 Val261Gly/ Ser373AsnVal261Gly/ Ser373Asn 37263726 3.33.3 突变体3-2Mutant 3-2 Ala129Ser/Ala230Thr/Lys322ArgAla129Ser/Ala230Thr/Lys322Arg 22782278 22 突变体3-4Mutant 3-4 Lys161Arg/Ala230Thr/Ser373AsnLys161Arg/Ala230Thr/Ser373Asn 22782278 22

实施例3 脂肪酶突变体的K cat值测定 The K cat value determination of embodiment 3 lipase mutants

为测定脂肪酶的K cat值,需要对酶进行分离纯化。 In order to determine the K cat value of lipase, it is necessary to separate and purify the enzyme.

摇瓶发酵:将出发菌株以及各脂肪酶突变体,接种至25 mL BMGY培养基中,30℃振荡培养16~20 h 至OD600为2~6,离心收集菌体,用BMMY培养基稀释至OD600为1,每隔24 h添加0.5 %的甲醇诱导表达,培养3-4 天后,收集发酵上清液。 Shake flask fermentation: Inoculate the starting strain and each lipase mutant into 25 mL of BMGY medium, shake culture at 30°C for 16-20 h until the OD 600 is 2-6, collect the bacteria by centrifugation, and dilute with BMMY medium to The OD 600 was 1, and the expression was induced by adding 0.5% methanol every 24 h. After culturing for 3-4 days, the fermentation supernatant was collected.

分离纯化:将突变菌株的发酵上清液经过10 KD超滤膜浓缩,SP-Sepharose FF强阳离子交换层析和Phenyl-Sepharose 6 FF疏水色谱柱层析后得到纯化的突变脂肪酶活性组分。具体操作参考文献Yu Xiao-Wei et al. J Mol Catal B: Enzym, 2009, 57:304-311。 Separation and purification: the fermentation supernatant of the mutant strain was concentrated through a 10 KD ultrafiltration membrane, followed by SP-Sepharose FF strong cation exchange chromatography and Phenyl-Sepharose 6 FF hydrophobic chromatography column chromatography to obtain the purified active component of mutant lipase. Specific operation reference Yu Xiao-Wei et al. J Mol Catal B: Enzym , 2009, 57:304-311.

测定方法: test methods:

脂肪酶活力的测定方法为pNPP法(Pencreach G et al. Enzyme and Microbial Technol. 1996, 18: 417-422.)。酶活的定义为一定反应条件下每分钟产生1 μmol 对硝基苯酚的酶量为一个脂肪酶水解酶活国际单位。在底物对硝基苯酚棕榈酸酯浓度为0~25 mmol/L 范围内,测定酶活力,计算获得脂肪酶的动力学参数K catThe assay method of lipase activity is pNPP method (Pencreach G et al. Enzyme and Microbial Technol. 1996, 18: 417-422.). Enzyme activity is defined as the amount of enzyme that produces 1 μmol p-nitrophenol per minute under certain reaction conditions, which is one international unit of lipase hydrolysis activity. When the substrate p-nitrophenol palmitate concentration ranged from 0 to 25 mmol/L, the enzyme activity was measured, and the kinetic parameter K cat of lipase was calculated.

实施例4 定点突变组合脂肪酶突变体的基因突变位点 Example 4 Gene mutation site of site-directed mutagenesis combination lipase mutant

经过多轮易错PCR进行突变文库构建,得到包含有氨基酸突变位点Ala129Ser、Lys161Arg、Thr195Tyr、Ala230Thr、Val261Gly、Lys322Arg、Ser373Asn的7个突变株。为了考察其中某一个突变及各突变的组合对脂肪酶突变株活力的影响,对发现的突变位点进行定点突变组合,获得多个脂肪酶突变体。(定点突变可以利用市售的试剂盒进行。) After multiple rounds of error-prone PCR for mutation library construction, seven mutants containing amino acid mutation sites Ala129Ser, Lys161Arg, Thr195Tyr, Ala230Thr, Val261Gly, Lys322Arg, and Ser373Asn were obtained. In order to investigate the effect of one mutation and the combination of mutations on the viability of lipase mutant strains, multiple lipase mutants were obtained by performing site-directed mutation combinations on the discovered mutation sites. (Site-directed mutagenesis can be performed using a commercially available kit.)

将含有上述突变位点组合的基因与载体pPIC9K连接,电转化毕赤酵母GS115,以获得脂肪酶的高效分泌表达。以与实施例3等同的方法测定脂肪酶突变体的K cat值。各突变体酶的组合位点及其K cat提高的倍数如表2所示。 The gene containing the above combination of mutation sites was connected to the vector pPIC9K, and electrotransformed into Pichia pastoris GS115 to obtain high-efficiency secretion and expression of lipase. The K cat value of the lipase mutant was determined in the same manner as in Example 3. Table 2 shows the combination site of each mutant enzyme and the fold of K cat improvement.

表2 突变体的测序结果及其K cat提高的倍数 Table 2 The sequencing results of the mutants and their K cat increased folds

脂肪酶突变体lipase mutant 氨基酸取代位置amino acid substitution position K cat(/min) K cat (/min) K cat提高的倍数The multiple of K cat improvement 出发菌株脂肪酶Starting strain lipase -- 11381138 1.01.0 突变体1-1Mutant 1-1 Ala129SerAla129Ser 12521252 1.11.1 突变体1-2Mutant 1-2 Lys161ArgLys161Arg 14791479 1.31.3 突变体1-3Mutant 1-3 Thr195TyrThr195Tyr 14791479 1.31.3 突变体1-4 Mutant 1-4 Ala230ThrAla230Thr 18211821 1.61.6 突变体1-5Mutant 1-5 Val261GlyVal261Gly 19351935 1.71.7 突变体1-6Mutant 1-6 Lys322ArgLys322Arg 13661366 1.21.2 突变体1-7Mutant 1-7 Ser373Asn Ser373Asn 17071707 1.51.5 突变体2-2Mutant 2-2 Ala129Ser / Ala230ThrAla129Ser / Ala230Thr 13651365 1.21.2 突变体2-3Mutant 2-3 Ala129Ser / Val261GlyAla129Ser/Val261Gly 15931593 1.41.4 突变体2-5Mutant 2-5 Lys161Arg / Lys322ArgLys161Arg / Lys322Arg 17071707 1.51.5 突变体2-6Mutant 2-6 Lys161Arg / Ser373AsnLys161Arg/Ser373Asn 20482048 1.81.8 突变体3-1Mutant 3-1 Ala129Ser/Ala230Thr /Val261GlyAla129Ser/Ala230Thr/Val261Gly 31863186 2.82.8 突变体3-3Mutant 3-3 Lys161Arg/Thr195Tyr/Ser373AsnLys161Arg/Thr195Tyr/Ser373Asn 26172617 2.32.3 突变体3-5Mutant 3-5 Lys161Arg/Val261Gly/Lys322ArgLys161Arg/Val261Gly/Lys322Arg 27312731 2.42.4 突变体3-6Mutant 3-6 Ala230Thr/Lys322Arg/Ser373AsnAla230Thr/Lys322Arg/Ser373Asn 28452845 2.52.5 突变体4-1Mutant 4-1 Ala129Ser/Lys161Arg/Ala230Thr/ Lys322ArgAla129Ser/Lys161Arg/Ala230Thr/Lys322Arg 20732073 1.81.8

<210>  SEQ ID NO: 1 <210> SEQ ID NO: 1

<211>  389 <211> 389

<212>  PRT <212> PRT

<213>  华根霉(Rhizopuschinensis)CCTCC M 201021脂肪酶氨基酸 <213> Rhizopuschinensis CCTCC M 201021 lipase amino acid

  the

<400>  1 <400> 1

Met Val Ser Phe Ile   Ser Ile Ser Gln Gly   Val Ser Leu Cys Leu  Met Val Ser Phe Ile Ser Ile Ser Gln Gly Val Ser Leu Cys Leu

5                    10                    15 5 10 15

Leu Val Ser Ser Met   Met Leu Gly Ser Ser   Ala Val Pro Val Ala  Leu Val Ser Ser Met Met Leu Gly Ser Ser Ala Val Pro Val Ala

20                    25                    30 20 25 30

Gly His Lys Gly Ser   Val Lys Ala Thr Asn   Gly Thr Asp Phe Gln  Gly His Lys Gly Ser Val Lys Ala Thr Asn Gly Thr Asp Phe Gln

35                    40                    45 35 40 45

Leu Pro Pro Leu Ile   Ser Ser Arg Cys Thr   Pro Pro Ser His Pro  Leu Pro Pro Leu Ile Ser Ser Arg Cys Thr Pro Pro Ser His Pro

50                    55                    60 50 55 60

Glu Thr Thr Gly Asp   Pro Asp Ala Glu Ala   Tyr Tyr Ile Asn Lys  Glu Thr Thr Gly Asp Pro Asp Ala Glu Ala Tyr Tyr Ile Asn Lys

65                    70                    75 65 70 75

Ser Val Gln Trp Tyr   Gln Ala His Gly Gly   Asn Tyr Thr Ala Leu  Ser Val Gln Trp Tyr Gln Ala His Gly Gly Asn Tyr Thr Ala Leu

80                    85                    90 80 85 90

Ile Lys Arg Asp Thr   Glu Thr Val Gly Gly   Met Thr Leu Asp Leu  Ile Lys Arg Asp Thr Glu Thr Val Gly Gly Met Thr Leu Asp Leu

95                   100                   105 95 100 105

Pro Glu Asn Pro Pro   Pro Ile Pro Ala Thr   Ser Thr Ala Pro Ser  Pro Glu Asn Pro Pro Pro Ile Pro Ala Thr Ser Thr Ala Pro Ser

110                   115                   120 110 115 120

Ser Asp Ser Gly Glu   Val Val Thr Ala Thr   Ala Ala Gln Ile Lys  Ser Asp Ser Gly Glu Val Val Thr Ala Thr Ala Ala Gln Ile Lys

125                   130                   135 125 130 135

Glu Leu Thr Asn Tyr   Ala Gly Val Ala Ala   Thr Ala Tyr Cys Arg  Glu Leu Thr Asn Tyr Ala Gly Val Ala Ala Thr Ala Tyr Cys Arg

140                   145                   150 140 145 150

Ser Val Val Pro Gly   Thr Lys Trp Asp Cys   Lys Gln Cys Leu Lys  Ser Val Val Pro Gly Thr Lys Trp Asp Cys Lys Gln Cys Leu Lys

155                   160                   165 155 160 165

Tyr Val Pro Asp Gly   Lys Leu Ile Lys Thr   Phe Thr Ser Leu Leu  Tyr Val Pro Asp Gly Lys Leu Ile Lys Thr Phe Thr Ser Leu Leu

170                   175                   180 170 175 180

Thr Asp Thr Asn Gly   Phe Ile Leu Arg Ser   Asp Ala Gln Lys Thr  Thr Asp Thr Asn Gly Phe Ile Leu Arg Ser Asp Ala Gln Lys Thr

185                   190                   195 185 190 195

Ile Tyr Val Thr Phe   Arg Gly Thr Asn Ser   Phe Arg Ser Ala Ile  Ile Tyr Val Thr Phe Arg Gly Thr Asn Ser Phe Arg Ser Ala Ile

200                   205                   210 200 205 210

Thr Asp Met Val Phe   Thr Phe Thr Asp Tyr   Ser Pro Val Lys Gly  Thr Asp Met Val Phe Thr Phe Thr Asp Tyr Ser Pro Val Lys Gly

215                   220                   225 215 220 225

Ala Lys Val His Ala   Gly Phe Leu Ser Ser   Tyr Asn Gln Val Val  Ala Lys Val His Ala Gly Phe Leu Ser Ser Tyr Asn Gln Val Val

230                   235                   240 230 235 240

Lys Asp Tyr Phe Pro   Val Val Gln Asp Gln   Leu Thr Ala Tyr Pro  Lys Asp Tyr Phe Pro Val Val Gln Asp Gln Leu Thr Ala Tyr Pro

245                   250                   255 245 250 255

Asp Tyr Lys Val Ile   Val Thr Gly His Ser   Leu Gly Gly Ala Gln  Asp Tyr Lys Val Ile Val Thr Gly His Ser Leu Gly Gly Ala Gln

260                   265                   270 260 265 270

Ala Leu Leu Ala Gly   Met Asp Leu Tyr Gln   Arg Glu Lys Arg Leu  Ala Leu Leu Ala Gly Met Asp Leu Tyr Gln Arg Glu Lys Arg Leu

275                   280                   285 275 280 285

Ser Pro Lys Asn Leu   Ser Ile Tyr Thr Val   Gly Cys Pro Arg Val  Ser Pro Lys Asn Leu Ser Ile Tyr Thr Val Gly Cys Pro Arg Val

290                   295                   300 290 295 300

Gly Asn Asn Ala Phe   Ala Tyr Tyr Val Asp   Ser Thr Gly Ile Pro  Gly Asn Asn Ala Phe Ala Tyr Tyr Val Asp Ser Thr Gly Ile Pro

305                   310                   315 305 310 315

Phe His Arg Thr Val   His Lys Arg Asp Ile   Val Pro His Val Pro  Phe His Arg Thr Val His Lys Arg Asp Ile Val Pro His Val Pro

320                   325                   330 320 325 330

Pro Gln Ala Phe Gly   Tyr Leu His Pro Gly   Val Glu Ser Trp Ile  Pro Gln Ala Phe Gly Tyr Leu His Pro Gly Val Glu Ser Trp Ile

335                   340                   345 335 340 345

Lys Glu Asp Pro Ala   Asp Val Gln Ile Cys   Thr Ser Asn Ile Glu  Lys Glu Asp Pro Ala Asp Val Gln Ile Cys Thr Ser Asn Ile Glu

350                   355                   360 350 355 360

Thr Lys Gln Cys Ser   Asn Ser Ile Val Pro   Phe Thr Ser Ile Ala  Thr Lys Gln Cys Ser Asn Ser Ile Val Pro Phe Thr Ser Ile Ala

365                   370                   375 365 370 375

Asp His Leu Thr Tyr   Phe Gly Ile Asn Glu   Gly Ser Cys Leu        Asp His Leu Thr Tyr Phe Gly Ile Asn Glu Gly Ser Cys Leu

380                   385               389 380 385 389

  the

<210>  SEQ ID NO: 2 <210> SEQ ID NO: 2

<211>  389 <211> 389

<212>  PRT <212> PRT

<213>  华根霉(Rhizopuschinensis)CCTCC M 201021脂肪酶氨基酸突变体 <213> Rhizopuschinensis CCTCC M 201021 lipase amino acid mutant

  the

<400>  2 <400> 2

Met Val Ser Phe Ile   Ser Ile Ser Gln Gly   Val Ser Leu Cys Leu  Met Val Ser Phe Ile Ser Ile Ser Gln Gly Val Ser Leu Cys Leu

5                    10                    15 5 10 15

Leu Val Ser Ser Met   Met Leu Gly Ser Ser   Ala Val Pro Val Ala  Leu Val Ser Ser Met Met Leu Gly Ser Ser Ala Val Pro Val Ala

20                    25                    30 20 25 30

Gly His Lys Gly Ser   Val Lys Ala Thr Asn   Gly Thr Asp Phe Gln  Gly His Lys Gly Ser Val Lys Ala Thr Asn Gly Thr Asp Phe Gln

35                    40                    45 35 40 45

Leu Pro Pro Leu Ile   Ser Ser Arg Cys Thr   Pro Pro Ser His Pro  Leu Pro Pro Leu Ile Ser Ser Arg Cys Thr Pro Pro Ser His Pro

50                    55                    60 50 55 60

Glu Thr Thr Gly Asp   Pro Asp Ala Glu Ala   Tyr Tyr Ile Asn Lys  Glu Thr Thr Gly Asp Pro Asp Ala Glu Ala Tyr Tyr Ile Asn Lys

65                    70                    75 65 70 75

Ser Val Gln Trp Tyr   Gln Ala His Gly Gly   Asn Tyr Thr Ala Leu  Ser Val Gln Trp Tyr Gln Ala His Gly Gly Asn Tyr Thr Ala Leu

80                    85                    90 80 85 90

Ile Lys Arg Asp Thr   Glu Thr Val Gly Gly   Met Thr Leu Asp Leu  Ile Lys Arg Asp Thr Glu Thr Val Gly Gly Met Thr Leu Asp Leu

95                   100                   105 95 100 105

Pro Glu Asn Pro Pro   Pro Ile Pro Ala Thr   Ser Thr Ala Pro Ser  Pro Glu Asn Pro Pro Pro Ile Pro Ala Thr Ser Thr Ala Pro Ser

110                   115                   120 110 115 120

Ser Asp Ser Gly Glu   Val Val Thr Ser Thr   Ala Ala Gln Ile Lys  Ser Asp Ser Gly Glu Val Val Thr Ser Thr Ala Ala Gln Ile Lys

125                   130                   135 125 130 135

Glu Leu Thr Asn Tyr   Ala Gly Val Ala Ala   Thr Ala Tyr Cys Arg  Glu Leu Thr Asn Tyr Ala Gly Val Ala Ala Thr Ala Tyr Cys Arg

140                   145                   150 140 145 150

Ser Val Val Pro Gly   Thr Lys Trp Asp Cys   Arg Gln Cys Leu Lys  Ser Val Val Pro Gly Thr Lys Trp Asp Cys Arg Gln Cys Leu Lys

155                   160                   165 155 160 165

Tyr Val Pro Asp Gly   Lys Leu Ile Lys Thr   Phe Thr Ser Leu Leu  Tyr Val Pro Asp Gly Lys Leu Ile Lys Thr Phe Thr Ser Leu Leu

170                   175                   180 170 175 180

Thr Asp Thr Asn Gly   Phe Ile Leu Arg Ser   Asp Ala Gln Lys Tyr  Thr Asp Thr Asn Gly Phe Ile Leu Arg Ser Asp Ala Gln Lys Tyr

185                   190                   195 185 190 195

Ile Tyr Val Thr Phe   Arg Gly Thr Asn Ser   Phe Arg Ser Ala Ile  Ile Tyr Val Thr Phe Arg Gly Thr Asn Ser Phe Arg Ser Ala Ile

200                   205                   210 200 205 210

Thr Asp MET Val Phe   Thr Phe Thr Asp Tyr   Ser Pro Val Lys Gly  Thr Asp MET Val Phe Thr Phe Thr Asp Tyr Ser Pro Val Lys Gly

215                   220                   225 215 220 225

Ala Lys Val His Thr   Gly Phe Leu Ser Ser   Tyr Asn Gln Val Val  Ala Lys Val His Thr Gly Phe Leu Ser Ser Tyr Asn Gln Val Val

230                   235                   240 230 235 240

Lys Asp Tyr Phe Pro   Val Val Gln Asp Gln   Leu Thr Ala Tyr Pro  Lys Asp Tyr Phe Pro Val Val Gln Asp Gln Leu Thr Ala Tyr Pro

245                   250                   255 245 250 255

Asp Tyr Lys Val Ile   Gly Thr Gly His Ser   Leu Gly Gly Ala Gln  Asp Tyr Lys Val Ile Gly Thr Gly His Ser Leu Gly Gly Ala Gln

260                   265                   270 260 265 270

Ala Leu Leu Ala Gly   Met Asp Leu Tyr Gln   Arg Glu Lys Arg Leu  Ala Leu Leu Ala Gly Met Asp Leu Tyr Gln Arg Glu Lys Arg Leu

275                   280                   285 275 280 285

Ser Pro Lys Asn Leu   Ser Ile Tyr Thr Val   Gly Cys Pro Arg Val  Ser Pro Lys Asn Leu Ser Ile Tyr Thr Val Gly Cys Pro Arg Val

290                   295                   300 290 295 300

Gly Asn Asn Ala Phe   Ala Tyr Tyr Val Asp   Ser Thr Gly Ile Pro  Gly Asn Asn Ala Phe Ala Tyr Tyr Val Asp Ser Thr Gly Ile Pro

305                   310                   315 305 310 315

Phe His Arg Thr Val   His Arg Arg Asp Ile   Val Pro His Val Pro  Phe His Arg Thr Val His Arg Arg Asp Ile Val Pro His Val Pro

320                   325                   330 320 325 330

Pro Gln Ala Phe Gly   Tyr Leu His Pro Gly   Val Glu Ser Trp Ile  Pro Gln Ala Phe Gly Tyr Leu His Pro Gly Val Glu Ser Trp Ile

335                   340                   345 335 340 345

Lys Glu Asp Pro Ala   Asp Val Gln Ile Cys   Thr Ser Asn Ile Glu  Lys Glu Asp Pro Ala Asp Val Gln Ile Cys Thr Ser Asn Ile Glu

350                   355                   360 350 355 360

Thr Lys Gln Cys Ser   Asn Ser Ile Val Pro   Phe Thr Asn Ile Ala  Thr Lys Gln Cys Ser Asn Ser Ile Val Pro Phe Thr Asn Ile Ala

365                   370                   375 365 370 375

Asp His Leu Thr Tyr   Phe Gly Ile Asn Glu   Gly Ser Cys Leu       Asp His Leu Thr Tyr Phe Gly Ile Asn Glu Gly Ser Cys Leu

380                   385               389 380 385 389

  the

<210>  SEQ ID NO: 3 <210> SEQ ID NO: 3

  the

<400>  3 <400> 3

F: 5'-TCAAGATCCCTAGGGTTCCTGTTGGTCATAAAGGTTC-3'; F: 5'-TCAAGATCCCTAGGGTTCCTGTTGGTCATAAAGGTTC-3';

R: 5'-AATTCCAGTGCGGCCGCTTACAAACAGCTTCCTTCG-3'。 R: 5'-AATTCCAGTGCGGCCGCTTACAAACAGCTTCCTTCG-3'.

  the

Claims (1)

1. high catalysis activity lipase mutant, it is characterized in that using the fallibility PCR method by the lipase gene that the Genbank accession number that zhizopchin (Rhizopus chinensis) CCTCC M201021 obtains is EF405962, by many wheel restructuring and rite-directed mutagenesis, the lipase mutant that obtains through orthogenesis, in the aminoacid sequence of mutant, comprise amino acid mutation Lys322Arg; With turnover number K catExpression, the enzyme work of lipase mutant is improved than starting strain lipase; The sequencing result of mutant and K thereof catThe multiple that improves is:
Figure FDA00002776297500011
CN 201210083913 2009-11-11 2009-11-11 Highly active Rhizopus chinensis lipase mutant Expired - Fee Related CN102604911B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201210083913 CN102604911B (en) 2009-11-11 2009-11-11 Highly active Rhizopus chinensis lipase mutant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201210083913 CN102604911B (en) 2009-11-11 2009-11-11 Highly active Rhizopus chinensis lipase mutant

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN2009102351853A Division CN101899427B (en) 2009-11-11 2009-11-11 Vitality-enhanced lipase mutants constructed by directed evolution

Publications (2)

Publication Number Publication Date
CN102604911A CN102604911A (en) 2012-07-25
CN102604911B true CN102604911B (en) 2013-05-15

Family

ID=46522686

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201210083913 Expired - Fee Related CN102604911B (en) 2009-11-11 2009-11-11 Highly active Rhizopus chinensis lipase mutant

Country Status (1)

Country Link
CN (1) CN102604911B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102604909B (en) * 2009-11-11 2013-07-17 江南大学 Directed-evolution structured lipase mutant with enhanced catalytic activity
US10731110B2 (en) 2013-12-20 2020-08-04 Novozymes A/S Compositions and processes for treatment with lipases
CN108642025B (en) * 2018-05-17 2020-08-14 江南大学 A lipase mutant with improved enzymatic activity and position selectivity and its application

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1546405A1 (en) * 2002-09-13 2005-06-29 Korea Research Institute of Bioscience and Biotechnology Method for screening of a lipase having improved enzymatic activity using yeast surface display vector and the lipase

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1546405A1 (en) * 2002-09-13 2005-06-29 Korea Research Institute of Bioscience and Biotechnology Method for screening of a lipase having improved enzymatic activity using yeast surface display vector and the lipase

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
Improved thermostability and the optimum temperature of rhizopus arrhizus lipase by directed evolution;Wei-ning niu 等;《Journal of molecular catalysis B:Enzymatic》;20061231;第43卷(第1-4期);33-39 *
Wei-ning niu 等.Improved thermostability and the optimum temperature of rhizopus arrhizus lipase by directed evolution.《Journal of molecular catalysis B:Enzymatic》.2006,第43卷(第1-4期),33-39.
华根霉全细胞脂肪酶催化合成生物柴油;贺芹 等;《催化学报》;20080131;第29卷(第1期);41-46 *
基于易错PCR技术的短小芽孢杆菌YZ02脂肪酶基因BpL的定向进化;黄瑛 等;《生物工程学报》;20081231;第24卷(第3期);445-451 *
贺芹 等.华根霉全细胞脂肪酶催化合成生物柴油.《催化学报》.2008,第29卷(第1期),41-46.
黄瑛 等.基于易错PCR技术的短小芽孢杆菌YZ02脂肪酶基因BpL的定向进化.《生物工程学报》.2008,第24卷(第3期),445-451.

Also Published As

Publication number Publication date
CN102604911A (en) 2012-07-25

Similar Documents

Publication Publication Date Title
CN101899427B (en) Vitality-enhanced lipase mutants constructed by directed evolution
CN103627685B (en) Higher-activity partial glyceride lipase mutant and application thereof
JP6537076B2 (en) Secretion signal peptide and protein secretion and cell surface display using the same
CN102604912A (en) Rhizopuschinensis lipase mutant with high activity
CN101974499B (en) Lipase mutants with improved thermostability
CN103525784B (en) Partial glyceride lipase mutant, plasmid, recombinant strain, preparation method and application
Wang et al. High-level expression of Thermomyces dupontii thermophilic lipase in Pichia pastoris via combined strategies
CN102604908B (en) Lipase mutant with high catalytic activity
CN102604911B (en) Highly active Rhizopus chinensis lipase mutant
CN104031899B (en) A kind of lipase and application thereof
CN102653742B (en) High-temperature resistant rhizopuschinensis lipase mutant
CN102586203A (en) Determinate-evolution-constructed lipase mutant with improved catalysis activity
CN102653743B (en) Thermal stability improved lipase mutant constructed through orthogenesis
CN102994471B (en) Lipase mutant with increased optimum temperature and application of lipase mutant with increased optimum temperature
CN102604909B (en) Directed-evolution structured lipase mutant with enhanced catalytic activity
CN102604910B (en) Lipase mutant with high catalytic activity
CN104726477B (en) A kind of fatty enzyme coding gene and its engineered strain
CN103981197A (en) Novel leader peptide-containing rhizomucor mieheilipase gene and expression of rhizomucor mieheilipase gene in pichia pastoris
Wang et al. Engineering lipase TLL to improve its acid tolerance and its biosynthesis in Trichoderma reesei for biodiesel production from acidified oil
CN103966187B (en) A kind of low temperature partial glyceride lipase and application thereof of ocean microorganism
CN103952385A (en) Thermally stable lipase from marine actinomycetes and application thereof
CN102653741B (en) High-thermal stability rhizopuschinensis lipase
WO2024131628A1 (en) Mutated lipase
Lu et al. Identification of bacteria producing a thermophilic lipase with positional non-specificity and characterization of the lipase
CN110358751A (en) A kind of recombinant lipase mutant, encoding gene, recombination engineering and application

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20120725

Assignee: Ningxia Sunson Industrial Group Co., Ltd.

Assignor: Jiangnan University

Contract record no.: 2016230000004

Denomination of invention: Rhizopuschinensis lipase mutant with high activity

Granted publication date: 20130515

License type: Common License

Record date: 20160229

LICC Enforcement, change and cancellation of record of contracts on the licence for exploitation of a patent or utility model
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130515

Termination date: 20181111

CF01 Termination of patent right due to non-payment of annual fee