CN102592137A - Multi-modality image registration method and operation navigation method based on multi-modality image registration - Google Patents
Multi-modality image registration method and operation navigation method based on multi-modality image registration Download PDFInfo
- Publication number
- CN102592137A CN102592137A CN2011104447720A CN201110444772A CN102592137A CN 102592137 A CN102592137 A CN 102592137A CN 2011104447720 A CN2011104447720 A CN 2011104447720A CN 201110444772 A CN201110444772 A CN 201110444772A CN 102592137 A CN102592137 A CN 102592137A
- Authority
- CN
- China
- Prior art keywords
- image
- registration
- sampling
- multimodal
- drr
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 75
- 238000005070 sampling Methods 0.000 claims abstract description 99
- 238000005457 optimization Methods 0.000 claims description 16
- 230000009466 transformation Effects 0.000 claims description 11
- 238000005481 NMR spectroscopy Methods 0.000 claims description 10
- 238000003384 imaging method Methods 0.000 claims description 10
- 238000005516 engineering process Methods 0.000 claims description 7
- 238000012952 Resampling Methods 0.000 claims description 5
- 230000008859 change Effects 0.000 claims description 4
- 238000006243 chemical reaction Methods 0.000 claims description 4
- 230000008569 process Effects 0.000 description 8
- 239000010410 layer Substances 0.000 description 7
- 210000000988 bone and bone Anatomy 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000004364 calculation method Methods 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 239000002356 single layer Substances 0.000 description 4
- 238000002604 ultrasonography Methods 0.000 description 4
- 210000004185 liver Anatomy 0.000 description 3
- 210000000056 organ Anatomy 0.000 description 3
- 238000011524 similarity measure Methods 0.000 description 3
- 210000004872 soft tissue Anatomy 0.000 description 3
- 230000000007 visual effect Effects 0.000 description 3
- 238000005259 measurement Methods 0.000 description 2
- PXFBZOLANLWPMH-UHFFFAOYSA-N 16-Epiaffinine Natural products C1C(C2=CC=CC=C2N2)=C2C(=O)CC2C(=CC)CN(C)C1C2CO PXFBZOLANLWPMH-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000002601 radiography Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 238000012549 training Methods 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
Images
Landscapes
- Magnetic Resonance Imaging Apparatus (AREA)
- Apparatus For Radiation Diagnosis (AREA)
Abstract
一种多模态图像配准方法,包括以下步骤:将参考图像和待配准图像按照第一采样比例进行采样获取具有第一分辨率的参考图像和待配准图像;采用B样条曲面作为变形模型对所述具有第一分辨率的参考图像和待配准图像进行配准、计算配准测度并获得第一配准参数;增大采样比例重复上述步骤直至配准测度达到预设阈值;其中,每次增大采样比例后进行配准时均以上一次的配准参数为初始配准参数。此外还提供一种基于多模态图像配准的手术导航方法。
A multimodal image registration method, comprising the following steps: sampling a reference image and an image to be registered according to a first sampling ratio to obtain a reference image with a first resolution and an image to be registered; using a B-spline surface as The deformation model registers the reference image with the first resolution and the image to be registered, calculates a registration measure, and obtains a first registration parameter; increases the sampling ratio and repeats the above steps until the registration measure reaches a preset threshold; Wherein, when the registration is performed after increasing the sampling ratio each time, the previous registration parameter is used as the initial registration parameter. In addition, a surgical navigation method based on multimodal image registration is provided.
Description
【技术领域】 【Technical field】
本发明涉及图像处理,尤其涉及一种多模态图像配准方法及基于多模态图像配准的手术导航方法。The invention relates to image processing, in particular to a multimodal image registration method and a surgical navigation method based on multimodal image registration.
【背景技术】 【Background technique】
现有技术中,国内介入导航系统主要针对骨骼和脑科手术,以及多基于超声影像的配准。由于骨骼的刚性特点,使术前影像和病人之间的配准比较容易通过骨骼上的标志点完成刚性配准,也能达到比较好的治疗精度。但对于肝脏等软组织的外科手术,因为呼吸或手术器械的作用,无可避免地会造成肝脏的位移和变形。此时,基于特征点的刚性配准就不再适用了。而且一般的超声图像噪声大和边缘不清晰,由于超声图像的成像技术局限,基于超声的高精度图像配准方法尚处于研究阶段。而且配准速度是针对肝脏等易变形组织的弹性配准技术的技术重点、难点。In the prior art, domestic interventional navigation systems are mainly aimed at bone and brain surgery, and registration based on ultrasound images. Due to the rigidity of the bone, the registration between the preoperative image and the patient is relatively easy to complete the rigid registration through the landmarks on the bone, and can also achieve better treatment accuracy. However, for surgical operations on soft tissues such as the liver, the displacement and deformation of the liver will inevitably be caused by the action of breathing or surgical instruments. At this point, rigid registration based on feature points is no longer applicable. Moreover, general ultrasound images are noisy and have unclear edges. Due to the limitations of ultrasound image imaging technology, high-precision image registration methods based on ultrasound are still in the research stage. Moreover, the registration speed is the technical focus and difficulty of the elastic registration technology for easily deformable tissues such as the liver.
因此,目前的介入导航系统在配准的实时性、提供三维图像信息、手术路径规划和导航精确性等方面均有所欠缺。由于不同的影像设备采用不同的成像方法采集图像,每种成像原理只能有效地反映某种器官的信息,例如CT能清晰显示人体骨骼,而MRI设备则有利于显示软性组织。目前还没有一种成像技术能够全面地获取人体器官信息,且快速准确的将各种器官信息的图像配准。Therefore, the current interventional navigation system is lacking in real-time registration, provision of three-dimensional image information, surgical path planning, and navigation accuracy. Since different imaging devices use different imaging methods to collect images, each imaging principle can only effectively reflect the information of a certain organ. For example, CT can clearly display human bones, while MRI equipment is good for displaying soft tissues. At present, there is no imaging technology that can comprehensively obtain human organ information and quickly and accurately register images of various organ information.
【发明内容】 【Content of invention】
基于此,有必要提供一种快速准确的多模态图像配准方法。Based on this, it is necessary to provide a fast and accurate multimodal image registration method.
一种多模态图像配准方法,包括以下步骤:A multimodal image registration method, comprising the following steps:
将参考图像和待配准图像按照第一采样比例进行采样获取具有第一分辨率的参考图像和待配准图像;Sampling the reference image and the image to be registered according to a first sampling ratio to obtain a reference image and an image to be registered with a first resolution;
采用B样条曲面作为变形模型对所述具有第一分辨率的参考图像和待配准图像进行配准、计算配准测度并获得第一配准参数;Using a B-spline surface as a deformation model to register the reference image with the first resolution and the image to be registered, calculate a registration measure, and obtain a first registration parameter;
增大采样比例重复上述步骤直至配准测度达到预设阈值;其中,每次增大采样比例后进行配准时均以上一次的配准参数为初始配准参数。Increase the sampling ratio and repeat the above steps until the registration measure reaches the preset threshold; wherein, each time the registration is performed after increasing the sampling ratio, the previous registration parameter is used as the initial registration parameter.
优选地,所述对参考图像和待配准图像按照采样比例进行采样的步骤具体包括:Preferably, the step of sampling the reference image and the image to be registered according to the sampling ratio specifically includes:
将所述参考图像和待配准图像的像素灰度值进行归一化;Normalizing the pixel gray values of the reference image and the image to be registered;
以采样比例对256个灰度级进行采样。256 gray levels are sampled at a sampling scale.
优选地,采样及配准的步骤重复1次,其中,根据参考图像及待配准图像的分辨率设置第一采样比例及重复采样比例。Preferably, the steps of sampling and registration are repeated once, wherein the first sampling ratio and the repeated sampling ratio are set according to the resolutions of the reference image and the image to be registered.
优选地,采样的方法采用如下方式之一:随机采样、等间隔采样以及金字塔分层采样。Preferably, the sampling method adopts one of the following methods: random sampling, equal interval sampling, and pyramid layered sampling.
优选地,针对配准优化算法采用梯度下降算法,设置第一采样及重复采样的搜索步长、收敛条件中的松弛因子、最大迭代次数、B样条曲面大小。Preferably, the gradient descent algorithm is used for the registration optimization algorithm, and the search step size of the first sampling and repeated sampling, the relaxation factor in the convergence condition, the maximum number of iterations, and the size of the B-spline surface are set.
优选地,所述计算配准测度的步骤中:Preferably, in the step of calculating the registration measure:
采用归一化的互信息值作为配准测度。The normalized mutual information value is used as the registration measure.
优选地,配准测度达到预设阈值时,将所述参考图像与待配准图像进行绝对配准,其中在绝对配准中定义B样条控制网格。Preferably, when the registration measure reaches a preset threshold, absolute registration is performed on the reference image and the image to be registered, wherein a B-spline control grid is defined in the absolute registration.
此外,还有必要提供一种快速准确的基于多模态图像配准的手术导航方法。In addition, it is necessary to provide a fast and accurate method for surgical navigation based on multimodal image registration.
一种基于多模态图像配准的手术导航方法,用于根据术前CT图像建立的三维图像和术中的核磁共振图像进行配准后的手术导航,包括如下步骤:A surgical navigation method based on multimodal image registration, used for surgical navigation after registration of a three-dimensional image established from a preoperative CT image and an intraoperative MRI image, comprising the following steps:
采用数字影像重建技术对术前CT图像进行重建得到DRR(digitallyreconstructed radiography,数字重建图像)图像;Using digital image reconstruction technology to reconstruct preoperative CT images to obtain DRR (digitally reconstructed radiography, digitally reconstructed image) images;
将DRR图像与术中的核磁共振图像进行配准并不断改变DRR图像在模拟X射线成像设备中的空间位置参数,获得空间位置参数不同时的配准测度;Register the DRR image with the intraoperative MRI image and continuously change the spatial position parameters of the DRR image in the simulated X-ray imaging equipment to obtain the registration measure when the spatial position parameters are different;
通过优化算法搜索出配准测度到达阈值时的空间位置参数即为DRR图像在模拟X射线的空间定位参数;The spatial position parameter when the registration measure reaches the threshold is searched by the optimization algorithm, which is the spatial positioning parameter of the DRR image in the simulated X-ray;
获取DRR图像与术中的核磁共振图像相似度最大时的欧拉转换参数作为将术前的CT图像数据转换到核磁共振图像的坐标转换参数;Obtain the Euler transformation parameter when the similarity between the DRR image and the intraoperative MRI image is the largest as the coordinate conversion parameter for converting the preoperative CT image data to the MRI image;
根据所述坐标转换参数结合所述术前CT图像和术中的核磁共振图像进行手术导航;performing surgical navigation in combination with the preoperative CT image and the intraoperative MRI image according to the coordinate transformation parameters;
其中,所述将DRR图像与术中的核磁共振图像进行配准的步骤包括:Wherein, the step of registering the DRR image with the MRI image in the operation comprises:
对DRR图像和术中的核磁共振图像按照第一采样比例进行采样获取具有第一分辨率的DRR图像和术中的核磁共振图像;Sampling the DRR image and the intraoperative nuclear magnetic resonance image according to a first sampling ratio to obtain the DRR image and the intraoperative nuclear magnetic resonance image with a first resolution;
采用B样条曲面作为变形模型对所述具有第一分辨率的DRR图像和术中的核磁共振图像进行配准、计算配准测度并获得第一配准参数;Using a B-spline surface as a deformation model to register the DRR image with the first resolution and the intraoperative MRI image, calculate a registration measure, and obtain a first registration parameter;
增大采样比例重复上述配准步骤直至配准测度达到预设阈值;其中,每次增大采样比例后进行配准时均以上一次的配准参数为初始配准参数。Increase the sampling ratio and repeat the above registration steps until the registration measure reaches the preset threshold; wherein, each time the registration is performed after increasing the sampling ratio, the previous registration parameter is used as the initial registration parameter.
优选地,所述对DRR图像和术中的核磁共振图像按照第一采样比例进行采样获取具有第一分辨率的DRR图像和术中的核磁共振图像的步骤具体包括:Preferably, the step of sampling the DRR image and the intraoperative nuclear magnetic resonance image according to the first sampling ratio to obtain the DRR image and the intraoperative nuclear magnetic resonance image with the first resolution specifically includes:
将所述DRR图像和术中的核磁共振图像的像素灰度值进行归一化;Normalize the pixel gray value of the DRR image and the MRI image in the operation;
以所述第一采样比例对256个灰度级进行采样。The 256 gray levels are sampled at the first sampling ratio.
优选地,采样及配准的步骤重复1次,其中,根据参考图像及待配准图像的分辨率设置第一采样比例及重复采样比例。Preferably, the steps of sampling and registration are repeated once, wherein the first sampling ratio and the repeated sampling ratio are set according to the resolutions of the reference image and the image to be registered.
优选地,针对配准优化算法采用梯度下降算法,设置第一采样及重复采样的搜索步长、收敛条件中的松弛因子、最大迭代次数、B样条曲面大小。Preferably, the gradient descent algorithm is used for the registration optimization algorithm, and the search step size of the first sampling and repeated sampling, the relaxation factor in the convergence condition, the maximum number of iterations, and the size of the B-spline surface are set.
优选地,所述计算配准测度的步骤中:Preferably, in the step of calculating the registration measure:
采用归一化的互信息值作为配准测度。The normalized mutual information value is used as the registration measure.
优选地,配准测度达到预设阈值时,将所述DRR图像和术中的核磁共振图像进行绝对配准,其中在绝对配准中定义B样条控制网格。Preferably, when the registration measure reaches a preset threshold, absolute registration is performed on the DRR image and the intraoperative MRI image, wherein a B-spline control grid is defined in the absolute registration.
优选地,所述根据所述坐标转换参数结合所述术前CT图像和术中的核磁共振图像进行手术导航的步骤包括:Preferably, the step of performing surgical navigation according to the coordinate transformation parameters in combination with the preoperative CT image and the intraoperative MRI image includes:
将相似度最大的术前的CT图像和术中的核磁共振图像根据空间匹配关系进行图像融合,并根据所述融合后的图像获取手术导航路径。The preoperative CT image with the largest similarity and the intraoperative MRI image are fused according to the spatial matching relationship, and a surgical navigation path is obtained according to the fused image.
上述多模态图像配准方法,采用多层分辨率图像配准实现方法,同时以B样条曲面作为变形模型,能够快速准确的将参考图像与待配准图像找到两者的配准测度阈值,实现准确的图像配准。The above multi-modal image registration method adopts a multi-layer resolution image registration implementation method, and at the same time uses a B-spline surface as a deformation model, which can quickly and accurately find the registration measurement threshold of the reference image and the image to be registered , to achieve accurate image registration.
上述基于多模态图像配准的手术导航方法,采用多层分辨率图像配准实现方法,同时以B样条曲面作为变形模型,能够快速准确的将参考图像与待配准图像找到两者的配准测度阈值,实现准确的图像配准,并对配准后的图像进行融合,可得到多源信道采集的到关于同一目标的数据的各信道中的有利信息。The above-mentioned surgical navigation method based on multi-modal image registration adopts the multi-layer resolution image registration method, and at the same time uses the B-spline surface as the deformation model, which can quickly and accurately find the difference between the reference image and the image to be registered. The registration measure threshold is used to achieve accurate image registration, and the registered images are fused to obtain favorable information in each channel of the data about the same target collected by multi-source channels.
【附图说明】 【Description of drawings】
图1为多模态图像配准方法的流程图;Fig. 1 is the flowchart of multimodal image registration method;
图2为提取感兴趣区域的示意图;Figure 2 is a schematic diagram of extracting a region of interest;
图3为缩小B样条网格控制区域的示意图;Fig. 3 is the schematic diagram of reducing the B-spline grid control area;
图4(a)至图4(c)为多模态图像配准方法实现过程示意图;Figure 4(a) to Figure 4(c) are schematic diagrams of the implementation process of the multimodal image registration method;
图5为基于多模态图像配准的手术导航方法的流程图。Fig. 5 is a flowchart of a surgical navigation method based on multimodal image registration.
【具体实施方式】 【Detailed ways】
因为多模态图像是取自不同的成像装置和不同拍摄时间下的图像。因此参考图像即术前规划系统中的目标图像与待配准图像即术中的图像并不相同,例如,两者不在同一层,或者两种图像会有变形或者位置偏移,因此需要适时校正。因此本发明采用如下的多模态图像配准方法。Because multi-modal images are images taken from different imaging devices and at different shooting times. Therefore, the reference image, that is, the target image in the preoperative planning system, is not the same as the image to be registered, that is, the intraoperative image. For example, the two images are not on the same layer, or the two images will be deformed or shifted, so timely correction is required . Therefore, the present invention adopts the following multimodal image registration method.
如图1所示,为一种多模态图像配准方法的流程图,包括以下步骤:As shown in Figure 1, it is a flowchart of a multimodal image registration method, including the following steps:
步骤S110,将参考图像和待配准图像按照第一采样比例进行采样获取具有第一分辨率的参考图像和待配准图像。Step S110 , sampling the reference image and the image to be registered according to the first sampling ratio to obtain the reference image and the image to be registered with the first resolution.
在本实施例中,步骤S110中对参考图像和待配准图像按照采样比例进行采样的步骤具体包括:In this embodiment, the step of sampling the reference image and the image to be registered according to the sampling ratio in step S110 specifically includes:
①将所述参考图像和待配准图像的像素灰度值进行归一化。① Normalize the pixel gray values of the reference image and the image to be registered.
②以采样比例对256个灰度级进行采样。② Sampling 256 gray levels at the sampling ratio.
在本实施例中,采样的方法采用如下方式之一:随机采样、等间隔采样以及金字塔分层采样。优选地,采用金字塔分层采样。In this embodiment, the sampling method adopts one of the following methods: random sampling, equal interval sampling, and pyramid layered sampling. Preferably, pyramid layered sampling is used.
图像配准是对取自不同时间、不同传感器或者不同视角的同一场景的多幅图像匹配的过程。一般来说,CT图像和MRI的原始图像分辨率都可以达到各种高分辨率。因此将图像的像素灰度值进行归一化,以一定比例对全部256个灰度级的数据采样,并采用采样子集代替所有像素数据计算相似性测度,即每一次的配准采用不同的图像分辨率。Image registration is the process of matching multiple images of the same scene taken at different times, from different sensors, or from different viewpoints. In general, the raw image resolutions of both CT images and MRI can reach various high resolutions. Therefore, the pixel gray value of the image is normalized, the data of all 256 gray levels are sampled in a certain proportion, and the sampled subset is used to replace all pixel data to calculate the similarity measure, that is, each registration adopts a different Image Resolution.
在本实施例中,在每次采用不同分辨率配准过程中都采用3次B样条曲面作为空间转换函数,且根据不同尺度的配准需要,可以在每层的配准过程中采用大小不同的B样条曲面作为变形模型。优选地,根据多模态图像的实际分辨率采用大小不同的B样条曲面作为变形模型。In this embodiment, the three-degree B-spline surface is used as the space conversion function in each registration process with different resolutions, and according to the registration requirements of different scales, the size of each layer can be used in the registration process Different B-spline surfaces are used as deformation models. Preferably, B-spline surfaces of different sizes are used as the deformation model according to the actual resolution of the multimodal image.
步骤S120,采用B样条曲面作为变形模型对所述具有第一分辨率的参考图像和待配准图像进行配准、计算配准测度并获得第一配准参数。Step S120, using a B-spline surface as a deformation model to register the reference image with the first resolution and the image to be registered, calculate a registration measure, and obtain a first registration parameter.
在本实施例中,计算配准测度的步骤中:采用归一化的互信息值作为配准测度。In this embodiment, in the step of calculating the registration measure: the normalized mutual information value is used as the registration measure.
互信息是信息理论中的一个基本概念,用于描述两个系统间的统计相关性,或者是一个系统中所包含的另一个系统中信息的量。其中,在配准测度中,由于方差和均方差是测度数据变异程度的最重要、最常用的指标,因此常采用归一化的形式。Mutual information is a basic concept in information theory, which is used to describe the statistical correlation between two systems, or the amount of information contained in one system in another system. Among them, in the registration measurement, since the variance and mean square error are the most important and commonly used indicators to measure the degree of data variation, the normalized form is often used.
在本实施例中,针对配准优化算法采用梯度下降算法,设置第一采样及重复采样的搜索步长、收敛条件中的松弛因子、最大迭代次数、B样条曲面大小。In this embodiment, the gradient descent algorithm is used for the registration optimization algorithm, and the search step size of the first sampling and repeated sampling, the relaxation factor in the convergence condition, the maximum number of iterations, and the size of the B-spline surface are set.
在本实施例中,针对第一采样的配准优化算法采用梯度下降算法,其中搜索步长为10mm、收敛条件中的松弛因子为0.7、最大迭代次数为200、采用5×5的B样条曲面作为形变模型;针对重复采样的配准优化算法采用LBFG算法,其中搜索步长为0.1mm、梯度收敛公差为0.05,最大迭代次数为1000次、采用10×10的B样条曲面作为形变模型。第一配准参数包括:像素、收缩系数及振幅长度等。In this embodiment, the registration optimization algorithm for the first sampling adopts the gradient descent algorithm, in which the search step size is 10 mm, the relaxation factor in the convergence condition is 0.7, the maximum number of iterations is 200, and a 5×5 B-spline is used The curved surface is used as the deformation model; the registration optimization algorithm for repeated sampling adopts the LBFG algorithm, in which the search step is 0.1mm, the gradient convergence tolerance is 0.05, the maximum number of iterations is 1000, and a 10×10 B-spline surface is used as the deformation model . The first registration parameters include: pixels, shrinkage coefficients, and amplitude lengths.
步骤S130,增大采样比例重复上述步骤直至配准测度达到预设阈值;其中,每次增大采样比例后进行配准时均以上一次的配准参数为初始配准参数。Step S130 , increasing the sampling ratio and repeating the above steps until the registration measure reaches the preset threshold; wherein, each time the registration is performed after increasing the sampling ratio, the previous registration parameter is used as the initial registration parameter.
将上一次的配准参数作为下一次的初始配准参数,能够提高两次配准的连续性和稳定性。Using the previous registration parameters as the next initial registration parameters can improve the continuity and stability of the two registrations.
在本实施例中,采样及配准的步骤重复1次,其中,根据参考图像及待配准图像的分辨率设置第一采样比例及重复采样比例。In this embodiment, the steps of sampling and registration are repeated once, wherein the first sampling ratio and the repeated sampling ratio are set according to the resolutions of the reference image and the image to be registered.
在本实施例中,采样及配准的步骤重复1次,其中,第一采样比例为0.3,重复采样比例为0.6。In this embodiment, the steps of sampling and registration are repeated once, wherein the first sampling ratio is 0.3, and the repeated sampling ratio is 0.6.
如表1示,为图像配准结果,包括配准前的互信息值、第一配准结果和第二配准结果配准完成后的配准结果与参考图像的互信息的对比。As shown in Table 1, it is the image registration result, including the mutual information value before registration, the first registration result and the second registration result, and the comparison between the registration result after registration and the mutual information of the reference image.
表1Table 1
如表2所示为CT(512*512)和MRI(512*416)两幅不同模态图像的配准结果,其中最大互信息值作为相似性测度。配准输出参数包括配准前参考图与浮动图的互信息值,第一配准结果和第二配准结果和参考图的互信息值对比以及配准所需时间。从配准前后的互信息值对比中可知互信息值提升较多,说明变形后的浮动图像和参考图像的一致性有所提高,此配准方法对于多模态图像有一定的配准效果。Table 2 shows the registration results of CT (512*512) and MRI (512*416) images of two different modalities, where the maximum mutual information value is used as the similarity measure. The registration output parameters include the mutual information value of the reference image and the floating image before registration, the comparison of the mutual information value between the first registration result and the second registration result and the reference image, and the time required for registration. From the comparison of the mutual information value before and after registration, it can be seen that the mutual information value has been greatly improved, indicating that the consistency between the deformed floating image and the reference image has improved. This registration method has a certain registration effect for multi-modal images.
表2Table 2
表3为比较本实施例中配准策略与传统单层配准方法的配准速度而设计的实验的结果。该实验中的传统单次配准方法采用相同的配准方法,包括使用B样条曲面作为变形模型、互信息作为相似性测度结合LBFG优化算法寻求最优值的配准策略。在此基础上,可认为两种方法配准收敛条件相同,即配准精度相当。当设置同样的配准收敛条件时,单次配准方法和本文的多层配准方法配准所需时间如下表所示:Table 3 shows the results of experiments designed to compare the registration speed of the registration strategy in this embodiment with the traditional single-layer registration method. The traditional single registration method in this experiment uses the same registration method, including the registration strategy of using B-spline surface as the deformation model, mutual information as the similarity measure and LBFG optimization algorithm to find the optimal value. On this basis, it can be considered that the registration convergence conditions of the two methods are the same, that is, the registration accuracy is equivalent. When the same registration convergence conditions are set, the registration time required for the single registration method and the multi-layer registration method in this paper is shown in the following table:
表3table 3
配准测度达到预设阈值时,将参考图像与待配准图像进行绝对配准,其中在绝对配准中定义B样条控制网格。当参考图像与待配准图像的配准参数间的差值在±5%之间时,认为配准测度达到预设阈值。具体地,采用B样条网格控制区域的方法步骤包括:When the registration measure reaches the preset threshold, absolute registration is performed between the reference image and the image to be registered, wherein a B-spline control grid is defined in the absolute registration. When the difference between the registration parameters of the reference image and the image to be registered is within ±5%, it is considered that the registration measure reaches the preset threshold. Specifically, the method steps of adopting the B-spline grid to control the region include:
①选取参考图像中的感兴趣区域,得到其像素信息,并将像素信息映射到待配准图像的对应区域,同时控制B样条网格变化。① Select the region of interest in the reference image, obtain its pixel information, and map the pixel information to the corresponding region of the image to be registered, while controlling the change of the B-spline grid.
如图2所示为提取感兴趣区域的示意图。感兴趣区域10为参考图像中的变形区域,将感兴趣区域10提取,并映射到待配准图像的对应区域,控制B样条网格变化。优选地,在B样条网格中,感兴趣区域10被缩小。Figure 2 is a schematic diagram of extracting the region of interest. The region of
②将变化后的网格控制区域进行优化计算,达到匹配阈值后嵌入到待配准图像中。②Optimize and calculate the changed grid control area, and embed it into the image to be registered after reaching the matching threshold.
如图3所示,为缩小B样条网格控制区域的示意图。变形区域20是参考图像中的较大变形区域,缩小区域22为变化后的网格控制区域。对缩小区域22进行优化计算,达到匹配阈值后嵌入到待配准图像中。具体实现过程如图4所示:图4a为参考图像。图4b为待配准图像。图4c为配准结果。As shown in Figure 3, it is a schematic diagram of reducing the control area of the B-spline grid. The deformed area 20 is a larger deformed area in the reference image, and the reduced area 22 is a changed grid control area. Perform optimization calculation on the reduced area 22, and embed it into the image to be registered after reaching the matching threshold. The specific implementation process is shown in Figure 4: Figure 4a is a reference image. Figure 4b is the image to be registered. Figure 4c is the registration result.
接下来为对比多模态图像的多层配准策略与传统单层配准方法的配准速度,设计以下实验。该实验中的传统单层配准方法与分层配准方法采用相同的配准参数,包括同样使用B样条曲面作为变形模型、互信息作为配准测度和LBFG优化算法寻求最优值的配准策略。在此基础上,可认为两种方法配准收敛条件相同,即配准精度相当。当设置同样的配准收敛条件时,单层配准方法和多模态图像的多层配准方法配准所需时间如表4所示。Next, in order to compare the registration speed of the multi-layer registration strategy of multi-modal images and the traditional single-layer registration method, the following experiments are designed. The traditional single-layer registration method in this experiment uses the same registration parameters as the layered registration method, including the same registration parameters that use B-spline surface as the deformation model, mutual information as the registration measure, and LBFG optimization algorithm to find the optimal value. quasi-strategy. On this basis, it can be considered that the registration convergence conditions of the two methods are the same, that is, the registration accuracy is equivalent. When the same registration convergence conditions are set, the time required for registration of the single-layer registration method and the multi-layer registration method of multi-modal images is shown in Table 4.
表4Table 4
在B样条次数,控制B样条网格间距不变的情况,上述方法提高了计算的速度和精度,更适合修正局部较大变形的图像。In the B-spline order, control the B-spline grid spacing unchanged, the above method improves the calculation speed and accuracy, and is more suitable for correcting images with large local deformations.
基于上述所有实施例,如图5所示,为一种基于多模态图像配准的手术导航方法流程图,用于根据术前CT图像建立的三维图像和术中的核磁共振图像进行配准后的手术导航,包括如下步骤:Based on all the above-mentioned embodiments, as shown in FIG. 5 , it is a flow chart of a surgical navigation method based on multi-modal image registration, which is used for registration of a three-dimensional image established from a preoperative CT image and an intraoperative MRI image. The subsequent surgical navigation includes the following steps:
步骤S210,采用数字影像重建技术对术前CT图像进行重建得到DRR图像。Step S210, using digital image reconstruction technology to reconstruct the preoperative CT image to obtain a DRR image.
采用数字影像重建技术(DRR)对术前的CT图像重建,即采用术前的CT断层数据重建出仿射摄影图像,模拟实际成像的物理过程。Digital image reconstruction technology (DRR) is used to reconstruct the preoperative CT image, that is, the preoperative CT tomographic data is used to reconstruct the affine photographic image, and the physical process of the actual imaging is simulated.
在本实施例中,对术前的CT图像进行重建,是为了实现三维术前规划系统将CT切片图像重建成三维。In this embodiment, the purpose of reconstructing the preoperative CT image is to realize the three-dimensional reconstruction of the CT slice image by the three-dimensional preoperative planning system.
步骤S220,将DRR图像与术中的核磁共振图像进行配准并不断改变DRR图像在模拟X射线成像设备中的空间位置参数,获得空间位置参数不同时的配准测度。Step S220, registering the DRR image with the intraoperative MRI image and constantly changing the spatial position parameters of the DRR image in the simulated X-ray imaging device to obtain a registration measure when the spatial position parameters are different.
在本实施例中,采用欧拉旋转控制三维图像的旋转和平移等六个自由度的参数,因此在重采样的过程中,改变欧拉转换参数,会获得不同角度的DRR图像。In this embodiment, Euler rotation is used to control parameters of six degrees of freedom such as rotation and translation of the three-dimensional image. Therefore, in the process of resampling, DRR images of different angles can be obtained by changing the Euler transformation parameters.
在本实施例中,将DRR图像与术中的核磁共振图像进行配准的步骤包括:In this embodiment, the step of registering the DRR image with the intraoperative MRI image includes:
①对DRR图像和术中的核磁共振图像按照第一采样比例进行采样获取具有第一分辨率的DRR图像和术中的核磁共振图像。① Sampling the DRR image and the intraoperative MRI image according to the first sampling ratio to obtain the DRR image and the intraoperative MRI image with the first resolution.
②采用B样条曲面作为变形模型对所述具有第一分辨率的DRR图像和术中的核磁共振图像进行配准、计算配准测度并获得第一配准参数。② Using a B-spline surface as a deformation model to register the DRR image with the first resolution and the intraoperative MRI image, calculate a registration measure, and obtain a first registration parameter.
③增大采样比例重复上述配准步骤直至配准测度达到预设阈值;其中,每次增大采样比例后进行配准时均以上一次的配准参数为初始配准参数。③Increase the sampling ratio and repeat the above registration steps until the registration measure reaches the preset threshold; wherein, when the registration is performed after increasing the sampling ratio each time, the previous registration parameters are used as the initial registration parameters.
在本实施例中,对DRR图像和术中的核磁共振图像按照第一采样比In this embodiment, the DRR image and the intraoperative MRI image are processed according to the first sampling ratio
例进行采样获取具有第一分辨率的DRR图像和术中的核磁共振图像的步骤具体包括:For example, the steps of sampling to obtain a DRR image with a first resolution and an intraoperative nuclear magnetic resonance image specifically include:
①将所述DRR图像和术中的核磁共振图像的像素灰度值进行归一化。① Normalizing the pixel gray values of the DRR image and the intraoperative nuclear magnetic resonance image.
②以采样比例对256个灰度级进行采样。② Sampling 256 gray levels at the sampling ratio.
在本实施例中,采样及配准的步骤重复1次,其中,根据参考图像及待配准图像的分辨率设置第一采样比例及重复采样比例。In this embodiment, the steps of sampling and registration are repeated once, wherein the first sampling ratio and the repeated sampling ratio are set according to the resolutions of the reference image and the image to be registered.
在本实施例中,采样及配准的步骤重复1次,其中,第一采样比例为0.3,重复采样比例为0.6。In this embodiment, the steps of sampling and registration are repeated once, wherein the first sampling ratio is 0.3, and the repeated sampling ratio is 0.6.
常用的重采样有最近邻方法、双线性内插方法和三次卷积内插方法。其中,最近邻方法最为简单,计算速度快,但是视觉效应差;双线性插值会使图像轮廓模糊;三次卷积法产生的图像较平滑,有好的视觉效果,但计算量大,较费时。在本实施例中,为了取得好的视觉效果的图像一般会采用三次卷积法进行重采样。Commonly used resampling methods include nearest neighbor method, bilinear interpolation method and cubic convolution interpolation method. Among them, the nearest neighbor method is the simplest and has a fast calculation speed, but the visual effect is poor; bilinear interpolation will blur the image outline; the image produced by the cubic convolution method is smoother and has good visual effects, but the calculation is large and time-consuming . In this embodiment, in order to obtain an image with a good visual effect, a cubic convolution method is generally used for resampling.
在本实施例中,针对配准优化算法采用梯度下降算法,设置第一采样及重复采样的搜索步长、收敛条件中的松弛因子、最大迭代次数、B样条曲面大小。In this embodiment, the gradient descent algorithm is used for the registration optimization algorithm, and the search step size of the first sampling and repeated sampling, the relaxation factor in the convergence condition, the maximum number of iterations, and the size of the B-spline surface are set.
在本实施例中,针对第一采样的配准优化算法采用梯度下降算法,其中搜索步长为10mm、收敛条件中的松弛因子为0.7、最大迭代次数为200、采用5×5的B样条曲面作为形变模型;针对重复采样时的配准优化算法采用LBFG算法,其中搜索步长为0.1mm、梯度收敛公差为0.05,最大迭代次数为1000次、采用10×10的B样条曲面作为形变模型。In this embodiment, the registration optimization algorithm for the first sampling adopts the gradient descent algorithm, in which the search step size is 10 mm, the relaxation factor in the convergence condition is 0.7, the maximum number of iterations is 200, and a 5×5 B-spline is used The surface is used as the deformation model; the LBFG algorithm is used for the registration optimization algorithm during repeated sampling, in which the search step is 0.1mm, the gradient convergence tolerance is 0.05, the maximum number of iterations is 1000, and a 10×10 B-spline surface is used as the deformation Model.
在本实施例中,配准测度达到预设阈值时,将根据术前CT图像建立的三维图像和术中的核磁共振图像进行绝对配准,其中在绝对配准中定义B样条控制网格。In this embodiment, when the registration measure reaches the preset threshold, absolute registration will be performed on the 3D image created based on the preoperative CT image and the intraoperative MRI image, wherein the B-spline control grid is defined in the absolute registration .
步骤S230,通过优化算法搜索出配准测度到达阈值时的空间位置参数即为DRR图像在模拟X射线的空间定位参数。In step S230, the spatial position parameter when the registration measure reaches the threshold is searched by the optimization algorithm, which is the spatial positioning parameter of the DRR image in the simulated X-ray.
步骤S240,取DRR图像与术中的核磁共振图像相似度最大时的欧拉转换参数作为将术前的CT图像数据转换到核磁共振图像的坐标转换参数。Step S240, taking the Euler transformation parameter when the similarity between the DRR image and the intraoperative MRI image is the largest as the coordinate conversion parameter for converting the preoperative CT image data into the MRI image.
在本实施例中,当DRR图像与术中的核磁共振图像相似度最大时,可以认为欧拉转换的参数对应的就是术中的核磁共振图像与术前的CT图像的坐标转换矩阵。In this embodiment, when the similarity between the DRR image and the intraoperative MRI image is the largest, it can be considered that the parameters of the Euler transformation correspond to the coordinate transformation matrix between the intraoperative MRI image and the preoperative CT image.
步骤S250,根据所述坐标转换参数结合所述术前CT图像和术中的核磁共振图像进行手术导航。Step S250, performing surgical navigation according to the coordinate transformation parameters combined with the preoperative CT image and the intraoperative MRI image.
在本实施例中,根据术前CT图像建立的三维图像和术中的核磁共振图像根据空间匹配关系像融合后,能够获得全面显示骨骼和软组织的图像。在获得信息全面的图像后,根据空间坐标关系指引控制机械臂完成介入式治疗,完成治疗导航过程。In this embodiment, after the three-dimensional image established based on the preoperative CT image and the intraoperative MRI image are fused according to the spatial matching relationship, an image fully displaying bones and soft tissues can be obtained. After obtaining images with comprehensive information, the robotic arm is controlled according to the spatial coordinate relationship to complete the interventional treatment and complete the treatment navigation process.
上述方法能够提供术前规划、教学训练和机械臂辅助完成治疗。The above method can provide preoperative planning, teaching training and mechanical arm assistance to complete the treatment.
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。The above-mentioned embodiments only express several implementation modes of the present invention, and the description thereof is relatively specific and detailed, but should not be construed as limiting the patent scope of the present invention. It should be pointed out that those skilled in the art can make several modifications and improvements without departing from the concept of the present invention, and these all belong to the protection scope of the present invention. Therefore, the protection scope of the patent for the present invention should be based on the appended claims.
Claims (14)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110444772.0A CN102592137B (en) | 2011-12-27 | 2011-12-27 | Multi-modality image registration method and operation navigation method based on multi-modality image registration |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110444772.0A CN102592137B (en) | 2011-12-27 | 2011-12-27 | Multi-modality image registration method and operation navigation method based on multi-modality image registration |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102592137A true CN102592137A (en) | 2012-07-18 |
CN102592137B CN102592137B (en) | 2014-07-02 |
Family
ID=46480747
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201110444772.0A Active CN102592137B (en) | 2011-12-27 | 2011-12-27 | Multi-modality image registration method and operation navigation method based on multi-modality image registration |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102592137B (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103020976A (en) * | 2012-12-31 | 2013-04-03 | 中国科学院合肥物质科学研究院 | A 3D medical image registration method and system based on weighted fuzzy mutual information |
CN103345774A (en) * | 2013-07-17 | 2013-10-09 | 中国人民解放军第三军医大学 | Method for building three-dimensional multi-scale vectorization model |
CN103479397A (en) * | 2013-10-15 | 2014-01-01 | 哈尔滨工业大学 | Method for extracting color ultrasound parametric blood flow signal based on relaxation algorithm |
CN106204561A (en) * | 2016-07-04 | 2016-12-07 | 西安电子科技大学 | Prostate multi-modality images non-rigid registration method based on mixed model |
CN107742099A (en) * | 2017-09-30 | 2018-02-27 | 四川云图睿视科技有限公司 | A kind of crowd density estimation based on full convolutional network, the method for demographics |
CN109767461A (en) * | 2018-12-28 | 2019-05-17 | 上海联影智能医疗科技有限公司 | Medical image registration method, device, computer equipment and storage medium |
CN109767458A (en) * | 2018-12-21 | 2019-05-17 | 西北大学 | A sequential optimization registration method for semi-automatic segmentation |
CN110223220A (en) * | 2019-06-14 | 2019-09-10 | 北京百度网讯科技有限公司 | A kind of method and apparatus handling image |
CN110415279A (en) * | 2019-06-25 | 2019-11-05 | 北京全域医疗技术集团有限公司 | Method for registering images, device and equipment |
CN110473233A (en) * | 2019-07-26 | 2019-11-19 | 上海联影智能医疗科技有限公司 | Method for registering, computer equipment and storage medium |
CN112348082A (en) * | 2020-11-06 | 2021-02-09 | 上海依智医疗技术有限公司 | Deep learning model construction method, image processing method and readable storage medium |
CN112581606A (en) * | 2020-12-25 | 2021-03-30 | 江苏集萃复合材料装备研究所有限公司 | Spinal pedicle screw implantation operation navigation method |
CN113870324A (en) * | 2020-06-29 | 2021-12-31 | 上海微创卜算子医疗科技有限公司 | Multimodal image registration method, registration device and computer readable storage medium |
CN114266724A (en) * | 2021-11-16 | 2022-04-01 | 中国航空工业集团公司雷华电子技术研究所 | High-voltage line detection method based on radar infrared visible light image fusion |
CN114511597A (en) * | 2021-01-30 | 2022-05-17 | 威海威高骨科手术机器人有限公司 | Registration method of X-ray image and CT image |
WO2023283795A1 (en) * | 2021-07-12 | 2023-01-19 | Shanghaitech University | Method for high-resolution image reconstruction |
CN116071401A (en) * | 2023-01-28 | 2023-05-05 | 中日友好医院(中日友好临床医学研究所) | Method and device for generating virtual CT images based on deep learning |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106529188B (en) * | 2016-11-25 | 2019-04-19 | 苏州国科康成医疗科技有限公司 | Image processing method applied to surgical navigational |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1975781A (en) * | 2006-11-29 | 2007-06-06 | 南方医科大学 | Image elastic registrating method based on limited sampling global optimisation |
-
2011
- 2011-12-27 CN CN201110444772.0A patent/CN102592137B/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1975781A (en) * | 2006-11-29 | 2007-06-06 | 南方医科大学 | Image elastic registrating method based on limited sampling global optimisation |
Non-Patent Citations (5)
Title |
---|
《黑龙江大学工程学报》 20110228 金英 《优化的CT图像配准方法的研究与比较》 93-95页 1-14 第2卷, 第1期 * |
庞皓文等: "《基于B样条的弹性配准在放疗CT图像间配准的应用》", 《中国医学物理学杂志》, vol. 28, no. 5, 30 September 2011 (2011-09-30), pages 2887 - 2889 * |
张红颖等: "《基于层次B样条的医学图像弹性配准方法》", 《天津大学学报》, 31 January 2007 (2007-01-31), pages 37 - 38 * |
杨劲,卓彦,陈霖: "《多分辨率的自动MRI图像配准》", 《四川联合大学学报(工程科学版)》, vol. 2, no. 3, 31 May 1998 (1998-05-31), pages 68 - 77 * |
金英: "《优化的CT图像配准方法的研究与比较》", 《黑龙江大学工程学报》, vol. 2, no. 1, 28 February 2011 (2011-02-28), pages 93 - 95 * |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103020976A (en) * | 2012-12-31 | 2013-04-03 | 中国科学院合肥物质科学研究院 | A 3D medical image registration method and system based on weighted fuzzy mutual information |
CN103345774A (en) * | 2013-07-17 | 2013-10-09 | 中国人民解放军第三军医大学 | Method for building three-dimensional multi-scale vectorization model |
CN103345774B (en) * | 2013-07-17 | 2015-08-05 | 中国人民解放军第三军医大学 | A kind of modeling method of three-dimensional multi-scale vector quantization |
CN103479397A (en) * | 2013-10-15 | 2014-01-01 | 哈尔滨工业大学 | Method for extracting color ultrasound parametric blood flow signal based on relaxation algorithm |
CN103479397B (en) * | 2013-10-15 | 2015-01-07 | 哈尔滨工业大学 | Method for extracting color ultrasound parametric blood flow signal based on relaxation algorithm |
CN106204561B (en) * | 2016-07-04 | 2019-07-30 | 西安电子科技大学 | Prostate multi-modality images non-rigid registration method based on mixed model |
CN106204561A (en) * | 2016-07-04 | 2016-12-07 | 西安电子科技大学 | Prostate multi-modality images non-rigid registration method based on mixed model |
CN107742099A (en) * | 2017-09-30 | 2018-02-27 | 四川云图睿视科技有限公司 | A kind of crowd density estimation based on full convolutional network, the method for demographics |
CN109767458A (en) * | 2018-12-21 | 2019-05-17 | 西北大学 | A sequential optimization registration method for semi-automatic segmentation |
CN109767458B (en) * | 2018-12-21 | 2023-01-20 | 西北大学 | Semi-automatic segmented sequential optimization registration method |
CN109767461A (en) * | 2018-12-28 | 2019-05-17 | 上海联影智能医疗科技有限公司 | Medical image registration method, device, computer equipment and storage medium |
CN109767461B (en) * | 2018-12-28 | 2021-10-22 | 上海联影智能医疗科技有限公司 | Medical image registration method and device, computer equipment and storage medium |
CN110223220A (en) * | 2019-06-14 | 2019-09-10 | 北京百度网讯科技有限公司 | A kind of method and apparatus handling image |
CN110415279A (en) * | 2019-06-25 | 2019-11-05 | 北京全域医疗技术集团有限公司 | Method for registering images, device and equipment |
CN110473233A (en) * | 2019-07-26 | 2019-11-19 | 上海联影智能医疗科技有限公司 | Method for registering, computer equipment and storage medium |
CN110473233B (en) * | 2019-07-26 | 2022-03-01 | 上海联影智能医疗科技有限公司 | Registration method, computer device, and storage medium |
CN113870324A (en) * | 2020-06-29 | 2021-12-31 | 上海微创卜算子医疗科技有限公司 | Multimodal image registration method, registration device and computer readable storage medium |
CN112348082A (en) * | 2020-11-06 | 2021-02-09 | 上海依智医疗技术有限公司 | Deep learning model construction method, image processing method and readable storage medium |
CN112581606A (en) * | 2020-12-25 | 2021-03-30 | 江苏集萃复合材料装备研究所有限公司 | Spinal pedicle screw implantation operation navigation method |
CN112581606B (en) * | 2020-12-25 | 2024-03-12 | 江苏集萃复合材料装备研究所有限公司 | Navigation method for vertebral pedicle screw implantation operation |
CN114511597A (en) * | 2021-01-30 | 2022-05-17 | 威海威高骨科手术机器人有限公司 | Registration method of X-ray image and CT image |
CN114511597B (en) * | 2021-01-30 | 2024-09-24 | 威海威高骨科手术机器人有限公司 | Registration method of X-ray image and CT image |
WO2023283795A1 (en) * | 2021-07-12 | 2023-01-19 | Shanghaitech University | Method for high-resolution image reconstruction |
CN114266724A (en) * | 2021-11-16 | 2022-04-01 | 中国航空工业集团公司雷华电子技术研究所 | High-voltage line detection method based on radar infrared visible light image fusion |
CN116071401A (en) * | 2023-01-28 | 2023-05-05 | 中日友好医院(中日友好临床医学研究所) | Method and device for generating virtual CT images based on deep learning |
CN116071401B (en) * | 2023-01-28 | 2023-08-01 | 中日友好医院(中日友好临床医学研究所) | Virtual CT image generation method and device based on deep learning |
Also Published As
Publication number | Publication date |
---|---|
CN102592137B (en) | 2014-07-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102592137B (en) | Multi-modality image registration method and operation navigation method based on multi-modality image registration | |
CN106934821B (en) | Conical beam CT and CT image registration method based on ICP algorithm and B spline | |
WO2022037696A1 (en) | Bone segmentation method and system based on deep learning | |
CN103325143B (en) | Labelling point automatic registration method based on Model Matching | |
CN103295455B (en) | Based on the ultrasonic training system of CT image simulation and location | |
US8787648B2 (en) | CT surrogate by auto-segmentation of magnetic resonance images | |
CN110009669A (en) | A 3D/2D Medical Image Registration Method Based on Deep Reinforcement Learning | |
JP2009273597A (en) | Alignment processing device, aligning method, program and storage medium | |
CN114066953B (en) | A deformable registration method for 3D multimodal images for rigid targets | |
CN104867104B (en) | Target mouse anatomical structure collection of illustrative plates acquisition methods based on the non-rigidity registration of XCT images | |
CN105279762A (en) | An oral cavity soft and hard tissue CT sequence and three-dimensional grid model registration method | |
Dai et al. | Locating anatomical landmarks on 2D lateral cephalograms through adversarial encoder-decoder networks | |
CN103295234A (en) | Medical image segmentation system and medical image segmentation method based on deformation surface models | |
CN106960439B (en) | A kind of vertebrae identification device and method | |
Alam et al. | Medical image registration: Classification, applications and issues | |
CN111179373B (en) | Medical image bone removal model construction method and bone information removal method | |
CN115830084A (en) | 2D-3D image registration method and system | |
CN116485850A (en) | Real-time non-rigid registration method and system for surgical navigation image based on deep learning | |
CN104537708B (en) | Method for conducting upright correction on three-dimensional lie-down craniofacial models based on geodesic lines | |
CN115222878A (en) | Scene reconstruction method applied to lung bronchoscope surgical robot | |
CN113344876A (en) | Deformable registration method between CT and CBCT | |
CN103514607A (en) | Dynamic contrast enhancement magnetic resonance image detection method | |
CN103745467B (en) | A kind of three-dimensional image registration method based on digital volume correlation | |
CN104008269B (en) | Automatic space registration method for surgical navigation system on basis of artificial markers | |
CN114298986B (en) | Chest bone three-dimensional construction method and system based on multi-view disordered X-ray film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20201030 Address after: No.6-10, 5th floor, building 1, No.1, Tidu street, Qingyang District, Chengdu, Sichuan 610000 Patentee after: Beijing fish claw Network Technology Co.,Ltd. Chengdu branch Address before: 1068 No. 518055 Guangdong city in Shenzhen Province, Nanshan District City Xili University School Avenue Patentee before: SHENZHEN INSTITUTES OF ADVANCED TECHNOLOGY CHINESE ACADEMY OF SCIENCES Effective date of registration: 20201030 Address after: 226000 No. 188 Shijiang Road, South District of Shigang Town Industrial Park, Tongzhou District, Nantong City, Jiangsu Province Patentee after: NANTONG KANGSHENG MEDICAL EQUIPMENT Co.,Ltd. Address before: 610000 no.6-10, 5th floor, building 1, Tidu street, Qingyang District, Chengdu City, Sichuan Province 610000 Patentee before: Beijing fish claw Network Technology Co.,Ltd. Chengdu branch |
|
TR01 | Transfer of patent right |