发明内容
有鉴于此,本申请实施例提供一种GIS耐压测试方法,以实现在双母线接线的GIS变电站对试验间隔进行交流耐压试验时无需变电站母线全部停电。
为了实现上述目的,本申请实施例提供的技术方案如下:
一种气体绝缘金属封闭开关GIS耐压测试方法,应用于双母线接线的GIS设备变电站,其中:待测间隔与原运行GIS设备之间的隔离开关断开,该方法包括以下步骤:
获取所述双母线接线的GIS设备变电站上任意一个母线上电压互感器的低压绕组上的电压,且将该电压作为参考电压;
获取所述待测间隔上的试验电压,并利用分压器对所述试验电压进行采样得到反馈电压;
比较所述参考电压和反馈电压,根据比较结果生成一与所述参考电压的频率相同、相位一致的初级输出电压,并将所述初级输出电压放大后经过由励磁变压器和电抗器组成的串联谐振电路输出到所述待测试间隔上。
优选地,比较所述参考电压和反馈电压,根据比较结果生成一与所述参考电压的频率相同、相位一致的初级输出电压,具体包括:
将所述参考电压和反馈电压相比较,得到一直流电压;
对所述直流电压进行低通滤波;
将所述直流电压作为控制电压,控制压控振荡器生成一与参考电压的频率和相位均一致的电压;
计算生成的所述电压与所述参考电压的频率差和相位差;
判断所述频率差是否为零,且判断所述相位差是否大于1度;
且当所述频率差为零且所述相位差大于1度,将生成的所述电压作为反馈电压向所述相位比较器发送;
当所述频率差为零且所述相位差小于等于1度,将生成的所述电压作为初级输出电压并输出。
优选地,该方法进一步包括:
当所述频率差不为零时,生成断电信号,并向监护保护模块发送,阻止相所述待测试间隔上输出电压。
优选地,该方法进一步包括:
当所述频率差为零,且所述相位差小于等于1度,利用示波器或者指示灯进行指示。
优选地,该方法进一步包括:
判断串联谐振电路是否满足工频串联谐振状态要求;
当所述串联谐振电路满足工频串联谐振状态要求时,改变对调节后直流电压的放大倍率,并将倍率放大后的直流电压作为输出电压输出;
当所述串联谐振电路不满足工频串联谐振状态要求时,调节串联谐振电路的电感量,并再次判断串联谐振电路是否满足工频串联谐振状态要求。
由以上技术方案可见,本申请实施例提供的该GIS耐压测试方法,通过采集母线上的参考电压,并对待测试间隔上的试验电压进行取样得到反馈电压,然后将参考电压和反馈电压进行比较,生成一与参考电压同频同相的输出电压,并且将该输出电压经过串联谐振回路输出到待测试间隔上。由于参考电压为母线上的电压,反馈电压与试验电压的频率相同,且相位一致,所以将参考电压和反馈电压比较,就可以判断出输出到待测试间隔上的试验电压的频率和相位是否与参考电压一致,根据判断结果将与参考电压同频同相的输出电压输出到待测试间隔上。
因此该方法可以保证在对待测试间隔进行测试时,输出到待测试间隔上的测试电压与母线的电压频率相同、相位一致。与现有技术相比,该方法可以在双母线接线的GIS设备变电站中的两条母线均运行的情况下对待测试间隔进行耐压测试,避免了现有技术中对待测试间隔进行测试时要求变电站母线全部停电的问题。
具体实施方式
为了使本技术领域的人员更好地理解本申请中的技术方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本申请保护的范围。
图1为本申请实施例提供的双母线接线的GIS设备变电站的电气连接示意图。
如图1所示,图中I和II为两条母线,1621、1622为隔离开关,16260、16230、16240为接地开关,CT(Current Transformator)为电流互感器,2918、2028为隔离开关,20180、20280为接地开关,PT(Pressure Transformator)为电压互感器,图中虚线框表示待测试间隔,待测试间隔可以为扩建后的间隔,也可以为检修后的间隔。
图2为本申请实施例提供的一种GIS耐压测试系统的连接示意图结构示意图。
如图2所示,该系统所选择的母线可以为两条母线中的任意一条,PT为设置在母线上的电压互感器,PT的高压绕组一端与母线相连接,另一端接地,并且PT具有至少一个低压绕组,Cx为待测试间隔,并且在测试时,待测试间隔Cx内的接地开关全部断开,并且将除母线侧隔离开关外的其他隔离开关全部闭合。
如图2所示,同频同相电源1、串联谐振装置2、分压器3和示波器4,其中:
同频同相电源1上的参考电压输入端与PT的一个低压绕组相连接,用于获取PT的一个低压绕组上的电压,并将获取的电压作为参考电压;同频同相电源1的反馈电压输入端与分压器3的测试端相连接,接收一反馈电压,并且电压输出端与串联谐振装置2的输入端相连接。
同频同相电源1的作用是根据参考电压和反馈电压,产生一与参考电压同频同相的输出电压并输出到串联谐振装置2中。
串联谐振装置2的输出端与待测试间隔Cx的出线套管相连接,串联谐振装置2与待测间隔Cx的等效电容形成串联谐振的条件,使得该串联谐振装置2可以对输出电压进行变压,向待测试间隔Cx上输出高的试验电压。
分压器3的高压端与待测试间隔Cx的出线套管相连接,接地端接地,并且分压器3的测试端与同频同相电源1的反馈电压输入端相连接,分压器3的作用是对待测试间隔Cx上的试验电压进行采样,并将采样后的电压作为反馈电压输入到同频同相电源1中。
示波器4与同频同相电源1的同频同相信号输出端,用于显示输出电压与参考电压的频率和相位关系。
实施例一:
图3为本申请实施例提供的一种GIS耐压测试方法的流程示意图。
本申请实施例提供该GIS耐压测试方法,在测试时,其中:待测间隔与原运行GIS设备之间的隔离开关断开。
如图3所示,该方法包括以下流程:
S100:获取参考电压。
在每一母线上均设置有电压互感器,并且电压互感器具有至少一个低压绕组,其中:电压互感器的高压绕组一端与母线相连接,另一端接地。通过电压互感器的低压绕组,就可以获取母线上的电压,将该电压作为参考电压,以便对试验电压进行调节。
S200:获取反馈电压。
获取所述待测间隔上的试验电压,并利用分压器对所述试验电压进行采样得到反馈电压。
S300:比较参考电压和反馈电压,根据比较结果生成一与所述参考电压的频率相同、相位一致的初级输出电压,并将初级输出电压放大后作为输出电压输出。
S400:将输出电压经过由励磁变压器和电抗器组成的串联谐振装置输出到待测试间隔上。
由于反馈电压是通过分压器获取的待测试间隔上的试验电压,所以反馈电压与试验电压的频率相同、相位一致,因此在该步骤中,比较参考电压和反馈电压,就可以判断出输出到待测试间隔上的试验电压与参考电压的频率、相位关系。
根据比较结果将初级输出电压调节成与参考电压的频率相同、相位一致后,初级输出电压经过放大后经过串联谐振回路作为试验电压输出到待测试间隔上。因此,通过该步骤就可以保证在对待测试间隔进行测试时,输出到待测试间隔上的试验电压与母线上的电压的频率相同、相位一致。
在本申请实施例中,如图4所示,步骤S300具体包括:
S301:将参考电压和反馈电压相比较,得到一直流电压。
将参考电压和反馈电压进行比较,得到两者的相位差值,并将其转换成一直流电压来表示。这里得到的直流电压正比于参考电压和反馈电压的相位差。
S302:对得到的直流电压进行低通滤波。
对得到的直流脉冲电压进行低通滤波,将直流电压中的高压干扰滤出,避免高压干扰对后续测试的影响。
S303:将所述直流电压作为控制电压,控制压控振荡器生成一与参考电压的频率和相位均一致的电压。
利用滤波后直流电压控制压控振荡器,使得压控振荡器生成电压与参考电压的相位差缩小,且频率与参考电压一致,即对参考电压的频率和相位进行跟踪,且生成的电压与参考电压达到一致时就锁定。
S304:计算生成的所述电压与所述参考电压的频率差和相位差。
通常情况下,压控振荡器生成电压和参考电压的频率均为工业用电频率50Hz,两者的频率不会出现较大的变化,但为了保证得到的待测是间隔上的试验电压与参考电压为同频同相,所以需要计算反馈电压与参考电压的频率差。
S305:判断频率差是否为零,且判断相位差是否大于1度。
试验电压与参考电压的相位之间允许一定的相位差别,在本申请实施例中,相位差允许在1度以内(包括1度)。
S306:当频率差为零且相位差大于1度,将生成的电压作为反馈电压并再次将参考电压和反馈电压相比较。
频率差为零时,生成的电压与参考电压的频率相同,而相位差大于1度,则表示生成的电压的相位不符合同频同相的要求,所以需要将本次生成的电压作为反馈电压再次与参考电压进行比较,并持续对生成的电压进行调整,直至频率差为零,且相位差小于等于1度为止。
S307:当频率差为零且相位差小于等于1度,将生成的电压放大后作为输出电压输出。
当相位差小于等于1度,即可认为生成的电压与参考电压为同频同相,所以可以直接将生成的电压信号放大后作为输出电压输出。
此外,如图5所示,步骤S300还可以包括:
S308:当频率差不为零时,阻止将调节后的直流电压放大后输出。
当频率差不为零时,即调节后的直流电压与参考电压的频率不同,此时将调节后的直流电压输出的待测试间隔上,会导致待测试间隔上的试验电压的频率与母线的电压的频率(即参考电压)将会不相同,那么就会出现待测试间隔上的试验电压最大值与运行母线电压最大值反相180度叠加,造成母线隔离开关断口突然击穿的危险,所以此时需要阻止将压控振荡器生成的电压输出到放大回路,在本申请实施例中,具体步骤可以包括:
生成断电信号并将断电信号向监护保护模块发送,监护控制模块将放大电路的电源断开,阻止将生成的电压信号输出到回路。
S309:当频率差为零,且相位差小于等于1度,利用示波器或者指示灯进行指示。
为了方便测试人员可以直观地知道试验电压是否与参考电压同频同相,在本申请实施例中,还可以设置有示波器或指示灯,并且当频率差为零,且相位差小于等于1度,利用示波器显示,或者向指示灯供电,以便对同频同相进行指示。
在实际应用中,测试人员可以根据试验条件不同,来操作待测试间隔内的断路器、隔离开关和接地开关的导通或关闭,进而改变试验条件,完成不同试验条件对待测室间隔的耐压测试。
实施例二:
上述实施例中,仅仅对待测间隔进行了一次加压测试,为了对待测间隔进行更好地耐压测试,在本申请实施例中,如图6所示,在将生成的电压放大后作为输出电压输出后,该GIS耐压测试方法还可以包括:
S500:判断串联谐振电路是否满足工频串联谐振状态要求。
这里满足工频串联谐振要求是指串联谐振电路达到或接近工频串联谐振状态。
当判断结果为是时,进行步骤S600;当判断结果为否时,进行步骤S700。
S600:改变对生成的初级输出电压的放大倍率,并将倍率放大后的电压作为输出电压输出。
改变对生成的初级输出电压的放大倍率,其目的是是为了提高待测间隔上的试验电压,以检测待测间隔的耐压程度。
S700:调节串联谐振电路的电感量,并再次判断串联谐振电路是否满足工频串联谐振状态要求。
当串联谐振电路不接近工频串联谐振状态时,此时需要调节串联谐振电路中的可调感电抗器的电感量,来对串联谐振电路的谐振状态进行改变。
以上所述仅是本申请的优选实施方式,使本领域技术人员能够理解或实现本申请。对这些实施例的多种修改对本领域的技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本申请的精神或范围的情况下,在其它实施例中实现。因此,本申请将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。