CN102540462A - Maxwell-Garnett theory based design method for metal ceramic film photoelectric characteristics - Google Patents
Maxwell-Garnett theory based design method for metal ceramic film photoelectric characteristics Download PDFInfo
- Publication number
- CN102540462A CN102540462A CN201210037321XA CN201210037321A CN102540462A CN 102540462 A CN102540462 A CN 102540462A CN 201210037321X A CN201210037321X A CN 201210037321XA CN 201210037321 A CN201210037321 A CN 201210037321A CN 102540462 A CN102540462 A CN 102540462A
- Authority
- CN
- China
- Prior art keywords
- metal
- cermet
- dielectric constant
- doping amount
- transmittance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002184 metal Substances 0.000 title claims abstract description 35
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 35
- 238000013461 design Methods 0.000 title claims abstract description 33
- 239000000919 ceramic Substances 0.000 title claims abstract description 20
- 238000000034 method Methods 0.000 title claims abstract description 12
- 239000003989 dielectric material Substances 0.000 claims abstract description 22
- 239000007769 metal material Substances 0.000 claims abstract description 18
- 238000010521 absorption reaction Methods 0.000 claims abstract description 17
- 238000004364 calculation method Methods 0.000 claims abstract description 9
- 239000011195 cermet Substances 0.000 claims description 48
- 239000010409 thin film Substances 0.000 claims description 40
- 238000002834 transmittance Methods 0.000 claims description 32
- 239000010408 film Substances 0.000 claims description 31
- 150000002739 metals Chemical class 0.000 abstract 1
- 230000003287 optical effect Effects 0.000 description 32
- 239000000463 material Substances 0.000 description 26
- 238000002360 preparation method Methods 0.000 description 8
- 239000002131 composite material Substances 0.000 description 4
- 230000005693 optoelectronics Effects 0.000 description 4
- 239000002245 particle Substances 0.000 description 3
- 238000012827 research and development Methods 0.000 description 3
- 238000005094 computer simulation Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000002923 metal particle Substances 0.000 description 2
- 238000012356 Product development Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008033 biological extinction Effects 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000011960 computer-aided design Methods 0.000 description 1
- 238000012938 design process Methods 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 230000003760 hair shine Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 231100000956 nontoxicity Toxicity 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
Images
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
技术领域 technical field
本发明涉及金属陶瓷薄膜材料(即金属氧化物材料),特指一种用于金属陶瓷薄膜光电特性的设计方法。 The invention relates to a cermet thin film material (that is, a metal oxide material), in particular to a design method for the photoelectric characteristics of a cermet thin film.
背景技术 Background technique
随着微/纳/光电子技术的发展,薄膜材料被广泛的用于激光器、太阳能电池、探测器、传感器、平板显示等领域。因此,薄膜材料的性质决定了薄膜元器件的性质。大量的研究结果表明:由两种材料及以上的混合的复合材料具有单一材料所不具备的光电子特性。金属陶瓷薄膜是由金属和陶瓷材料(介质材料)所构成的复合薄膜,因其具有优良的光学特性被广泛的应用于光学器件、信息存储及太阳能电池等方面,而掺杂金属的介电常数、折射率及消散系数等对介质材料的光电子特性有重要影响。 With the development of micro/nano/optoelectronic technology, thin film materials are widely used in lasers, solar cells, detectors, sensors, flat panel displays and other fields. Therefore, the properties of thin film materials determine the properties of thin film components. A large number of research results show that composite materials composed of two or more materials have optoelectronic properties that a single material does not possess. Cermet film is a composite film composed of metal and ceramic material (dielectric material). It is widely used in optical devices, information storage and solar cells because of its excellent optical properties. The dielectric constant of doped metal , Refractive index and dissipation coefficient have an important influence on the optoelectronic properties of dielectric materials.
Maxwell-Garnett (麦克斯韦-格内特)理论是由Maxwell和Garnett于1904和1906年分别提出的,后来成为Maxwell-Garnett 理论,简称MG理论。该理论认为极少量的金属微粒分散于介质基体中,微粒之间的距离较大,微粒之间无相互作用,各自散射;微粒被瞬时场诱导极化,外场可由Lorentz(洛伦兹)局域场进行修正。MG理论可以用来求解金属陶瓷弥散微结构的介电常数等特性。 Maxwell-Garnett (Maxwell-Garnett) theory was proposed by Maxwell and Garnett in 1904 and 1906 respectively, and later became Maxwell-Garnett theory, referred to as MG theory. The theory believes that a very small amount of metal particles are dispersed in the medium matrix, the distance between the particles is large, there is no interaction between the particles, and they are scattered separately; the particles are polarized by the instantaneous field, and the external field can be localized by Lorentz Field is corrected. The MG theory can be used to solve the dielectric constant and other properties of the cermet dispersed microstructure.
当前金属陶瓷薄膜的主要制备方法有真空蒸发法、真空溅射法、离子镀法、化学汽相淀积法及溶胶凝胶法等。但是,由于金属陶瓷薄膜材料的不相容性和特定的组分要求,需要精心设计,谨慎操作,所以金属陶瓷薄膜的设计及制造工序较为繁琐。 At present, the main preparation methods of cermet thin films include vacuum evaporation, vacuum sputtering, ion plating, chemical vapor deposition and sol-gel methods. However, due to the incompatibility of cermet film materials and specific component requirements, careful design and careful operation are required, so the design and manufacturing process of cermet film is relatively cumbersome.
发明内容 Contents of the invention
本发明的目的是提供一种能提高金属陶瓷薄膜光电特性设计的准确性和效率、缩短新产品的研发周期及降低成本的基于Maxwell-Garnett理论的金属陶瓷薄膜光电特性设计方法。 The object of the present invention is to provide a method for designing photoelectric characteristics of cermet thin films based on Maxwell-Garnett theory, which can improve the accuracy and efficiency of photoelectric characteristic design of cermet thin films, shorten the research and development cycle of new products and reduce costs.
本发明采用的技术方案是依次包括如下步骤: The technical scheme that the present invention adopts is to comprise the following steps successively:
(1)选择折射率 、消散系数的介质材料以及选择折射率 、消散系数的掺杂金属材料,计算出介质材料的介电常数和掺杂金属材料的介电常数 i为虚数单位; (1) Select the refractive index , dissipation coefficient The dielectric material and the choice of refractive index , dissipation coefficient The doped metal material, calculate the dielectric constant of the dielectric material and the dielectric constant of the doped metal material i is the imaginary unit;
(2)根据公式计算出金属陶瓷薄膜的介电常数,为金属掺杂量,初始掺杂量为0; (2) According to the formula Calculation of dielectric constant of cermet film , is the metal doping amount, and the initial doping amount is 0;
(3)根据公式、计算出金属陶瓷薄膜的折射率及消散系数,是介电常数的实部,是介电常数的虚部; (3) According to the formula , Calculate the refractive index of the cermet thin film and dissipation coefficient , is the dielectric constant the real part of is the dielectric constant the imaginary part of
(4)根据公式和计算出金属陶瓷薄膜的透射率和吸收系数,空气折射率,为入射光的波长; (4) According to the formula and Calculate the transmittance of the cermet thin film and absorption coefficient , air refractive index , is the wavelength of the incident light;
(5)将所需金属陶瓷薄膜透射率的透射率或吸收系数设计值与所述透射率或吸收系数进行比较,如果结果不一致,则修改步骤(2)中的金属掺杂量的值,然后重复执行步骤(3)和步骤(4),直至结果一致为止的金属掺杂量为所求最终的掺杂量。 (5) Calculate the transmittance or absorption coefficient design value of the desired cermet film transmittance with the transmittance or absorption coefficient Make a comparison, if the results are inconsistent, modify the amount of metal doping in step (2) value, and then repeat steps (3) and (4) until the results are consistent with the amount of metal doping is the desired final doping amount.
本发明的有益效果是: The beneficial effects of the present invention are:
1、本发明针对金属陶瓷薄膜的膜系设计,基于Maxwell-Garnett (MG) 理论,计算金属陶瓷薄膜的光电特性,然后根据设计要求选择合适的掺杂金属及配比进行制备,或可根据掺杂量及介质材料确定合适的掺杂材料的光学常数,并选择合适的金属材料进行制备。该设计方法在薄膜光电特性设计中具有计算准确、科学、效率高的特点,能够全面地揭示薄膜材料光电特性随掺杂金属、掺杂量及入射光波长等参数的变化规律,该方法能够提高金属陶瓷薄膜光电特性设计准确性和效率,可进一步降低新型金属陶瓷薄膜的研发制备成本,为新型的光电材料的设计开发提供基础。 1. The present invention is aimed at the film system design of the metal-ceramic thin film, based on the Maxwell-Garnett (MG) theory, calculates the photoelectric characteristics of the metal-ceramic thin film, and then selects the appropriate doping metal and proportioning to prepare according to the design requirements, or can be prepared according to the doping Impurities and dielectric materials determine the optical constants of suitable doping materials, and select suitable metal materials for preparation. This design method has the characteristics of accurate calculation, scientific and high efficiency in the design of thin film photoelectric characteristics, and can comprehensively reveal the variation law of the photoelectric characteristics of thin film materials with parameters such as doped metal, doping amount, and incident light wavelength. The design accuracy and efficiency of photoelectric characteristics of metal-ceramic thin films can further reduce the cost of research and development and preparation of new metal-ceramic thin films, and provide a basis for the design and development of new optoelectronic materials.
2、为了克服设计制造的繁琐性问题,本发明可采用计算机辅助设计技术,用计算机仿真模拟计算最佳配比及特性分析,提高薄膜材料的设计效率,降低制备成本。 2. In order to overcome the cumbersome problem of design and manufacture, the present invention can adopt computer-aided design technology, use computer simulation to simulate and calculate the optimal ratio and characteristic analysis, improve the design efficiency of thin film materials, and reduce the preparation cost. the
附图说明 Description of drawings
图1基于MG理论的金属陶瓷薄膜设计计算流程图; Fig. 1 Flowchart of design and calculation of cermet thin film based on MG theory;
图2基于MG理论的金属陶瓷薄膜介电常数随掺杂量q的变化曲线; Fig. 2 is based on the variation curve of the dielectric constant of cermet film with doping amount q based on MG theory;
图3基于MG理论的金属陶瓷薄膜光学常数n随掺杂量q的变化曲线; Fig. 3 is based on MG theory the variation curve of optical constant n of cermet thin film with doping amount q ;
图4基于MG理论的金属陶瓷薄膜光学常数k随掺杂量q的变化曲线; Fig. 4 is based on the change curve of the optical constant k of the cermet thin film with the doping amount q based on MG theory;
图5基于MG理论的金属陶瓷薄膜的透射率T随掺杂量q的变化曲线; Fig. 5 is the variation curve of the transmittance T of the cermet film based on the MG theory with the doping amount q ;
图6基于MG理论的金属陶瓷薄膜透射率T随掺杂金属折射率n的变化曲线; Figure 6 is based on the MG theory of the cermet film transmittance T with the change curve of the doped metal refractive index n ;
图7基于MG理论的金属陶瓷薄膜透射率T随掺杂金属消散系数k的变化曲线。 Fig. 7 is the variation curve of the transmittance T of the cermet thin film with the dissipation coefficient k of the doped metal based on the MG theory.
具体实施方式 Detailed ways
根据Maxwell理论可知非磁性物质的介电常数与光学常数之间的关系为: According to Maxwell's theory, the relationship between the dielectric constant and the optical constant of non-magnetic substances is:
(1) (1)
其中,,分别为金属陶瓷薄膜有效介电常数的实部(Real part)和虚部(Imaginary part);,分别为材料的折射率及消散系数,其合称为材料的光学常数; i 表示虚数单位。 in, , Respectively, the real part (Real part) and the imaginary part (Imaginary part) of the effective dielectric constant of the cermet thin film; , Respectively, the refractive index and dissipation coefficient of the material, which together are called the optical constant of the material; i represents the imaginary number unit.
根据MG弥散微结构理论,金属陶瓷复合薄膜的介电常数可由介质(陶瓷)材料及掺杂金属材料的介电常数表示为: According to the theory of MG dispersed microstructure, the dielectric constant of metal-ceramic composite thin films It can be expressed by the dielectric constant of dielectric (ceramic) material and doped metal material as:
(2) (2)
式中,为掺杂金属颗粒的掺杂量,为介质材料的介电常数,为掺杂金属材料的介电常数; In the formula, is the doping amount of doped metal particles, is the dielectric constant of the dielectric material, is the dielectric constant of the doped metal material;
由式(1)可知材料的折射率及消散系数于金属陶瓷材料的介电常数实部虚部之间的关系为: The refractive index of the material can be known from formula (1) and dissipation coefficient The relationship between the real part and the imaginary part of the dielectric constant of the cermet material is:
(3) (3)
材料的大多数光电特性(如:透射率、吸收系数等)都与材料本身的光学常数有关系,从空气射入材料时,根据光的折射定律,材料的透射率及吸收系数可以表示为: Most of the photoelectric properties of materials (such as transmittance, absorption coefficient, etc.) are related to the optical constants of the material itself. When the material is injected into the material from air, according to the law of refraction of light, the transmittance and absorption coefficient of the material can be expressed as:
(4) (4)
(5) (5)
其中,其中,空气的折射率,为入射光的波长; where, where, the refractive index of air , is the wavelength of the incident light;
因此,首先根据陶瓷介质材料及掺杂金属材料的折射率和消散系数这两个光学常数(n,k)分别按公式(1)求出此两种材料的介电常数; 然后根据公式(2)求出金属陶瓷薄膜的有效介电常数,进而求出与金属陶瓷薄膜的介电常数有密切关系的大多数光电特性,如:透射率、折射率及吸收系数等,为后续样品制备提供理论支持。 Therefore, firstly, according to the two optical constants (n, k) of the ceramic dielectric material and the doped metal material, the refractive index and dissipation coefficient are calculated according to the formula (1); then according to the formula (2 ) to obtain the effective dielectric constant of the metal-ceramic film, and then obtain most of the photoelectric properties closely related to the dielectric constant of the metal-ceramic film, such as: transmittance, refractive index and absorption coefficient, etc., to provide a theory for subsequent sample preparation support. the
本发明在设计时,可运用MATLAB编程的计算机仿真手段,模拟计算金属陶瓷薄膜的光电特性,然后根据设计要求选择合适的掺杂金属及配比,或根据掺杂量及介质材料确定合适的掺杂材料的光学常数,并选择合适的金属材料并进行制备。如图1所示,本发明设计方法的具体步骤如下: In the design of the present invention, the computer simulation means of MATLAB programming can be used to simulate and calculate the photoelectric characteristics of the cermet film, and then select the appropriate doping metal and proportion according to the design requirements, or determine the appropriate doping amount and dielectric material. The optical constants of heteromaterials, and the selection and preparation of suitable metal materials. As shown in Figure 1, the concrete steps of the design method of the present invention are as follows:
第一步:选择合适的介质材料和掺杂金属 Step 1: Select the appropriate dielectric material and dopant metal
第二步:初始参数。根据设计目标,选择介质材料及金属材料的光学常数折射率及消散系数为该设计方法的初始值。其中:=1时,为陶瓷介质材料的光学参数,=2时,为掺杂金属材料的光学参数。为掺杂金属初始掺杂量(初始值为0)。即:根据金属陶瓷薄膜透射率的设计值,选择折射率、消散系数的介质材料以及选择折射率 、消散系数的掺杂金属材料,计算出介质材料的介电常数和掺杂金属材料的介电常数 i为虚数单位。 The second step: initial parameters. According to the design goal, select the optical constant refractive index of the dielectric material and metal material and dissipation coefficient is the initial value for this design method. in: =1, it is the optical parameter of the ceramic dielectric material, =2, it is the optical parameter of doped metal material. is the initial doping amount of doped metal (initial value is 0). That is: according to the design value of the transmittance of the cermet film, select the refractive index , dissipation coefficient The dielectric material and the choice of refractive index , dissipation coefficient The doped metal material, calculate the dielectric constant of the dielectric material and the dielectric constant of the doped metal material i is the imaginary unit.
第三步:利用第二步所选取材料的光学常数和金属掺杂量,根据公式(1)分别求出介质材料的介电常数,掺杂金属材料的介电常数。 Step 3: Use the optical constant and metal doping amount of the material selected in the second step to calculate the dielectric constant of the dielectric material according to formula (1) , the dielectric constant of the doped metal material .
第四步:根据第三步的计算结果,利用式(2)计算出金属陶瓷薄膜的介电常数,利用式(1)计算出介电常数的实部及虚部。 Step 4: Calculate the dielectric constant of the cermet film by using the formula (2) according to the calculation result of the third step , using equation (1) to calculate the real part of the permittivity and imaginary part .
the
第五步:利用第四步计算的金属陶瓷薄膜的介电常数实部与虚部,根据公式(3),分别计算金属陶瓷薄膜的折射率及消散系数这两个光学常数。 Step 5: Using the real part and imaginary part of the dielectric constant of the cermet film calculated in the fourth step, according to the formula (3), Calculation of Refractive Index of Cermet Thin Films Separately and The dissipation coefficient is the two optical constants.
第六步:根据第五步计算的金属陶瓷薄膜光学常数,计算金属陶瓷薄膜的光学特性,如:透射率、吸收系数等,即:光线从空气照射入金属陶瓷薄膜时,根据折射定律可知:金属陶瓷薄膜的透射率通过公式(4)计算,吸收系数可以由公式(5) 计算。 Step 6: According to the optical constants of the cermet film calculated in the fifth step, calculate the optical properties of the cermet film, such as: transmittance, absorption coefficient, etc., that is: when light shines from the air into the cermet film, according to the law of refraction: The transmittance of the cermet film is given by Equation (4) Calculation, absorption coefficient can be given by formula (5) calculate.
第七步:根据设计目标,例如:在可见光范围内,要求薄膜的透射率在80%以上,与第六步计算所得的金属陶瓷薄膜的透射率进行判断比较:如果透射率T<80%,则修改金属掺杂量后,继续执行第三步计算,直至满足设计要求为止,则此时的金属掺杂量为所求最终的掺杂量; Step 7: According to the design goal, for example: in the visible light range, the transmittance of the film is required to be above 80%, and compared with the transmittance of the cermet film calculated in the sixth step: if the transmittance T<80%, Then modify the metal doping amount After that, continue to perform the third step of calculation until the design requirements are met, then the metal doping amount at this time is the final doping amount sought;
第八步:输出合适的金属掺杂量、此时的金属陶瓷薄膜的光学常数(折射率及消散系数)及光学特性(透射率及吸收系数等)随掺杂量q的变化曲线,为后续优化设计及薄膜样品制备提供基础。 Step 8: Output the appropriate metal doping amount, the optical constant (refractive index and dissipation coefficient) and optical characteristics (transmittance and absorption coefficient, etc.) of the cermet film at this time. Optimal design and thin film sample preparation provide the basis.
以下提供本发明的一个实施例。 An embodiment of the present invention is provided below.
实施例 Example
ZnO作为新型直接宽带隙Ⅱ-Ⅵ族半导体化合物材料,因其无毒、成本低、宽禁带、耐高温等优点而被广泛的应用于激光器、太阳能电池、探测器、传感器、平板显示等领域。为设计新型光控元器件或开关,希望通过Cu掺杂在可见光范围内设计普遍具有较高的透射率(>80%)且在某一个波长范围内具有很低的透射率。以ZnO(介质材料)及Cu(掺杂金属材料)为例进行设计说明。以入射光波长为430nm时,掺杂量=0.1为例说明如下: As a new type of direct wide bandgap II-VI semiconductor compound material, ZnO is widely used in lasers, solar cells, detectors, sensors, flat panel displays and other fields due to its advantages of non-toxicity, low cost, wide bandgap, and high temperature resistance. . In order to design new optical control components or switches, it is hoped that through Cu doping, the design generally has a high transmittance (>80%) in the visible light range and has a very low transmittance in a certain wavelength range. Take ZnO (dielectric material) and Cu (doped metal material) as examples for design description. at the wavelength of incident light For 430nm, the doping amount =0.1 as an example as follows:
首先, 输入可见光范围内ZnO材料及Cu材料的光学常数(折射率及消散系数)及初始掺杂量q 0 。,ZnO的光学常数=2.09,=0.02;Cu的光学常数=1.097,=1.916;; First, input the optical constants (refractive index and dissipation coefficient) and the initial doping amount q 0 of the ZnO material and Cu material in the visible light range. , the optical constant of ZnO =2.09, =0.02; the optical constant of Cu =1.097, =1.916;;
第二,根据公式(1)分别求的ZnO及Cu的介电常数=4.3677+0.0836i,=-2.467+4.203i; Second, the dielectric constants of ZnO and Cu are calculated according to formula (1) =4.3677+0.0836 i , =-2.467+ 4.203i ;
第三,将,代人公式(2)计算金属陶瓷薄膜的复合介电常数=4.2667+1.2305i,介电常数的实部()为4.2667和虚部()为1.2305。 Third, will , Substitute formula (2) to calculate the composite dielectric constant of the cermet thin film =4.2667+1.2305 i , the real part of the dielectric constant ( ) is 4.2667 and the imaginary part ( ) is 1.2305.
第四,根据公式(3)分别计算金属陶瓷薄膜的光学常数如下: Fourth, according to formula (3), the optical constants of the cermet thin films are calculated as follows:
=2.0873 =2.0873
=0.2949 =0.2949
第五,根据第四步求出的金属陶瓷薄膜的光学常数,利用公式(4)和(5)计算薄膜的光电特性(透射率和吸收系数等)如下: Fifth, according to the optical constants of the cermet thin film obtained in the fourth step, the photoelectric characteristics (transmittance and absorption coefficient, etc.) of the thin film are calculated using formulas (4) and (5) as follows:
=0.8760 =0.8760
0.0349 0.0349
根据上述求的光学常数计算金属陶瓷薄膜的光电特性(实例:计算了薄膜的透射率和吸收系数)并根据设计目标进行判断,如果没有满足则修改掺杂量后重复步骤三,直至达到目标要求后,最后输出合适的掺杂量及金属陶瓷薄膜的光学常数及光学特性随掺杂量q的变化曲线,为样品制备提供基础。
Calculate the photoelectric characteristics of the cermet film according to the optical constants obtained above (example: calculate the transmittance and absorption coefficient of the film) and judge according to the design goal. If it is not satisfied, modify the doping amount and
图2 为基于MG理论计算的金属陶瓷薄膜的介电常数随金属的不同掺杂量q的变化曲线;图3、图4为金属陶瓷薄膜光学常数随金属的不同掺杂量q的变化曲线。可以看出金属陶瓷薄膜的介电常数及光学常数(折射率、消散系数)随着掺杂量q的增加而增加。图5为金属陶瓷薄膜的光学特性(透射率)随金属掺杂量的变化曲线,薄膜在波长430nm~460nm范围内具有较低的透射率,其它可见光区域透射率都在80%以上,且铜金属的掺杂量q≤0.5。图6、图7为金属陶瓷薄膜的透射率随掺杂金属的光学常数(折射率n及消散系数k)之间的关系,由图6可以看出:在可见光范围,除了在掺杂金属的折射率为1.1左右时,以ZnO为介质材料的金属陶瓷薄膜的透射率高于80%。而由图7可以看出:在可见光范围内,除掺杂金属的消散系数为1.9~2.1时,以ZnO为介质材料的金属陶瓷薄膜的透射率高于80%。同时可以看出:当要调制以ZnO为介质材料的金属陶瓷薄膜且透射率要求高于90%时,可以在折射率(Refractive index)为1.1~1.3,消散系数(Extinction Coefficient)为1.4~1.8范围内选择合适的掺杂金属材料;反之,如果想调制一种在可见光区域的光控材料或器件,则应在折射率为1.1左右,消散系数2左右调制。这将为新型可见光范围内的光控元器件的设计提供了理论基础,为缩短研发周期和降低成本具有一定的价值。因此,基于MG理论的金属陶瓷薄膜的设计方法对新型薄膜设计及产品研发具有一定的理论价值和指导意义。 Figure 2 is the variation curve of the dielectric constant of the cermet thin film with different metal doping amount q calculated based on MG theory; Figure 3 and Figure 4 are the variation curves of the optical constant of the metal ceramic thin film with different metal doping amount q . It can be seen that the dielectric constant and optical constant (refractive index, dissipation coefficient) of the cermet film increase with the increase of doping amount q . Figure 5 is the curve of the optical properties (transmittance) of the metal-ceramic thin film with the amount of metal doping. The thin film has a low transmittance in the wavelength range of 430nm~460nm, and the transmittance in other visible light regions is above 80%. Metal doping amount q ≤ 0.5. Figure 6 and Figure 7 show the relationship between the transmittance of the metal-ceramic film and the optical constant (refractive index n and dissipation coefficient k) of the doped metal. When the refractive index is about 1.1, the transmittance of the cermet film with ZnO as the dielectric material is higher than 80%. It can be seen from Figure 7 that in the visible light range, when the dissipation coefficient of the doped metal is 1.9~2.1, the transmittance of the cermet thin film with ZnO as the dielectric material is higher than 80%. At the same time, it can be seen that when the cermet film with ZnO as the dielectric material is to be modulated and the transmittance is required to be higher than 90%, the refractive index (Refractive index) is 1.1~1.3, and the dissipation coefficient (Extinction Coefficient) is 1.4~1.8. Select a suitable doped metal material within the range; on the contrary, if you want to modulate a light control material or device in the visible light region, you should modulate it at a refractive index of about 1.1 and an dissipation factor of about 2. This will provide a theoretical basis for the design of new light-control components in the visible light range, and has certain value for shortening the research and development cycle and reducing costs. Therefore, the design method of cermet thin film based on MG theory has certain theoretical value and guiding significance for new thin film design and product development.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210037321XA CN102540462A (en) | 2012-02-20 | 2012-02-20 | Maxwell-Garnett theory based design method for metal ceramic film photoelectric characteristics |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210037321XA CN102540462A (en) | 2012-02-20 | 2012-02-20 | Maxwell-Garnett theory based design method for metal ceramic film photoelectric characteristics |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102540462A true CN102540462A (en) | 2012-07-04 |
Family
ID=46347724
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210037321XA Pending CN102540462A (en) | 2012-02-20 | 2012-02-20 | Maxwell-Garnett theory based design method for metal ceramic film photoelectric characteristics |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102540462A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109374544A (en) * | 2018-11-02 | 2019-02-22 | 天津津航技术物理研究所 | The characterizing method of the aqueous depth of defect of optical medium film |
CN110082313A (en) * | 2019-04-22 | 2019-08-02 | 天津大学 | A kind of micro-nano material refractive index measurement method based on prism-coupled instrument |
CN113960512A (en) * | 2021-11-03 | 2022-01-21 | 电子科技大学 | Deduction calculation method for equivalent electromagnetic parameters of rubber plate type wave-absorbing material |
WO2022193399A1 (en) * | 2021-03-19 | 2022-09-22 | 苏州大学 | Spectrally selective thermal radiator and design method therefor |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101238080A (en) * | 2005-08-29 | 2008-08-06 | 京瓷株式会社 | Dielectric ceramic, process for producing the same, and laminated ceramic capacitor |
CN102057491A (en) * | 2008-04-03 | 2011-05-11 | 班德加普工程有限公司 | Designing the host of nano-structured optoelectronic devices to improve performance |
-
2012
- 2012-02-20 CN CN201210037321XA patent/CN102540462A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101238080A (en) * | 2005-08-29 | 2008-08-06 | 京瓷株式会社 | Dielectric ceramic, process for producing the same, and laminated ceramic capacitor |
CN102057491A (en) * | 2008-04-03 | 2011-05-11 | 班德加普工程有限公司 | Designing the host of nano-structured optoelectronic devices to improve performance |
Non-Patent Citations (2)
Title |
---|
孙可为,金丹,许启明: "Maxwell-Garnett理论研究纳米铜膜的光学性质", 《材料导报》 * |
赵新宏,王建,李燕,吕国才,王成伟: "运用有效介质理论研究Au/AAO纳米复合结构的光学特性", 《西北师范大学学报(自然科学版)》 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109374544A (en) * | 2018-11-02 | 2019-02-22 | 天津津航技术物理研究所 | The characterizing method of the aqueous depth of defect of optical medium film |
CN109374544B (en) * | 2018-11-02 | 2021-02-12 | 天津津航技术物理研究所 | Characterization method of water-containing defect depth of optical medium film |
CN110082313A (en) * | 2019-04-22 | 2019-08-02 | 天津大学 | A kind of micro-nano material refractive index measurement method based on prism-coupled instrument |
CN110082313B (en) * | 2019-04-22 | 2021-08-20 | 天津大学 | A method for measuring the refractive index of micro-nano materials based on a prism coupler |
WO2022193399A1 (en) * | 2021-03-19 | 2022-09-22 | 苏州大学 | Spectrally selective thermal radiator and design method therefor |
CN113960512A (en) * | 2021-11-03 | 2022-01-21 | 电子科技大学 | Deduction calculation method for equivalent electromagnetic parameters of rubber plate type wave-absorbing material |
CN113960512B (en) * | 2021-11-03 | 2023-03-14 | 电子科技大学 | Deduction calculation method for equivalent electromagnetic parameters of rubber plate type wave-absorbing material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chen et al. | Investigation of antireflection Nb2O5 thin films by the sputtering method under different deposition parameters | |
Frias et al. | Transparent luminescent solar concentrators using Ln3+-based ionosilicas towards photovoltaic windows | |
CN102540462A (en) | Maxwell-Garnett theory based design method for metal ceramic film photoelectric characteristics | |
CN104964710B (en) | A kind of measuring method of transparent conductive film optical constant and thickness | |
CN104111235B (en) | A kind of method measuring two-dimensional film material complex refractivity index spectrum | |
Zou et al. | Research progress of photo-/electro-driven thermochromic smart windows | |
Leem et al. | Indium tin oxide subwavelength nanostructures with surface antireflection and superhydrophilicity for high-efficiency Si-based thin film solar cells | |
Nur-E-Alam et al. | Optical and chromaticity properties of metal-dielectric composite-based multilayer thin-film structures prepared by RF magnetron sputtering | |
Jäger et al. | Designing optimized nano textures for thin-film silicon solar cells | |
CN110895357A (en) | Preparation scheme of novel high-transmittance vanadium dioxide thin film element | |
CN101681069B (en) | Transparent electrode | |
Mahjabin et al. | Sputtered WOx thin film as the electron transport layer for efficient perovskite solar cells | |
Ehrmann et al. | The influence of process parameters and coating properties of double glazing coated with transparent conducting oxides on the efficiency of solar-thermal flat-plate collectors | |
Peng et al. | ITO-free transparent organic solar cell with distributed bragg reflector for solar harvesting windows | |
Dai et al. | Transparent conductive p-type cuprous oxide films in vis-nir region prepared by ion-beam assisted dc reactive sputtering | |
Ho et al. | Characterization of Luminescent Down-Shifting Spectral Conversion Effects on Silicon Solar Cells with Various Combinations of Eu-Doped Phosphors | |
Alaani et al. | Optical properties of magnesium-zinc oxide for thin film photovoltaics | |
Wang et al. | Low-cost and flexible anti-reflection films constructed from nano multi-layers of TiO 2 and SiO 2 for perovskite solar cells | |
Ramanauskas et al. | Deposition and application of Indium-Tin-Oxide films for defrosting windscreens | |
Zhang et al. | Influences of oxygen ion beam on the properties of magnesium fluoride thin film deposited using electron beam evaporation deposition | |
Liang et al. | Fabrication and optical performance research of VO2/SiO2/VO2 composite spherical structure films | |
Chen et al. | Absorption enhancement in thin film a-Si solar cells with double-sided SiO2 particle layers | |
Amin et al. | Optical losses of frontal layers in superstrate cds/cdte solar cells using opal2 | |
Nur-E-Alam et al. | Application-Specific oxide-based and metal–dielectric thin-film materials prepared by radio frequency magnetron sputtering | |
Tippens et al. | Nanostructured antireflective in-plane solar harvester |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C12 | Rejection of a patent application after its publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20120704 |