CN102540332A - Light polarization splitter based on lithium-niobate photon rays - Google Patents
Light polarization splitter based on lithium-niobate photon rays Download PDFInfo
- Publication number
- CN102540332A CN102540332A CN2012100232438A CN201210023243A CN102540332A CN 102540332 A CN102540332 A CN 102540332A CN 2012100232438 A CN2012100232438 A CN 2012100232438A CN 201210023243 A CN201210023243 A CN 201210023243A CN 102540332 A CN102540332 A CN 102540332A
- Authority
- CN
- China
- Prior art keywords
- polarization splitter
- lithium
- niobate
- lithium niobate
- waveguide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- GQYHUHYESMUTHG-UHFFFAOYSA-N lithium niobate Chemical compound [Li+].[O-][Nb](=O)=O GQYHUHYESMUTHG-UHFFFAOYSA-N 0.000 title claims abstract description 63
- 230000010287 polarization Effects 0.000 title claims abstract description 31
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 32
- 235000012239 silicon dioxide Nutrition 0.000 claims abstract description 16
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 16
- 239000000758 substrate Substances 0.000 claims abstract description 14
- 230000008878 coupling Effects 0.000 claims abstract description 8
- 238000010168 coupling process Methods 0.000 claims abstract description 8
- 238000005859 coupling reaction Methods 0.000 claims abstract description 8
- 230000003287 optical effect Effects 0.000 claims description 41
- 239000013078 crystal Substances 0.000 claims description 8
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 6
- 239000011248 coating agent Substances 0.000 claims description 5
- 238000000576 coating method Methods 0.000 claims description 5
- 239000012212 insulator Substances 0.000 claims description 5
- 238000000034 method Methods 0.000 claims description 5
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 claims description 4
- 229910052786 argon Inorganic materials 0.000 claims description 3
- 238000003801 milling Methods 0.000 claims description 3
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 2
- 229910052744 lithium Inorganic materials 0.000 claims description 2
- 238000007517 polishing process Methods 0.000 claims description 2
- 238000002360 preparation method Methods 0.000 claims description 2
- 239000000126 substance Substances 0.000 claims description 2
- 229910052681 coesite Inorganic materials 0.000 abstract description 5
- 229910052906 cristobalite Inorganic materials 0.000 abstract description 5
- 238000009826 distribution Methods 0.000 abstract description 5
- 229910052682 stishovite Inorganic materials 0.000 abstract description 5
- 229910052905 tridymite Inorganic materials 0.000 abstract description 5
- 230000005684 electric field Effects 0.000 abstract description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 abstract 2
- 239000011247 coating layer Substances 0.000 abstract 1
- 230000010354 integration Effects 0.000 abstract 1
- 239000007788 liquid Substances 0.000 abstract 1
- 229910052757 nitrogen Inorganic materials 0.000 abstract 1
- 229960001866 silicon dioxide Drugs 0.000 abstract 1
- 238000002834 transmittance Methods 0.000 description 8
- 239000010408 film Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000004088 simulation Methods 0.000 description 4
- 229920002120 photoresistant polymer Polymers 0.000 description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 229910003327 LiNbO3 Inorganic materials 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- -1 rare earth ions Chemical class 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
Images
Landscapes
- Optical Integrated Circuits (AREA)
Abstract
Description
技术领域 technical field
本发明属于光子学技术领域的关键部件之一,具体的说,是一种基于铌酸锂光子线(缩写为LN)的超紧凑光极化分裂器。The invention belongs to one of the key components in the technical field of photonics, specifically, an ultra-compact optical polarization splitter based on lithium niobate photon wire (abbreviated as LN).
背景技术 Background technique
LN光子线(即,铌酸锂光波导)【1-8】正在成为未来集成光子学的候选者,这是由于它具有尺寸结构小,优良的电-光、声-光、及非线性光学特性【9】,易受稀土元素离子参杂得到激光活性材料【10】,特别有希望的高效率设备(甚至在适度光学功率值也可能实现)。显然,基于LN光子线的光极化分裂器是由LN光子线构成的集成光路的一个关键部件。然而,据申请人所进行的资料检索,到目前为止,尚无关于基于LN光子线的光定向耦合器的相关研究报道。LN photonic wires (i.e., lithium niobate optical waveguides) [1-8] are becoming candidates for future integrated photonics due to their small size and structure, excellent electro-optic, acousto-optic, and nonlinear optical properties [9] , susceptible to doping with rare earth ions to give laser-active materials [10] , particularly promising for high-efficiency devices (possible even at modest optical power values). Obviously, the optical polarization splitter based on LN photonic wire is a key component of the integrated optical circuit composed of LN photonic wire. However, according to the data retrieval conducted by the applicant, so far, there is no relevant research report on the optical directional coupler based on the LN photonic wire.
以下是发明人检索的相关文献:The following are relevant documents retrieved by the inventor:
【1】P.Rabiei,and W.H.Steier,“Lithium niobate ridge waveguides andmodulators fabricated using smart guide,”Appl.Phys.Lett.Vol.86,no.16,pp.161115-161118,Apr 2005。[1] P.Rabiei, and W.H.Steier, "Lithium niobate ridge waveguides and modulators fabricated using smart guide," Appl.Phys.Lett.Vol.86, no.16, pp.161115-161118, Apr 2005.
【2】D.Djukic,G.Cerda-Pons,R.M.Roth,R.M.Osgood,Jr.,S.Bakhru,and H.Bakhru,”Electro-optically tunable second-harmonic-generation gratingsin ion-exfoliated thin films of periodically poled lithium niobate,”Appl.Phys.Lett.Vol.90,no.17,pp.171116-171119,April 2007。【2】D.Djukic, G.Cerda-Pons, R.M.Roth, R.M.Osgood, Jr., S.Bakhru, and H.Bakhru,"Electro-optically tunable second-harmonic-generation gratingsin ion-exfoliated thin films of periodically poled lithium niobate," Appl. Phys. Lett. Vol. 90, no. 17, pp. 171116-171119, April 2007.
【3】A.Guarino,G.Poberaj,D.Rezzonico,R.Degl’innocenti,and P.Günter,“Electro-optically tunable microring resonators in lithium niobate,”Nat.Photonics Vol.1,no.7,pp.407-410,May 2007。[3] A.Guarino, G.Poberaj, D.Rezzonico, R.Degl'innocenti, and P.Günter, "Electro-optically tunable microring resonators in lithium niobate," Nat.Photonics Vol.1, no.7, pp .407-410, May 2007.
【4】F.Schrempel,T.Gischkat,H.Hartung,T.E.B.Kley,A.Tünnermann,and W.Wesch,“Ultrathin membranes in x-cut lithium niobate,”Opt.Lett.Vol.34,no.9,pp.1426-1428,April 2009。【4】F. Schrempel, T. Gischkat, H. Hartung, T. EB Kley, A. Tünnermann, and W. Wesch, "Ultrathin membranes in x-cut lithium niobate," Opt. Lett. Vol. 34, no. 9, pp. 1426-1428, April 2009.
【5】T.Takaoka,M.Fujimura,and T.Suhara,“Fabrication of ridgewaveguides in LiNbO3 thin film crystal by proton-exchange acceleratedetching,”Electron.Lett.Vol.45,no.18,pp.940-941(2009)。【5】T.Takaoka, M.Fujimura, and T.Suhara, "Fabrication of ridgewaveguides in LiNbO3 thin film crystal by proton-exchange acceleratedetching," Electron.Lett.Vol.45, no.18, pp.940-941( 2009).
【6】G.Poberaj,M.Koechlin,F.Sulser,A.Guarino,J.Hajfler,andP.Günter,“Ion-sliced lithium niobate thin films for active photonic devices,”Opt.Mater.Vol.31,no.7,pp.1054-1058(2009)。[6] G.Poberaj, M.Koechlin, F.Sulser, A.Guarino, J.Hajfler, and P.Günter, "Ion-sliced lithium niobate thin films for active photonic devices," Opt.Mater.Vol.31, no .7, pp. 1054-1058 (2009).
【7】G.W.Burr,S.Diziain,and M.-P.Bernal,“Theoretical study of lithiumniobate slab waveguides for integrated optics applications,”Opt.Mater.Vol.31,no.10,pp.1492-1497(2009)。[7] G.W.Burr, S.Diziain, and M.-P.Bernal, "Theoretical study of lithium niobate slab waveguides for integrated optics applications," Opt.Mater.Vol.31, no.10, pp.1492-1497(2009 ).
【8】H.Hu,R.Ricken,and W.Sohler,“Lithium niobate photonicwires,”Opt.Express,Vol.17,no.26,pp.2426-242681,December 2009。[8] H. Hu, R. Ricken, and W. Sohler, "Lithium niobate photonicwires," Opt. Express, Vol.17, no.26, pp.2426-242681, December 2009.
【9】R.S.Weis,and T.K.Gaylord,“Lithium niobate:summary of physicalproperties and crystal structure,”Appl.Phys.,A Mater.Sci.Process.Vol.37,no.4,pp.191-203,March 1985。[9] R.S.Weis, and T.K.Gaylord, "Lithium niobate: summary of physical properties and crystal structure," Appl. Phys., A Mater. Sci. Process. Vol.37, no.4, pp.191-203, March 1985 .
【10】W.Sohler,B.Das,D.Dey,S.Reza,H.Suche,and R.Ricken,“Erbium-doped lithium niobate waveguides lasers,”in 2005 IEICE Trans.Electron.E88(C),pp.990-997。[10] W. Sohler, B. Das, D. Dey, S. Reza, H. Suche, and R. Ricken, "Erbium-doped lithium niobate waveguides lasers," in 2005 IEICE Trans.Electron.E88(C), pp. 990-997.
【11】H.Hu,R.Ricken,and W.Sohler,Large area,crystal-bonded LiNbO3thin films and ridge waveguides of high refractive index contrast,TopicalMeeting“Photorefractive Materials,Effects,and Devices-Control of Light andMatter”(PR 09),Bad Honnef,Germany 2009。On the poster,presented toPR 09,a photograph of a 3 inch LNOI wafer was shown.A manuscript todescribe the LNOI-technology developed is in preparation。【11】H.Hu, R.Ricken, and W.Sohler, Large area, crystal-bonded LiNbO3thin films and ridge waveguides of high reactive index contrast, Topical Meeting "Photorefractive Materials, Effects, and Devices-Control of Light and Matter" (PR 09), Bad Honnef, Germany 2009. On the poster, presented to PR 09, a photograph of a 3 inch LNOI wafer was shown. A manuscript to describe the LNOI-technology developed is in preparation.
发明内容 Contents of the invention
本发明的目的在于,提供一种基于LN光子线的光极化分裂器,该极化分裂器可被用于基于铌酸锂光子线的高集成度光路,以适应当代日益发展光通信及传感技术的迫切需要。The purpose of the present invention is to provide an optical polarization splitter based on LN photonic wires, which can be used in highly integrated optical circuits based on lithium niobate photonic wires, so as to adapt to the increasing development of optical communication and transmission in the contemporary era. The urgent need for sensing technology.
为了实现上述任务。本发明采取如下的技术解决方案予以实现:In order to achieve the above tasks. The present invention takes following technical solution to realize:
一种基于LN光子线的光极化分裂器,其特征在于,由铌酸锂基底、二氧化硅覆层和两条平行的铌酸锂光波导组成,其中,其中,两条平行的铌酸锂光波导的高度均为0.73μm,波导的顶部宽度均为0.5μm;构成该极化分裂器的两条平行的光波导的轴间距Sc=0.74μm,耦合长度Lc=49.28μm。An optical polarization splitter based on LN photon lines, characterized in that it consists of a lithium niobate substrate, a silicon dioxide coating and two parallel lithium niobate optical waveguides, wherein, wherein, two parallel niobate The height of the lithium optical waveguide is 0.73 μm, and the top width of the waveguide is 0.5 μm; the axial distance S c =0.74 μm and the coupling length L c =49.28 μm of the two parallel optical waveguides constituting the polarization splitter.
上述基于LN光子线的光极化分裂器的制备方法,其特征在于,该方法首先制作基于绝缘体的铌酸锂样本(缩写为LNOI),LNOI包括直接黏附在1.3微米厚的二氧化硅(SiO2)层上的730纳米厚的单晶LN层(即LN薄膜),二氧化硅层是经过用等离子体增强化学气相沉积法涂敷在全等的Z切铌酸锂基底的Z面,即LN薄膜与厚度为1um的LN基底有全等的晶体取向;LN薄膜的表面用化学机械抛光工艺(CMP)处理后达到0.5纳米的rms粗糙度;然后将1.7μm厚和0.5μm宽的光阻条带用作刻蚀掩膜。光阻在120℃下经过1个小时的退火,接着,在Oxford Plasmalab System100内,用100W射频功率诱导地耦合成为等离子体,和70W射频功率耦合至样本表面,经60分钟氩铣蚀刻,端面抛光,即得。The method for preparing the optical polarization splitter based on the above-mentioned LN photon line is characterized in that the method first makes a lithium niobate sample based on an insulator (abbreviated as LNOI), and the LNOI includes silicon dioxide (SiO 2 ) a 730 nanometer thick single crystal LN layer (i.e. LN film) on the layer, the silicon dioxide layer is coated on the Z surface of the congruent Z-cut lithium niobate substrate through plasma enhanced chemical vapor deposition, i.e. The LN film and the LN substrate with a thickness of 1um have congruent crystal orientation; the surface of the LN film is treated with a chemical mechanical polishing process (CMP) to reach an rms roughness of 0.5 nm; The strips are used as etch masks. The photoresist was annealed at 120°C for 1 hour, then, in the Oxford Plasmalab System100, 100W RF power was used to induce plasma coupling, and 70W RF power was coupled to the sample surface, etched by argon milling for 60 minutes, and the end face was polished , that is.
本发明的基于LN光子线的光定向耦合器,所带来的技术效果是:The optical directional coupler based on the LN photon line of the present invention brings the following technical effects:
1、在上述给定的波导尺寸参数及光学参数的条件下(适合传输准-TE(qTE)和准-TM(qTM)单模),在工作波长λ=1.55μm的情况下,对于准-TE(qTE)单模的输入光波,在较短的直波导输出端可得到97.31%的透射率;对于准-TM(qTM)单模的输入光波,在较长的直波导输出端可得到97.25%的透射率。当同时含有准-TE(qTE)和准-TM(qTM)单模的输入光波,经该光极化分裂器,在较短直波导输出端可获得准-TE(qTE)波,其透射率为97.31%,同时在较长直波导输出端可得到准-TM(qTM)波,其透射率为97.25%。1. Under the conditions of the above given waveguide size parameters and optical parameters (suitable for transmission of quasi-TE (qTE) and quasi-TM (qTM) single-mode), in the case of working wavelength λ=1.55μm, for quasi- For TE (qTE) single-mode input light waves, a transmittance of 97.31% can be obtained at the shorter straight waveguide output end; for quasi-TM (qTM) single-mode input light waves, 97.25% can be obtained at the longer straight waveguide output end % transmittance. When both quasi-TE (qTE) and quasi-TM (qTM) single-mode input light waves are included, the quasi-TE (qTE) wave can be obtained at the output end of the shorter straight waveguide through the optical polarization splitter, and its transmittance It is 97.31%. At the same time, quasi-TM (qTM) waves can be obtained at the output end of the longer straight waveguide, and its transmittance is 97.25%.
2、该光极化分裂器具有紧凑的结构。2. The optical polarization splitter has a compact structure.
经申请人的仿真和分析证明,该基于LN光子线的光极化分裂器可被用于基于铌酸锂光子线的高集成度光路,以适应日益发展的光通信技术及光传感技术的迫切需要。The applicant's simulation and analysis prove that the optical polarization splitter based on LN photonic wire can be used in a highly integrated optical circuit based on lithium niobate photonic wire to adapt to the increasing development of optical communication technology and optical sensing technology. urgent need.
附图说明 Description of drawings
图1-1是本发明的基于LN光子线光极化分裂器的输入端横向截面图;Fig. 1-1 is the transversal sectional view of the input end of the optical polarization splitter based on the LN photon line of the present invention;
图1-2是与图1-1相对应的基于LN光子线光极化分裂器的输出端横向截面图;Figure 1-2 is a transverse cross-sectional view of the output end of the LN photonic line-based optical polarization splitter corresponding to Figure 1-1;
图1-3是与图1-1和图1-2相对应的光极化分裂器俯视图;Figure 1-3 is a top view of the optical polarization splitter corresponding to Figure 1-1 and Figure 1-2;
图2是在上述给定尺寸参数和光学参数下,当输入准-TE(qTE)单模光波时,利用商用软件OptiFDTD获得的磁场分布图(输入功率:0.7178W,输出功率:0.6985W,通过率:97.31%);Figure 2 is the magnetic field distribution diagram obtained by using the commercial software OptiFDTD when the quasi-TE (qTE) single-mode light wave is input under the above-mentioned given size parameters and optical parameters (input power: 0.7178W, output power: 0.6985W, passed Rate: 97.31%);
图3是在上述给定尺寸参数和光学参数下,当输入准-TM(qTM)单模光波时,利用商用软件OptiFDTD获得的电场分布图(输入功率:0.727W,输出功率:0.707W,通过率:97.25%);Figure 3 is the electric field distribution diagram obtained by using the commercial software OptiFDTD (input power: 0.727W, output power: 0.707W, by Rate: 97.25%);
图4-1(a,b)和图4-2(a,b)是制作工艺示意图,其中,图4-1a是基于绝缘体的铌酸锂样本(LNOI)的光极化分裂器的输入端,图4-2a是基于绝缘体的铌酸锂样本(LNOI)的光极化分裂器的输出端;而图4-1b,图4-2b和4-3表示最终样品。Figure 4-1(a, b) and Figure 4-2(a, b) are schematic diagrams of the manufacturing process, in which Figure 4-1a is the input end of the optical polarization splitter based on the lithium niobate sample of insulator (LNOI) , Figure 4-2a is the output of a photopolarization splitter based on an insulator lithium niobate sample (LNOI); while Figure 4-1b, Figure 4-2b and 4-3 represent the final sample.
以下结合附图和实施例对本发明作进一步的详细说明。The present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments.
具体实施方式Detailed ways
1、仿真结果1. Simulation results
本实施例给出的基于LN光子线的光极化分裂器结构,如图1所示,它由铌酸锂基底、二氧化硅覆层和两条平行的铌酸锂波导组成。两条平行的铌酸锂光波导的高度均为0.73μm,波导的顶部宽度均为0.5μm;构成该极化分裂器的两条平行的光波导的轴间距Sc=0.74μm,耦合长度Lc=49.28μm。The optical polarization splitter structure based on the LN photonic wire given in this embodiment, as shown in FIG. 1 , consists of a lithium niobate substrate, a silicon dioxide coating and two parallel lithium niobate waveguides. The height of two parallel lithium niobate optical waveguides is 0.73 μm, and the width of the top of the waveguide is 0.5 μm ; c = 49.28 μm.
铌酸锂基底厚度为1μm,二氧化硅覆层厚度为1.3μm。The thickness of the lithium niobate substrate is 1 μm, and the thickness of the silicon dioxide coating is 1.3 μm.
适合于该光极化分裂器的波导参数是:LN波导的折射率nLN=2.2;SiO2区域的折射率nSiO2=1.44;波导的高度h=0.73μm、顶部宽度w=0.5μm,如此选择以确保实现单模传输。构成该极化分裂器的两条平行光波导(即光子线)的轴间距Sc=0.74μm,耦合长度Lc=49.28μm。工作波长λ=1.55μm,SiO2层的底面与Z-切LN衬底的Z-面相连接,LN波导(即LN光子线)与SiO2层顶面相连接,而且LN衬底与LN光子线具有全向的晶体取向。The waveguide parameters suitable for this optical polarization splitter are: the refractive index n LN of the LN waveguide =2.2; the refractive index n SiO2 of the SiO2 region =1.44; the height h of the waveguide = 0.73 μm, the top width w = 0.5 μm, and so on Select to ensure single-mode transmission. The axial distance S c of two parallel optical waveguides (ie, photon wires) constituting the polarization splitter is 0.74 μm, and the coupling length L c is 49.28 μm. Working wavelength λ=1.55 μ m, the bottom surface of SiO2 layer is connected with the Z-face of Z-cut LN substrate, LN waveguide (being LN photon line) is connected with SiO2 layer top surface, and LN substrate and LN photon line have Omnidirectional crystal orientation.
利用商用软件OptiFDTD对图1所示的结构进行了仿真的结果显示,该极化分裂器,对于准-TE(qTE)单模的输入光波,在较短直波导输出端可得到97.31%的透射率;对于准-TM(qTM)单模的输入光波,在较长的直波导输出端可得到97.25%的透射率。当同时含有准-TE(qTE)和准-TM(qTM)单模的输入光波,经该光极化分裂器,在较短直波导输出端可获得准-TE(qTE)波,其透射率为97.31%,同时在较长直波导输出端可得到准-TM(qTM)波,其透射率为97.25%。图2和图3给出由仿真得到的相应磁场、电场分布图。The results of the simulation of the structure shown in Figure 1 using the commercial software OptiFDTD show that the polarization splitter can obtain 97.31% transmission at the output end of the short straight waveguide for quasi-TE (qTE) single-mode input light waves rate; for quasi-TM (qTM) single-mode input light waves, a transmittance of 97.25% can be obtained at the output end of the longer straight waveguide. When both quasi-TE (qTE) and quasi-TM (qTM) single-mode input light waves are included, the quasi-TE (qTE) wave can be obtained at the output end of the shorter straight waveguide through the optical polarization splitter, and its transmittance It is 97.31%. At the same time, quasi-TM (qTM) waves can be obtained at the output end of the longer straight waveguide, and its transmittance is 97.25%. Figure 2 and Figure 3 show the corresponding magnetic field and electric field distribution diagrams obtained by simulation.
2、制作工艺2. Manufacturing process
为了制作铌酸锂(LN)光子线定向耦合器,须先制作基于绝缘体的铌酸锂样本LNOI(图4-1-a和图4-2-a所示)。这个样本包括了直接黏附在1.3微米厚的二氧化硅(SiO2)层上的730纳米厚的单晶LN层(LN薄膜),SiO2层是经过用等离子体增强化学气相沉积(PECVD)法涂敷在全等的Z切铌酸锂基底(厚度为1um)的Z面,即LN薄膜与厚度为1um的LN基底有全等的晶体取向;LN薄膜的表面须用化学机械抛光(CMP)工艺处理后达到0.5纳米的rms粗糙度。In order to make a lithium niobate (LN) photonic wire directional coupler, it is necessary to make an insulator-based lithium niobate sample LNOI (shown in Figure 4-1-a and Figure 4-2-a). This sample consisted of a 730 nm thick single crystal LN layer (LN thin film) adhered directly on a 1.3 µm thick layer of silicon dioxide (SiO 2 ) deposited by plasma-enhanced chemical vapor deposition (PECVD) . Coated on the Z surface of a congruent Z-cut lithium niobate substrate (thickness 1um), that is, the LN film and the LN substrate with a thickness of 1um have congruent crystal orientation; the surface of the LN film must be chemically mechanically polished (CMP) After processing, the rms roughness of 0.5 nm is achieved.
由于折射率相差较大(nLN=2.2,nSiO=1.44),LNOI样本是具有很强导光性能的平面波导,因此很适合用来制作铌酸锂光子线。Due to the large difference in refractive index (n LN =2.2, n SiO =1.44), the LNOI sample is a planar waveguide with strong light guiding performance, so it is very suitable for making lithium niobate photonic wires.
光刻技术要求:将1.7μm厚和0.5μm宽的光阻(OIR 907-17)条带用作刻蚀掩膜。为了提高掩膜的选择性,光阻在120℃下经过1个小时的退火。接着,在Oxford Plasmalab System100内,用100W射频功率诱导地耦合成为等离子体(ICP),和70W射频功率耦合至样本表面,如此处理后的样本经60分钟氩铣蚀刻,结果如图4-1-b和图4-2-b所示。Photolithography requirements: 1.7μm thick and 0.5μm wide strips of photoresist (OIR 907-17) are used as etch masks. In order to improve the selectivity of the mask, the photoresist was annealed at 120°C for 1 hour. Then, in Oxford Plasmalab System100, 100W RF power is used to induce plasma (ICP) coupling, and 70W RF power is coupled to the surface of the sample. The sample thus treated is etched by argon milling for 60 minutes. The result is shown in Figure 4-1- b and Figure 4-2-b.
最后,将样本的端面经过精心抛光,从而实现高效的端射光耦合。Finally, the end faces of the samples are carefully polished to allow efficient endfire light coupling.
3、结论3. Conclusion
首次提出了基于LN光子线的适合1.55μm波长的超紧凑结构光极化分裂器,利用商用软件OptiFDTD仿真了该光极化分裂器的场分布图,并给出了制作工艺。该光极化分裂器具有透射率高以及超紧凑结构等特点。An ultra-compact structure optical polarization splitter suitable for 1.55μm wavelength based on LN photonic wire is proposed for the first time. The field distribution diagram of the optical polarization splitter is simulated by using the commercial software OptiFDTD, and the manufacturing process is given. The optical polarization splitter has the characteristics of high transmittance and ultra-compact structure.
本发明受到了国家自然科学基金资助(基金编号:61040064)。The present invention has been funded by the National Natural Science Foundation of China (fund number: 61040064).
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201210023243 CN102540332B (en) | 2012-02-02 | 2012-02-02 | Optical polarization splitter based on lithium niobate photonic wire |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201210023243 CN102540332B (en) | 2012-02-02 | 2012-02-02 | Optical polarization splitter based on lithium niobate photonic wire |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102540332A true CN102540332A (en) | 2012-07-04 |
CN102540332B CN102540332B (en) | 2013-05-15 |
Family
ID=46347632
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201210023243 Expired - Fee Related CN102540332B (en) | 2012-02-02 | 2012-02-02 | Optical polarization splitter based on lithium niobate photonic wire |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102540332B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109407208A (en) * | 2018-12-13 | 2019-03-01 | 中国科学院半导体研究所 | The preparation method of optical coupling structure, system and optical coupling structure |
CN111487793A (en) * | 2020-04-17 | 2020-08-04 | 中国科学院半导体研究所 | Z-cut LNOI electro-optic modulator for improved modulation efficiency and its application |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000347149A (en) * | 1999-03-26 | 2000-12-15 | Ngk Insulators Ltd | Directional coupler |
WO2001065310A1 (en) * | 2000-03-02 | 2001-09-07 | Orchid Lightwave Communications, Inc. | Integrated optical devices and methods of making such devices |
WO2005008296A2 (en) * | 2003-07-03 | 2005-01-27 | Oewaves, Inc. | Optical coupling for whispering-gallery-mode resonators via waveguide gratings |
CN2689259Y (en) * | 2004-03-30 | 2005-03-30 | 上海理工大学 | Arsenones-lithium niobate composite waveguide couplers |
CN101620296A (en) * | 2008-06-30 | 2010-01-06 | Jds尤尼弗思公司 | High confinement waveguide on an electro-optic substrate |
-
2012
- 2012-02-02 CN CN 201210023243 patent/CN102540332B/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000347149A (en) * | 1999-03-26 | 2000-12-15 | Ngk Insulators Ltd | Directional coupler |
WO2001065310A1 (en) * | 2000-03-02 | 2001-09-07 | Orchid Lightwave Communications, Inc. | Integrated optical devices and methods of making such devices |
WO2005008296A2 (en) * | 2003-07-03 | 2005-01-27 | Oewaves, Inc. | Optical coupling for whispering-gallery-mode resonators via waveguide gratings |
CN2689259Y (en) * | 2004-03-30 | 2005-03-30 | 上海理工大学 | Arsenones-lithium niobate composite waveguide couplers |
CN101620296A (en) * | 2008-06-30 | 2010-01-06 | Jds尤尼弗思公司 | High confinement waveguide on an electro-optic substrate |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109407208A (en) * | 2018-12-13 | 2019-03-01 | 中国科学院半导体研究所 | The preparation method of optical coupling structure, system and optical coupling structure |
CN111487793A (en) * | 2020-04-17 | 2020-08-04 | 中国科学院半导体研究所 | Z-cut LNOI electro-optic modulator for improved modulation efficiency and its application |
Also Published As
Publication number | Publication date |
---|---|
CN102540332B (en) | 2013-05-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Churaev et al. | A heterogeneously integrated lithium niobate-on-silicon nitride photonic platform | |
Cai et al. | Acousto-optical modulation of thin film lithium niobate waveguide devices | |
Ahmed et al. | Tunable hybrid silicon nitride and thin-film lithium niobate electro-optic microresonator | |
Wang et al. | Lithium tantalate photonic integrated circuits for volume manufacturing | |
Boes et al. | Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits | |
Rabiei et al. | Lithium niobate ridge waveguides and modulators fabricated using smart guide | |
Chen et al. | Grating coupler on lithium niobate thin film waveguide with a metal bottom reflector | |
Hu et al. | Lithium niobate-on-insulator (LNOI): status and perspectives | |
Shi et al. | Compact low-birefringence polarization beam splitter using vertical-dual-slot waveguides in silicon carbide integrated platforms | |
Wang et al. | Amorphous silicon-lithium niobate thin film strip-loaded waveguides | |
JPH04213406A (en) | Lightguide tube and manufacture thereof | |
Chen et al. | Two-dimensional grating coupler on an X-cut lithium niobate thin-film | |
Cai et al. | A compact photonic crystal micro-cavity on a single-mode lithium niobate photonic wire | |
Yang et al. | Low loss ridge-waveguide grating couplers in lithium niobate on insulator | |
Han et al. | Integrated photonics on the dielectrically loaded lithium niobate on insulator platform | |
Chen et al. | Integrated electro-optic modulator in z-cut lithium niobate thin film with vertical structure | |
Qu et al. | Bright second harmonic emission from photonic crystal vertical cavity | |
Yu et al. | Fundamentals and applications of photonic waveguides with bound states in the continuum | |
Samanta et al. | A 1× 2 polarization-independent power splitter using three-coupled silicon rib waveguides | |
CN102508338B (en) | Optical directional coupler based on lithium niobate photon lines and preparation method thereof | |
Hartung et al. | Fabrication of ridge waveguides in zinc-substituted lithium niobate by means of ion-beam enhanced etching | |
You et al. | Lithium niobate on insulator–fundamental opto-electronic properties and photonic device prospects | |
Deng et al. | Modeling and experimental investigations of Fano resonances in free-standing LiNbO3 photonic crystal slabs | |
Liang et al. | Monolithically integrated electro-optic modulator fabricated on lithium niobate on insulator by photolithography assisted chemo-mechanical etching | |
CN102540332B (en) | Optical polarization splitter based on lithium niobate photonic wire |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20130515 Termination date: 20140202 |