[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN102547950A - 执行下行链路和/或上行链路功率控制的用户设备和方法 - Google Patents

执行下行链路和/或上行链路功率控制的用户设备和方法 Download PDF

Info

Publication number
CN102547950A
CN102547950A CN2011104141753A CN201110414175A CN102547950A CN 102547950 A CN102547950 A CN 102547950A CN 2011104141753 A CN2011104141753 A CN 2011104141753A CN 201110414175 A CN201110414175 A CN 201110414175A CN 102547950 A CN102547950 A CN 102547950A
Authority
CN
China
Prior art keywords
subscriber equipment
signal
down link
quality
sir
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011104141753A
Other languages
English (en)
Other versions
CN102547950B (zh
Inventor
E.博林特
T.克勒沃恩
H.达维德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Apple Inc
Intel Corp
Original Assignee
Intel Mobile Communications GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intel Mobile Communications GmbH filed Critical Intel Mobile Communications GmbH
Publication of CN102547950A publication Critical patent/CN102547950A/zh
Application granted granted Critical
Publication of CN102547950B publication Critical patent/CN102547950B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/241TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account channel quality metrics, e.g. SIR, SNR, CIR, Eb/lo
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/0874Hybrid systems, i.e. switching and combining using subgroups of receive antennas
    • H04B7/0877Hybrid systems, i.e. switching and combining using subgroups of receive antennas switching off a diversity branch, e.g. to save power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/42TPC being performed in particular situations in systems with time, space, frequency or polarisation diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/143Downlink power control

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种执行下行链路和/或上行链路功率控制的用户设备和方法。一种用户设备包括多个天线,用来从基站接收下行链路信号;多个接收机电路,其中的每一个被耦合到所述多个天线中的相应一个以处理接收到的下行链路信号;SIR估计单元,用来估计接收到的下行链路信号的质量;功率环路控制器,其基于接收到的下行链路信号的估计质量来生成传送功率控制命令,所述传送功率控制命令被送往基站以调整下行链路信号的功率;以及分集控制器,其根据接收到的下行链路信号的估计质量将接收机电路中的一个或多个选择性地激活和去激活。

Description

执行下行链路和/或上行链路功率控制的用户设备和方法
技术领域
本发明涉及执行下行链路功率控制(downlink power control, DLPC)的用户设备(user equipment, UE)、执行上行链路功率控制(uplink power control, ULPC)的用户设备、用于用户设备的下行链路功率控制的方法和用于用户设备的上行链路功率控制的方法。
背景技术
在基站(base station, BS)与用户设备(UE)之间的移动通信中,在用户设备中使用分集接收机来改善由基站发送的无线电信号的接收。分级接收机改善了接收到的信号的质量。然而,接收分集的使用导致显著增加的功率消耗,这相当大地减少了可用的通话时间。因此,存在对提供高效地使用电池功率以便以高信号质量提供高通话时间的用户设备的需要。
在3GPP(第三代合作伙伴计划)标准化中,针对满足所谓的“增强型性能要求类型1(Enhanced Performance Requirements Type 1)”的DPCH(专用物理信道)的接收指定了性能要求。这些类型1要求指的是用户设备根据3GPP技术规范TS 25.101 V7.16.0(2009-05),部分8.3、8.6、8.8使用接收分集(RxDiv,两个或更多接收天线)。为了满足这些要求,必要的是根据3GPP,在RxDiv模式下始终操作RxDiv接收机,即,其中两个天线都被激活,并且其中激活完全接收分集接收机。当使用RxDiv时,将显著地降低呼叫掉线的发生频率,其为用于网络(NW)运营商和手机供应商所使用的最终部署设备的主要质量标准之一,这是因为RxDiv在没有衰落且没有天线相关的情况下提供相当大的SNR增益(例如最低3dB),而且在有衰落且没有天线相关的情况下提供甚至更大的增益。然而,另一方面,RxDiv的使用导致显著增加的电流消耗,相当大地减少了通话时间。
由于这些及其它原因,存在对本发明的需要。
附图说明
包括了附图以提供对实施例的进一步理解并且附图被结合到本说明书中并构成其一部分。附图图示了实施例并连同本说明一起用于解释实施例的原理。将很容易认识到其它实施例和实施例的许多预期优点,这是因为通过参考以下详细说明,它们变得更好理解。附图的元件相对于彼此未必按比例。同样的附图标记指明对应的类似部分。
图1示意性地图示了根据一个实施例的用户设备。
图2示意性地图示了根据一个实施例的用户设备。
图3示意性地图示了根据一个实施例的具有用户设备和基站的功率控制系统。
图4示意性地图示了根据一个实施例的基站与用户设备之间的下行链路信号和上行链路信号的示例。
图5示意性地图示了根据一个实施例的如图3中所描绘的系统的状态图。
图6示意性地图示了根据一个实施例的用户设备。
图7示意性地图示了根据一个实施例的用户设备的性能图,其描绘了高饱和情景。
图8示意性地图示了根据一个实施例的用户设备的性能图,其描绘了不同步情景。
图9示意性地图示了根据一个实施例的用于用户设备中的不同步情景的测试情况。
图10示意性地图示了根据一个实施例的用于用户设备中的高饱和情景的测试情况。
图11示意性地图示了根据一个实施例的用户设备的性能增益图。
图12示意性地图示了根据一个实施例的用户设备的性能图。
图13示意性地图示了根据一个实施例的如图3中所描绘的系统的另外状态图。
具体实施方式
在以下详细说明中,对形成其一部分的附图进行参考,并且在附图中以图示的方式示出了其中可以实践本发明的具体实施例。在这方面,诸如“顶部”、“底部”、“正面”、“背面”、“前端”、“后尾”等的方向术语是参考正描述的(一幅或多幅)图的取向而使用的。由于实施例的组件能够以多个不同的取向定位,所以方向术语是用于说明性目的,并且绝不是限制性的。应理解的是在不脱离本发明的范围的情况下可以利用其它实施例且可以进行结构或逻辑改变。因此,以下详细说明不是以限制性意义来进行的,而是由所附权利要求书来定义本发明的范围。
应理解的是除非另外具体说明,否则可以将本文所描述的各种示例性实施例的特征与彼此组合。
如本说明书中所采用的,术语“耦合”和/或“电耦合”并不意味着意指必须将元件直接耦合在一起,在被“耦合”或“电耦合”的元件之间可以提供介入元件。
下面描述用户设备,即包括天线、接收机电路、传送机与功率环路控制器且可以包括信号干扰比(signal-to-interference-ratio, SIR)估计单元、分集控制器和TPC质量估计器的设备。
天线是传送或接收电磁波的变送器(transducer)。换言之,天线将电磁辐射转换成电流,或反之亦然。天线一般从事无线电波的传输和接收。天线被用在诸如无线电通信、无线LAN、蜂窝电话和移动通信之类的系统中。
用户设备中的天线从基站接收下行链路无线电信号并将这些信号转换成电信号,其为接收到的下行链路信号。
无线电信号是由无线电传送机(发送器)以在约3 Hz至300 GHz的范围内的射频(radio frequency, RF)辐射的射频信号。此范围对应于用来产生和检测无线电波的交流电信号的频率。RF通常指的是电路中的振荡。
用户设备中的多个天线的使用导致由于分集技术的使用而引起的改善的总体系统性能。接收机分集(RxDiv)或天线分集(也称为空间分集)是使用两个或更多天线来改善无线链路的质量和可靠性的若干无线分集方案中的任何一个。常常地,尤其是在城市和室内环境中,在传送机与接收机之间不存在清晰的视线(line-of sight, LOS)。替代地,信号在最后被接收到之前沿着多个路径被反射。这些反跳(bounce)中的每一个可能引入相移、时间延迟、衰减以及甚至失真,其可能在接收天线的孔径处破坏性地相互干扰。天线分集在缓解这些多路径情形时尤其有效。这是因为多个天线为接收机提供同一信号的若干观察结果。每个天线将经历不同的干扰环境。因此,如果一个天线正经历深衰落,则很可能的是另一个具有充足的信号。这样的系统可以共同地提供稳健的链路。虽然这主要在接收系统(接收机分集)中看到,但模拟还已经证明了对于传送系统(传送机分集)也是有价值的。传送和接收二者方面的多个天线的使用导致多输入多输出(multiple-input multiple-output, MIMO)系统。该链路的两端处的分集技术的使用称为空时编码。
接收机电路被耦合到相应天线,以便处理接收到的天线的下行链路信号。接收机电路可以包括Rake接收机和/或均衡器或其它适合的接收机。
下行链路信号是沿着下行链路方向传送的信号,即从基站至用户设备。下行链路信号载送下行链路信道。在WCDMA中,可以为用户终端分配一个或多个物理数据信道(Physical Data Channel, PDCH)或专用物理数据信道(Dedicated Physical Data Channel, DPDCH),其载送用户位。还可以为用户终端分配物理控制信道(Physical Control Channel, PCCH)或专用物理控制信道(Dedicated Physical Control Channel, DPCCH),在其上面向用户载送开销控制信息,即相关联的PDCH的位速率信息、传送功率控制位和导频码元,其可以用来在快速功率控制环路过程中执行SIR测量。专用物理信道(DPCH)包括专用物理数据信道(DPDCH)和专用物理控制信道(DPCCH)。还可以为用户终端分配F-DPCH(部分DPCH)信道,其仅载送传送功率控制位。在F-DPCH的情况下,必须使用接收到的传送功率控制码元来执行快速功率控制环路过程所需的质量估计。
Rake是耙子接收机或广义耙子(G-Rake)接收机,其利用接收到的无线电信号的多路径信息。可以利用耙子来对抗多路径衰落效应。这可以通过使用若干子均衡器或“耙指(finger)”、即每个被分派给不同多路径分量的若干相关器来实现。每个手指独立地均衡单个多路径分量,并且在稍后阶段,将一些或所有手指的贡献组合以便利用每个传输路径的不同传输特性。这导致多路径环境中的较高信噪比。通过使用耙子,可以将具有不同延迟的不同路径有效地组合以获得路径分集增益。由于无线电信道的窄的传输脉冲和大的传输带宽,通过使用该耙子,可以克服无线电信道特性中的结果得到的码元间干扰(inter-symbol interference, ISI)和长延迟扩展。在该耙子的输出端处提供耙子输出信号。
均衡器通过向接收到的信号施加逆信道脉冲响应以便重构原始传送信号来均衡无线电信道对接收到的无线电信号的影响,诸如延迟或多路径衰落。可以将信道脉冲响应的逆存储在阵列中,例如形成FIR滤波器,并且可以用自适应算法来更新。在均衡器的输出端处作为均衡信号来提供传送信号的估计。
接收机电路可以包括用于将接收到的信号向下混频至基带的混频器、用于将接收到的信号解调的解调器和用于将接收到的信号解码的解码器。解调是在基站传送机、例如UMTS传送机中执行的调制的逆操作。举例来说,UMTS传送机中的调制方案(构象)是正交相移键控(quadrature phase shift keying, QPSK)或正交幅度调制,例如16QAM或256QAM。调制是在其中将传送码元与载波信号相乘,获得要传送的信号的过程。解调是将接收到的信号与载波信号相乘以获得原始传送码元的逆过程。调制码元称为码片,并且它们的调制率例如可以为3.84 Mcps。
用户设备中的传送机是用于上行链路信号到基站的传输的传输电路。上行链路信号是沿上行链路方向传送的信号,即从用户设备至基站。传送机可以以不同的功率水平来传送上行链路信号,可以由功率环路控制器来调整该功率水平。传送机能够关断功率和开启功率。传送机可以使用传输天线或传输天线阵列来向基站传送上行链路信号。
信号干扰加噪声比(Signal-to-interference-plus-noise-ratio, SIR)估计单元(有时也称为SINR)在解调之后执行下行链路信号的SIR值的估计。该信号干扰加噪声比(SIR)是平均接收已调制信号功率与平均接收干扰功率和接收噪声的和之间的商。干扰功率可能是由除有用信号之外的其它传送机产生的。干扰是随着信号沿着源与接收机之间的信道行进而改变、修改或毁坏信号的任何东西。在宽带CDMA系统中,经常地将这种干扰称为其它小区干扰。另外,存在自己小区干扰或路径间干扰。在频率选择传输信道中,信号沿着由不同的传播延迟和不相关衰落表征的不同传输路径从传送机向接收机行进。这些多个传输路径相互干扰,因此将结果产生的干扰称为路径间干扰。
功率环路控制器是用于执行上行链路和/或下行链路功率控制的控制器。对于上行链路功率控制(ULPC)而言,功率环路控制器可以基于包括在来自基站的下行链路信号中的传送功率控制(TPC)命令来调整送往基站的上行链路信号的功率。对于下行链路功率控制(DLPC)而言,功率环路控制器可以基于下行链路信号的质量估计(例如估计的SIR值)生成传送功率控制(TPC)命令并将这些TPC命令传送到基站以请求基站调整下行链路信号的功率。
功率控制(PC)是蜂窝式CDMA系统的基本功能。WCDMA是3GPP(第三代合作伙伴计划)论坛的第三代蜂窝式系统(3G)。对于WCDMA而言,针对FDD(频分双工)系统并针对TDD(时分双工)系统来定义功率控制。
以10ms持续时间的帧来组织WCDMA空中接口。一个帧包含15个时隙且每个时隙包括一个功率控制(PC)命令(上或下),其给出了1500 Hz的PC更新速率。传送的功率在给定时隙期间具有固定值。WCDMA中针对DPCH信道的功率控制是闭环PC,其为外和内闭环控制的组合。可以在功率环路控制器中执行用于WCDMA的功率控制。内(也称为快速)闭环PC调整下行链路信道的传送功率以便保持接收到的SIR等于给定目标。此SIR目标根据接收到的BLER(Block Error Rate, 块差错率)或BER(Bit Error Rate, 位差错率)而是固定的。由外环路PC来完成SIR目标(SIRtarget)的设置,外环路PC是无线电资源控制层的一部分,以便匹配要求的BLER。外环路PC更新频率约为10-100 Hz。BLER目标是载送的服务的函数。保证使用最低的可能SIR目标导致更大的网络容量。用户设备的内闭环PC基于接收到的SIR来测量下行链路信道上的接收质量,并在上行链路信道上向基站发送传送功率控制(TPC)命令以便请求下行链路信道的功率更新。对于F-DPCH信道而言,NW设定针对F-DPCH的质量目标。UE自发地设定SIR目标值并对其进行调整,以便实现与由NW设定的质量目标相同的质量。该质量目标被设定为用于属于无线电链路的F-DPCH的下行链路TPC命令差错率目标值,该无线电链路来自通过UTRAN向其发信号的HS-DSCH服务小区。因此,对于F-DPCH而言,TPC命令差错率目标替换针对DPCH信道所使用的BLER目标。这是要求的,这是因为F-DPCH信道不包含可以用于BLER测量的任何用户数据。
由可以是用于估计SIR的电路的SIR估计单元来执行SIR估计。SIR估计单元估计要受到功率控制的下行链路信道的接收功率和此下行链路信道上的接收到的干扰和噪声。对于DPCH信道而言,可以通过使用导频码元、即在一个或多个下行链路信道上传送的已知码元来估计信号功率及干扰和噪声功率。对于F-DPCH信道而言,必须对TPC码元执行质量估计。所获得的ISR估计(注明为SIRest)或F-DPCH情况下的TPC质量估计然后可以被功率环路控制器使用来生成PC命令,其可以是根据3GPP规范的DPC模式0或1的。
在3GPP TS 25.214 V7.15.0(2010-03)的DPC模式0的情况下,在每个时隙(10/15 ms)更新传送功率。将其增加或减小固定值:如果SIRest > SIRtarget,则要传送的TPC命令是“0”,请求传送功率减少;如果SIRest < SIRtarget,则要传送的TPC命令是“1”,请求传送功率增加。3GPP TS 25.214 V7.15.0(2010-03)的DPC模式1是DPC模式0的轻微变体,其中,可以每三个时隙更新传送功率,这模拟较小功率更新步幅。功率控制步长是可以在功率环路控制器上实现的快速(内)闭环PC的参数。其等于0.5、1、1.5或2 dB。可以根据平均移动速度及其它操作环境参数来选择功率更新步长。
质量估计器是用于估计信号的质量度量、特别是包括在下行链路信号中的传送功率控制命令的质量的估计设备。质量度量可以是信噪比(SNR)、信号干扰加噪声比(SIR)、在用户设备处测量的下行链路信号的绝对功率、差错率或任何其它质量度量。质量估计器可以在指定时间间隔内监视接收到的下行链路信号中的TPC命令以便估计质量度量。有效的TPC命令是响应于从来自从用户设备接收的最近上行链路信号测量的SIR而在基站处生成且在响应于从用户设备接收到的最近上行链路信号中的TPC命令的功率水平下在下行链路信号中传送的一个命令。
可以将质量度量用于基站与用户设备之间的“不同步(Out-of-Sync)”检测。例如,如果用户设备接收到下行链路信号并根据3GPP确定例如在240个时隙(或160ms)的测量间隔内TPC命令差错率超过某阈限Qout,例如30%,则其可以检测“不同步”。如果用户设备根据3GPP确定在240个时隙(或160ms)的测量间隔内TPC命令差错率小于阈限Qin,例如小于20%,则其可以断定其为“同步(In-Sync)”。在“不同步”检测时,用户设备可以将其传送机关闭。在“同步”检测时,用户设备可以将其传送机再次开启。接通和断开传送机可以是在功率环路控制器的控制下。
使用分集控制器来控制包括接收机电路的分集接收机。分集接收机通过使由于衰落而引起的信道波动最小化来增强可靠性。分集中的中心思想是不同的天线接收同一信号的不同版本。所有这些拷贝都处于深衰落中的可能性是小的。这些方案因此在衰落从元件到元件是独立的时是最有意义的而如果被完美地相关(诸如在视线条件下)则具有有限的用途(超过增加SNR)。例如,在其中若干多路径分量在每个元件处非常不同地相加起来的密集城市环境中,将出现独立的衰落。
可以将衰落模型化为具有三个分量,其为路径损耗、大规模和小规模衰落。在相当长的时段内,前两个分量近似是恒定的,并且可以使用功率控制来处理。此外,这些衰落分量跨越阵列的所有元件(被完美地相关)非常接近于是恒定的。分集组合具体地将目标定为抵制小规模衰落,例如Rayleign(瑞利)衰落。根据物理模型,假定衰落从一个元件到另一个元件是独立的。分集“工作”,这是因为对于接收天线阵列中的N个元件而言,同一信号的N个独立拷贝被分集接收机接收。不可能的是所有N个元件都处于深衰落中。如果至少一个拷贝具有合理的功率,则一个人应可以想象地能够充分地处理该信号。
因此,分集接收机的每个接收机元件接收随机衰落过程的独立样本,即传送信号的独立拷贝。在分集接收机中,在分集控制器的控制下对这些独立样本进行组合,以便达到增加SNR并减小BER的期望目标。分集控制器可以选择分集接收机中的单独接收机电路以进行数据处理。分集控制器可以控制对这些样本进行组合的方式,例如,选择“最大比组合”(Maximum Ratio Combining, MRC),即获得使输出SNR最大化的权重、选择“选择组合”(Selection Combining, SC),即选定具有最大SNR的元件以进行进一步处理或选择“相等增益组合”(Equal Gain Combining, EGC),即在每个元件处设定单位增益。分集控制器还可以通过关闭提供不良SNR或BER的接收机电路以便节省功率且通过开启提供良好SNR或BER的接收机电路以便改善分集接收机的检测质量来控制分集接收机的功率。分集控制器可以根据质量估计器的质量度量来控制接收机电路的功率切换。
下文所描述的设备可以被设计为用于实现UMTS(通用移动远程通信系统)标准,例如UMTS标准的发行版99、4、5、6、7、8和9中的一个或更高版本。所述设备可以实现HSPA(High Speed Packet Access, 高速分组接入)移动电话协议,诸如HSDPA(High Speed Downlink Packet Access, 高速下行链路分组接入)和HSUPA(High Speed Uplink Packet Access, 高速上行链路分组接入)。所述设备可以实现HSPA+(演进HSPA)标准。可以将所述设备设计为实现WCDMA(宽带码分多址)标准。可以将所述设备设计为实现LTE(Long Term Evolution, 长期演进)移动通信标准、E-UTRAN(Evolved Universal Terrestrial Radio Access Network, 演进通用陆地无线电接入网)标准、HSOPA(High Speed Orthogonal Frequency Division Multiplex Packet Access, 高速正交频分复用分组接入)标准或由3GPP(第三代合作伙伴计划)标准化组织定义的超级3G标准。此外,可以将所述设备设计为实现根据工业联盟互操作性开发测试策略的WiMAX(Worldwide Interoperability for Microwave Access, 微波存取全球互通)或IEEE(电气和电子工程师协会)802.16(无线MAN)和802.11(无线LAN)标准。还可以将下面描述的设备设计为实现其它标准。
所述设备可以包括集成电路和/或无源电路。集成电路可以由不同的技术制造,并且例如可以被设计为逻辑集成电路、模拟集成电路、混频信号集成电路、存储器电路或集成无源电路。
图1示意性地图示了根据一个实施例的用户设备100,特别是被配置为用于执行下行链路功率控制(DLPC)的用户设备。用户设备100包括多个天线,例如第一天线101和第二天线102,用来从基站150接收下行链路信号,例如第一下行链路信号103和第二下行链路信号104。用户设备100还包含多个接收机电路,例如第一接收机电路105和第二接收机电路106;每个接收机电路被耦合到所述多个天线中的相应一个。在图1中所图示的实施例中,第一接收机电路105被耦合到第一天线101,而第二接收机电路106被耦合到第二天线102。接收机电路105、106处理接收到的下行链路信号,即第一接收机电路105处理第一下行链路信号103,而第二接收机电路106处理第二下行链路信号104。
用户设备100还包括质量估计单元110,其被配置为估计接收到的下行链路信号103、104的质量。该估计可以基于包括在下行链路信号103、104中的导频码元的SIR(信号干扰加噪声比)和/或可以基于包括在下行链路信号103、104中的TPC码元的质量。可以将质量估计单元110耦合到一些或所有接收机电路105、106以便基于接收机电路105、106的输出信号来估计质量。质量估计单元例如可以估计接收机电路105、106的输出信号中的每一个的质量值。
用户设备100还包括功率环路控制器120和分集控制器130。功率环路控制器120被耦合到质量估计单元110且被配置为基于由质量估计单元110估计的估计质量来生成传送功率控制(TCP)命令122。传送功率控制命令122被送往基站150,以便调整下行链路信号103、104的功率。
分集控制器130被耦合到质量估计单元110并被配置为根据估计质量值将接收机电路105、106中的至少一个选择性地激活和/或去激活。可替换地,可以由分集控制器130将天线101、102中的至少一个激活和/或去激活,或者可以将天线101、102以及对应的接收机电路105、106都激活。
图2示意性地图示了根据一个实施例的用户设备200,特别是被配置为用于执行上行链路功率控制(ULPC)的用户设备。用户设备200包括多个天线,例如第一天线201和第二天线202,用来从基站250接收下行链路信号,例如第一下行链路信号203和第二下行链路信号204。用户设备200还包括多个接收机电路,例如第一接收机电路205和第二接收机电路206;每个接收机电路被耦合到所述多个天线中的相应一个。例如,将第一接收机电路205耦合到第一天线201,而将第二接收机电路206耦合到第二天线202。接收机电路205、206处理接收到的下行链路信号,即第一接收机电路205处理第一下行链路信号203,而第二接收机电路206处理第二下行链路信号204。
具有用于从基站250接收下行链路信号203、204的对应接收机电路205、206的多个天线201、202可以对应于如图1中所图示的相应电路101、102、105、106、150和信号103、104。
用户设备200还包括功率环路控制器220、TPC质量估计器240和分集控制器230。功率环路控制器220和TPC质量估计器240均耦合到多个接收机电路205、206,以便接收所接收的下行链路信号203、204。分集控制器230被耦合到TPC质量估计器240。
功率环路控制器220调整由用户设备200中的传送机260传送到基站250的上行链路信号223的功率。功率环路控制器220使用功率调整信号222基于包括在下行链路信号203、204中的传送功率控制命令来调整传送机260的功率。
TPC质量估计器240估计包括在下行链路信号203、204中的传送功率控制命令的质量度量。质量度量例如可以是功率控制命令的信噪比、信号干扰加噪声比(SIR)或差错率。
分集控制器230被耦合到TPC质量估计器240且被配置为根据估计质量度量将接收机电路205、206中的至少一个选择性地激活和/或去激活。可替换地,可以由分集控制器230将天线201、202中的至少一个激活和/或去激活,或者可以将天线201、202以及对应的接收机电路205、206都激活。
根据估计质量度量,功率环路控制器220可以关闭传送机260,例如当质量度量落在第一(较低)阈限之下时,功率环路控制器220可以关闭传送机260以便避免传送机260基于下行链路信号203、204中的检测的不安全传送功率控制命令来传送上行链路信号223。当质量度量超过第二(较高)阈限时,功率环路控制器220可以再次开启传送机260,这是因为可靠的质量度量指示下行链路信号203、204中的可靠的传送功率控制命令。
功率环路控制器220可以另外具有图1中描绘的功率环路控制器120的功能性,并且用户设备200可以另外包括图1的质量估计单元110。分集控制器230可以另外具有图1中描绘的分集控制器130的功能性。可以将图2的用户设备200和图1的用户设备100集成到相同设备中。
图3示意性地图示了根据一个实施例的具有用户设备300和基站350的功率控制系统。基站350通过天线351向用户设备300传送下行链路信号DL1、DL2。用户设备300包括多个天线,例如第一天线301和第二天线302,用来从基站350接收下行链路信号,例如第一下行链路信号DL1和第二下行链路信号DL2。
用户设备300还包括多个接收机电路,例如第一接收机电路305和第二接收机电路306;每个接收机电路被耦合到所述多个天线中的相应一个。例如,将第一接收机电路305耦合到第一天线301,而将第二接收机电路306耦合到第二天线302。用户设备300包括被耦合到多个接收机电路305、306并将来自多个接收机电路的接收信号进行组合的组合器(例如最大比组合器MRC)、被耦合到多个接收机电路305、306和组合器MRC的质量估计单元310(可以将其实现为SIR估计单元)、被耦合到多个接收机电路305、306和到组合器MRC的功率环路控制器320。用户设备300包括被耦合到功率环路控制器320的传送机360、被耦合到多个接收机电路305、360和到组合器MRC的质量估计器340以及被耦合到SIR估计单元310和TPC质量估计器340的分集控制器。
接收机电路305、306处理接收到的下行链路信号,即第一接收机电路305处理第一下行链路信号DL1,而第二接收机电路306处理第二下行链路信号DL2。
接收机电路305、306中的每一个包括对相应的接收下行链路信号进行解调的解调器和检测相应的已解调的接收下行链路信号中的多路径信号的耙子。组合器对第一305和第二306接收机电路的所检测多路径信号F1和F2进行组合以便提供组合多路径信号F1+2,其为两个接收机电路305、306的所检测多路径信号F1、F2的组合。组合多路径信号F1+2具有最佳信噪比。所检测多路径信号F1、F2和组合多路径信号F1+2可以是具有帧结构的数字信号,该帧结构具有导频码元的字段和/或传送功率控制命令(TPC)的字段。
质量估计单元310被配置为经由SIR估计来估计所检测多路径信号F1、F2和组合多路径信号F1+2的质量。质量估计单元310可以包括三个(或任何其它数目的)SIR估计器。第一SIR估计器SIR_EST1估计所检测多路径信号F1的第一SIR值SIR1,第二SIR估计器SIR_EST2估计所检测多路径信号F2的第二SIR值SIR2,而第三SIR估计器SIR_EST1+2估计组合多路径信号F1+2的第三SIR值SIR1+2。该估计可以基于包括在多路径信号F1、F2和F1+2中的导频码元和/或TPC码元。用户设备300具有提供两个多路径信号和一个组合多路径信号的两个天线的基本配置。较高配置向ISR估计单元310提供更多信号。例如,具有三个天线的用户设备可以向SIR估计单元310提供三个多路径信号F1、F2、F3和四个组合多路径信号F1+2、F1+3、F2+3、F1+2+3,SIR估计单元310于是可以具有七个SIR估计器。
对于两个天线的基本配置而言,功率环路控制器320可以包括三个TPC确定器TPC_DET1、TPC_DET2和TPC_DET1+2。这三个TPC确定器TPC_DET1、TPC_DET2和TPC_DET1+2中的每一个被耦合到相应SIR估计器SIR_EST1、SIR_EST2、SIR_EST1+2。第一TCP确定器TPC_DET1基于第一SIR值SIR1来确定TPC命令TPC1。第二TCP确定器TPC_DET2基于第二SIR值SIR2来确定TPC命令TPC2。第三TCP确定器TPC_DET1+2基于第三SIR值SIR1+2来确定TPC命令TPC1+2。生成的功率控制命令TCP1、TCP2和TCP1+2是基于估计SIR值SIR1、SIR2和SIR1+2并且被送往基站350,以便调整下行链路信号DL1、DL2的功率。功率环路控制器320包括切换器321以切换TPC命令TPC1、TPC2和TCP1+2中的一个以便由传送机360传输到基站350。对于具有三个和更多天线的较高配置而言,可以在功率环路控制器320中实现更高数目的TPC确定器,其例如对应于SIR估计单元310中的SIR估计器的数目。
功率环路控制器320还包括被耦合到第一305和第二306接收机电路以及到组合器MRC的功率调整器PWR_ADJ。功率调整器PWR_ADJ基于包括在由基站350传送的多路径信号F1、F2或F1+2中的TPC命令来调整传送机360的功率。
在一个实施例中,该系统可以处于如图5中所示的三个可能状态:
状态1)天线1 301活动,Demod1和Rake1 305活动。切换器321被设定为选择TPC命令TPC1以供传输到基站350。
状态2)天线2 302活动,Demod2和Rake2 306活动。切换器321被设定为选择TPC命令TPC2以供传输到基站350。
状态3)天线1 301和天线2 302活动,Demod1和Rake1 305及Demod2和Rake2 306和组合器MRC活动。切换器321被设定为选择TPC命令TPC1+2以供传输到基站350。
由功率调整器PWR_ADJ如下执行包括在多路径信号F1、F2或F1+2中的TPC命令的选择:
状态1)使用包括在多路径信号F1中的TPC命令。
状态2)使用包括在多路径信号F2中的TPC命令。
状态3)使用包括在多路径信号F1+2中的TPC命令。
传送机360可以借助于传输天线361向基站350传送上行链路帧UL。传送机360包括调制包括由切换器321切换的TPC命令TPC_UL在内的上行链路帧362的调制器363和将已调制上行链路帧362放大以提供上行链路信号UL以供由传输天线361传输的功率单元364。
TPC质量估计器340估计包括在多路径信号F1和F2和F1+2中的传送功率控制命令的质量度量。第一质量度量QE1是基于第一多路径信号F1的,而第二质量度量QE2是基于第二多路径信号F2的,并且第三质量度量是基于组合多路径信号F1+2的。质量度量可以是传送功率控制命令的信噪比、信号干扰加噪声比或差错率。
分集控制器330判定如图5中所示的该系统的状态,因此,分集控制器300判定接收机链1和2(接收机链包括天线、解调器和Rake接收机)以及组合器的激活或去激活。分集控制器330包括同步检测器SYNC_DET,其被耦合到TPC质量估计器340以接收估计质量度量QE1和QE2和QE1+2。同步检测器SYNC_DET通过将第一质量度量QE1与较低阈限Qout以及与较高阈限Qin比较来检测第一多路径信号F1的同步。如果第一质量度量QE1落在较低阈限Qout之下,则信号F1不同步(不同步(out-of-sync)或OutOfSync)。如果第一质量度量QE1超过上阈限Qin,则信号F1同步(同步(in-sync)或InSync)。同步检测器SYNC_DET通过将第二质量度量QE2与较低阈限Qout以及与较高阈限Qin比较来检测第二多路径信号F2的同步。如果第二质量度量QE2落在较低阈限Qout之下,则信号F2不同步(不同步或OutOfSync)。如果第二质量度量QE2超过上阈限Qin,则信号F2同步(同步或InSync)。同步检测器SYNC_DET通过质量度量QE1+2与较低阈限Qout以及与较高阈限Qin比较来检测组合多路径信号F1+2的同步。如果质量度量QE1+2落在较低阈限Qout之下,则信号F1+2不同步(不同步或OutOfSync)。如果质量度量QE1+2超过上阈限Qin,则信号F1+2同步(同步或InSync)。可以由基站350来传送较低和较高阈限Qout和Qin,例如,在初始化阶段中作为可配置参数,或者可以存储在用户设备300中,例如作为预配置参数。
同步检测器SYNC_DET根据多路径信号F1和F2和F1+2中的一个的同步在其输出端处提供同步信号331。同步信号331取决于系统状态。在状态1)下,如果多路径信号F1不同步,则同步信号331可以指示不同步,而如果多路径信号F1同步,则其可以指示同步。在状态2)下,如果多路径信号F2不同步,则同步信号331可以指示不同步,而如果多路径信号F2同步,则其可以指示同步。在状态3)下,如果多路径信号F1+2不同步,则同步信号331可以指示不同步,而如果多路径信号F1+2同步,则其可以指示同步。根据同步信号331,可以开启或关闭传送机360。如果同步信号331指示不同步,则可以关闭传送机360以便避免传送机360基于下行链路信号DL1、DL2或DL1+2中所检测的不安全传送功率控制命令来传送上行链路信号UL。如果同步信号331指示同步,则由于下行链路DL1、DL2或DL1+2中的传送功率控制命令的可靠检测的原因而可以开启传送机360。
根据在同步检测器SYNC_DET的输出端处提供的同步信号331,可以接通所述多个接收机电路305、306。如果同步信号331指示状态1或状态2下的不同步状态,则两个接收机电路305、306可以都接通以增加接收机分集以便改善用户设备300的接收机增益,因此执行到状态3的状态转变。
分集控制器330还包括高饱和检测器HW_DET,其接收第一和第二SIR估计器SIR_EST1和SIR_EST2的估计SIR值SIR1和SIR2。在状态1下,将估计SIR值SIR_EST1与目标SIR(SIRtarget)进行比较以检查接收到的下行链路信号DL1是否处于下文将解释的高饱和状态(见图7)。在状态2下,将估计SIR值SIR_EST2与目标SIR(SIRtarget)进行比较以检查接收到的下行链路信号DL2是否处于高饱和状态。在DPCH的情况下,可以根据可以根据目标服务质量QoStarget确定的目标块差错率来确定目标SIR。可以由基站350来传送目标服务质量,例如,在初始化阶段中作为可配置参数,或者可以存储在用户设备300中,例如作为预配置参数。在F-DPCH的情况下,可以根据目标TPC命令差错率来确定目标SIR。
根据在高饱和检测器HW_DET的输出端处用信号发送的状态,可以接通或断开所述多个接收机电路305、306。在状态1或状态2下,如果高饱和检测器HW_DET的输出指示高饱和状态,则两个接收机电路305、306可以都接通以增加接收机分集以便改善用户设备300的接收机增益,因此执行到状态3的状态转变。
对于从状态3返回至状态1或状态2的状态转变而言,可以在进入状态3时开始定时器。当定时器到期时,可以执行到状态1或状态2的状态转变。保持接通(即到状态1或状态2的状态转变)的接收机电路可以是提供具有较好SIR或较好TPC质量的下行链路信号的接收机电路。可替换地,分集控制器可以检查由用户设备执行的其它测量(例如由3GPP定义的CPICH Ec/Io或CPICH RSCP)以便判定何时返回至状态1或状态2。
分集控制器330可以包括组合器COMB,其被耦合到同步检测器SYNC_DET和高饱和检测器HW_DET。组合器COMB根据指定规则将同步信号331与高饱和检测器HW_DET的输出信号进行组合并提供指示性能降低的状态的输出信号以作为不同步状态与高饱和状态的组合。组合器COMB的指定规则可以是逻辑AND组合或逻辑OR组合或任何其它种类的组合。如果组合器COMB的输出指示性能降低的状态,则两个接收机电路305、306可以都接通以增加接收机分集以便改善用户设备300的性能。
在上述用户设备300中可以存在分集控制器330的三个实施例。在第一实施例中,分集控制器330包括同步检测器SYNC_DET以提供用于控制接收机电路305、306的不同步和同步状态。不需要高饱和检测器HW_DET和组合器COMB。
在第二实施例中,分集控制器330包括高饱和检测器HW_DET以提供用于控制接收机电路305、306的高饱和和非高饱和状态。对于控制接收机电路305、306而言不需要同步检测器SYNC_DET,但是对于接通和/或断开传送机360而言可能需要。不需要组合器COMB。
在第三实施例中,分集控制器330包括同步检测器SYNC_DET、高饱和检测器HW_DET和组合器COMB以提供用于控制接收机电路305、306的性能降低和非降低的状态。同步检测器SYNC_DET可以另外用于接通和/或断开传送机360。
基站350包括从用户设备300接收上行链路信号UL的接收天线352和将提供接收上行链路帧358的接收上行链路信号UL解调的解调器。根据包括在接收上行链路帧358中的传送功率控制命令TPC_UL,基站350调整用于传送下行链路信号DL1、DL2的其功率。下行链路信号DL1、DL2是由包括下行链路传送功率控制命令TPC_DL的下行链路帧354生成的,下行链路传送功率控制命令TPC_DL被基站350用来请求用户设备调整由用户设备300传送的上行链路信号UL的功率。基站350还包括在最小功率P_MIN与最大功率P_MAX之间调整下行链路帧354的功率范围的功率范围调整器355。两个功率值都是可由该网络配置的。如果上行链路传送功率控制命令TPC_UL请求比由该网络配置的最大功率P_MAX高的功率,则下行链路信号DL1、DL2的功率被功率范围调整器355局限于最大功率P_MAX(高饱和情景)。调制器356调制下行链路帧354以模拟由传输天线351传送到用户设备300的下行链路信号DL1、DL2。
图4示意性地图示了根据一个实施例的基站与用户设备之间的下行链路信号和上行链路信号的示例。本实施例是根据3GPP TS 25.214 V7.15.0(2010-03),图B.1。例如下行链路DPCCH帧的第一帧401包括数据字段(Data1、Data2)、导频码元(PILOT)、传送功率控制命令(TPC)和传输格式组合指示符(Transport Format Combination Indicator, TFCI)位,该第一帧401可以对应于图3中描绘的基站350的下行链路帧354,其包括被基站350用来请求用户设备300调整由用户设备300传送的上行链路信号UL的功率的下行链路功率控制命令TPC_DL。
第二帧402可以对应于所检测多路径信号F1、F2或组合多路径信号F1+2,其可以在传播延迟之后并根据多路径分集被用户设备300接收。第二帧402的内容对应于第一帧401的内容。然而,第二帧402被取决于用于传输的相应多路径的传播延迟所延迟。
例如上行链路DPCCH帧的第三帧403可以对应于图3中描绘的用户设备300的上行链路帧362,其包括上行链路传送功率控制命令TPC_UL,该第三帧包括传送功率控制命令(TPC)、导频码元(PILOT)和TFCI位。可以由对第二帧402的TPC码元或导频码元的SIR测量、F1、F2、F1+2来确定第三帧403的TPC命令。
第四帧404可以对应于图3中描绘的基站350的接收上行链路帧358。第四帧404被取决于多路径衰落的沿上行链路方向的传播延迟所延迟。基站可以基于上行链路帧404、358的导频码元的SIR测量来确定下行链路传送功率控制命令TPC_DL并将TPC_DL插入下行链路帧401、354中。
图6示意性地图示了根据一个实施例的用户设备600。用户设备600包括多个天线,例如第一天线601和第二天线602,用来从基站接收下行链路信号。用户设备600包括多个射频(RF)单元603、604(RF1、RF2),它们中的每一个被耦合到相应天线601、602以对接收到的下行链路信号进行混频和解调。
用户设备600包括接收机608,例如类型1接收机,其包括多个耙子接收机电路605、606和组合器607,例如最大比组合器MRC。虽然图6仅描绘了两个耙子接收机电路605和606,但接收机608可以包括任何其它数目的耙子接收机电路,例如三个、四个或更多。耙子接收机电路中的每一个被耦合到所述多个RF单元603、604中的相应一个。例如,可以将第一耙子接收机电路605耦合到第一RF单元603而可以将第二耙子接收机电路606耦合到第二RF单元604。图6图示了具有对应RF单元和耙子接收机电路的许多的两个天线。任何其它数目同样是可能的。
用户设备600还包括SIR估计单元610 、切换器621、功率环路控制器620和分集控制器630,所述SIR估计单元610包括多个SIR估计器611、612、613。SIR估计器611、612、613中的每一个被耦合到所述多个耙子接收机电路605、606中的相应一个和到组合器607。切换器621被耦合到功率环路控制器620和到分集控制器630。
RF单元603、604、耙子接收机电路605、606、组合器607的功能性可以对应于上面结合图3所描述的相应电路。SIR估计单元610的功能性可以对应于上面结合图3所描述的SIR估计单元310的功能性。SIR估计器611、612、613可以估计信号干扰加噪声比值、信号与干扰比值、信噪比值或表征接收机608的相应输出端处的接收多路径信号的任何其它质量度量。
图6的功率环路控制器620被直接连接到SIR估计器611、612、613中的每一个以接收由SIR估计器611、612、613提供的所有(或至少一个以上)SIR值。功率环路控制器620包含第一TPC确定器(TPC_Ant1)、第二TPC确定器(TPC_Ant2)和第三TPC确定器(TPC)。每个TPC确定器被耦合到SIR估计器611、612、613中的相应一个以接收相应的SIR值。对于每个接收SIR值而言,功率环路控制器620、即功率环路控制器620的TPC确定器可以基于相应的SIR值来确定相应的TPC命令。可以将TPC确定器配置为估计包括在下行链路信号中的TPC码元以作为用于接收下行链路信号的质量的度量。可以将SIR估计器611、612、613配置为估计包括在下行链路信号中的导频码元的SIR值以作为接收下行链路信号的质量的度量。功率环路控制器620通过提供,例如由如图3中描绘的传送机360,可以被发送回到网络(NW)的传送功率控制(TPC)命令622来执行下行链路功率控制(DLPC)处理。TPC命令的生成可以基于由SIR估计器611、612、613估计的SIR值。
切换器621受分集控制器630的控制并选择由功率环路控制器620的TPC确定器确定的相应TPC命令。切换器621的设置取决于由分集控制器630确定的系统状态。可以将上行链路(UL)TPC命令发送回到网络(NW)。图6图示了通过切换器621对TPC命令的选择。
除TPC命令的选择之外,分集控制器630还可以通过将接收到最高信号干扰加噪声比的多路径信号的那些耙子接收机电路激活并将接收到具有最坏质量的多路径信号的那些耙子接收机电路去激活来控制耙子接收机电路605、606的激活和/或去激活。例如,在具有五个天线和五个耙子接收机电路的配置中,分集控制器630可以将提供最高SIR值的两个耙子接收机电路激活并将提供最低SIR值的三个耙子接收机电路去激活。RxDiv处理使得用户设备减少其功率消耗并改善其准确度,这是因为可以断开提供失真信号的耙子接收机电路。断开失真导致更高的准确度,这是因为只有具有高信号干扰加噪声比的信号被用于进一步处理。该切换器还可以控制组合器607、RF单元603、604和天线601、602的激活/去激活。
此概念背后的思想是只有当实际上要求经由RxDiv达到的性能改善以便避免呼叫掉线时才开启接收机分集(RxDiv)。虽然结果得到的设备可能不完全服从如在文档3GPP TS25.101 V7.16.0(2009-05),部分8.3、8.6和8.8中描述的3GPP“增强型性能要求类型1”规范,然而,其将以电流消耗的相当小的增加且因此以仅稍微减少的通话时间达到了显著降低的呼叫掉线率。
图7示意性地图示了根据一个实施例的用户设备的性能图,其描绘了高饱和情景。在现场,通过闭环功率控制,由网络(NW)、即基站来操作例如DPCH信道的下行链路信道,即可以由该网络将服务质量(QoS)设定为块差错率,并且可以应用外和内环路功率控制机制来保证(例如通过在需要的情况下从该网络请求附加传送功率)实际上达到了QoS目标。然而,在一些情形下可能发生呼叫掉线。
一个这样的情形是当网络下行链路(例如DPCH或F-DPCH)传送功率达到由该网络设定的上限时。此情景在图3中图示出。用户设备300通过上行链路帧358中的TPC_UL命令来请求增加下行链路帧DL1、DL2的功率。然而,这样的增加与功率范围调整器355的最大功率值P_MAX冲突,所述最大功率由该网络设定。基站350不被允许增加超过可容许水平的功率。该功率控制机制不再能够保证会发生QoS目标和传输差错,这可能最终导致呼叫掉线。此情景称为功率控制高饱和情形且在图7中图示出。
图7示例性地描绘了测量SIR值相对于目标SIR值。只要该网络不能提供用户设备请求的功率,则闭环功率机制控制下行链路信号的功率如需要的一样高以使得测量的SIR跟踪目标SIR。在时间轴的约三分之二处,最大功率受到基站的限制,使得用户设备处的可获得的(测量的)SIR变成显著小于该用户设备处的要求(目标)SIR。该用户设备处于高饱和状态。根据高饱和状态的持续时间且根据目标SIR与测量的SIR之间的差,该用户设备可能变得不能保持该通信,最终将发生呼叫掉线。
根据图1-3、5和6中描绘的实施例的用户设备也许能够检测高饱和情形,例如通过测量目标SIR与测量的SIR之间的差并对该差进行滤波。当用户设备处的测量的SIR与用户设备处的目标SIR之间的差超过阈限时可以检测到高饱和状态。当进入高饱和情形时(或者甚至在进入高饱和情形之前),这样的用户设备可以激活接收机分集(RxDiv),提供相当大的性能增益。由于要求的传送功率在RxDiv被开启时是相应地较低的,所以所测量的SIR可以达到目标SIR,并且可以离开或避免高饱和情形。至少用于根据图1-3和6的实施例的用户设备的RxDiv性能增益显著地减少了高饱和状态的发生并因此降低了呼叫掉线的概率。
可以通过如图13所示地向系统状态图中引入新的状态来顺利地将RxDiv去激活。用新的状态3a和3b(所谓的DLPC尝试状态)来扩展具有状态1、2、3的图5所示的状态图。
状态3a)天线1 301和天线2 302活动,Demod1和Rake1 305及Demod2和Rake2 306和组合器MRC活动。切换器321被设定为选择TPC命令TPC1以供传输到基站350。
状态3b)天线1 301和天线2 302活动,Demod1和Rake1 305及Demod2和Rake2 306和组合器MRC活动。切换器321被设定为选择TPC命令TPC2以供传输到基站350。
在新的状态3a和3b下,保持RxDiversity被开启(两个接收机链都保持活动),并且仅切换下行链路功率控制(DLPC)以仅考虑一个天线(状态3a下的天线1和状态3b下的状态2)。这允许将RxDiv保持接通并因此维持解调性能且仅将DLPC切换至一个天线以便在返回到状态1或状态2之前检查是否仍存在饱和情形。针对DLPC所使用的一个天线(因此,到状态3a或3b的状态转变)可以是示出较好信号质量的天线。SNR估计单元610使用多个SNR估计器611、612、613。一个SNR估计器613被用于用两个天线601、602的操作,而其他SNR估计器611、612被用于用天线601、602中的仅一个的操作。从而,可以在不损害分集增益的情况下在状态3a和3b下容易地检测高饱和状态是否仍然继续,这是因为两个天线都仍是活动且进行接收的。如果高饱和仍然存在,则保持RxDiv被开启,因此,执行向回至状态3的状态转变。否则,执行从状态3a至状态1或从状态3b至状态2的状态转变(即关闭较坏的天线(和/或对应的接收机电路))。
这样的用户设备的基本概念是只有当实际上要求经由RxDiv达到的性能改善以便避免呼叫掉线时才开启RxDiv。从而,几乎将达到了与在下行链路(例如DPCH)接收期间一直开启RxDiv时呼叫掉线率的相同的降低,但处于显著降低的电流消耗。因此,使用RxDiv控制的这样的用户设备的通话时间将比对在下行链路(例如DPCH)接收期间始终使用RxDiv的设备而言显著更大,并且与根本不使用RxDiv的设备相比,将仅存在通话时间的相对小的降低。
可以用分集控制器来实现高饱和确定,所述分集控制器例如,如图3中描绘的分集控制器330,其包括接收由SIR估计单元310提供的两个多路径信号的估计SIR值SIR1和SIR2的高饱和检测器HW_DET。图3的值SIRtarget可以对应于图7的目标SIR。分集控制器可以相应地关闭/开启接收机电路。
图8示意性地图示了根据一个实施例的用户设备的性能图,其描绘了不同步情景。由从基站到用户设备的下行链路信号中所传送的传送功率控制(TPC)命令的质量来表征用户设备的同步状态,即同步状态和不同步状态。当此质量落在较低阈限(图8中的OutofSync阈限)之下时,用户设备不能可靠地检测接收到的TPC命令且不再同步,即处于不同步状态。当所述质量超过上阈限(图8中的InSync阈限)时,用户设备能够可靠地检测接收到的TPC命令并调整其传送机的功率,用户设备处于同步状态。
根据一个实施例,用户设备可以测量TPC命令的质量以作为TPC命令的SIR值,在图8中称为RhoTPC。用户设备还可以使用另一质量度量,诸如SNR值或TPC命令的差错值。当接收到的TPC命令的质量(例如作为RhoTPC值测量的)达到图8中描绘的OutOfSync阈限时,必须使用操纵用户设备的传送功率的TPC命令的质量,根据3GPP在正在进行的呼叫期间维持并检验链路同步。当实际RhoTPC达到OutOfSync阈限时,根据3GPP,必须关闭用户设备传送机,并且只有当再次遇到另一质量阈限、比OutOfSync阈限高的所谓的InSync阈限时才可以再次开启。如果在由该网络指定的一定时间内未达到这一点,则不能避免呼叫掉线。此情景称为不同步情形且在图8中示出。
图8示例性地描绘了RhoTPC值相对于InSync和OutOfSync阈限。只要TPC命令的质量,即RhoTPC在较低OutOfSync之上,则用户设备处于同步状态,并且能够由用户设备来可靠地检测由基站发送的TPC命令。在时间轴的约三分之二处,RhoTPC值落在OutOfSync阈限之下。用户设备进入不同步状态并关闭其传送机。根据不同步状态的持续时间,用户设备可能变得不能保持引起呼叫掉线的通信。
根据图1-3、5和6中描绘的实施例的用户设备也许能够检测不同步情形,例如通过测量RhoTPC值并将其与较低OutOfSync阈限相比较。通过测量OutOfSync阈限与测量的RhoTPC之间的差并对该差进行滤波,能够容易地检测不同步情景。当进入不同步情形时,这样的用户设备可以激活接收机分集(RxDiv),提供相当大的性能增益。由于要求的传送功率和因此的下行链路信号中的TPC命令的功率及其RhoTPC值在RxDiv被开启时相应地较低,所以该RhoTPC值可以达到InSync阈限且可以结束不同步情形。至少用于根据图1-3、5和6的实施例的用户设备的RxDiv性能增益显著地减少了不同步状态的发生并因此降低了呼叫掉线的概率。
为了关闭RxDiv,用户设备可以使用如上文在[0073]和[0095]中所描述的过程。
如果满足了高饱和条件或者不同步条件或者高饱和条件和不同步条件两者,则用户设备可以开启RxDiv。可以由定时器来确定RxDiv利用的持续时间,使得RxDiv在一定时限之后被断开。如果满足了高饱和条件或者不同步条件或者高饱和条件和不同步条件两者,则可以开始定时器本身。因此,当定时器到期时,可以执行从状态3、3a或3b到状态1或状态2的状态转变。
如果RhoTPC估计器不可用,则可以使用上文结合图7所描述的过程和高饱和情形。这是可能的,这是因为不同步状态通常伴随有高饱和状态且反之亦然。
可以由分集控制器来实现不同步确定,所述分集控制器例如在图3中描绘的分集控制器330,其包括接收由TPC质量估计器340提供的两个多路径信号的估计质量度量QE1和QE2的同步检测器SYNC_DET。图3的上和较低阈限Qin和Qout可以对应于图8的上InSync阈限和较低OutOfSync阈限。分集控制器可以相应地关闭/开启接收机电路。
图9示意性地图示了根据一个实施例的用于用户设备中的不同步情景的测试情况。该测试情况是根据3GPP TS 34.121-1 V8.9.0(2009-12),部分5.4.4“Out-of-synchronisation handling of output power”。应当连接测试中的设备的两个天线连接器,例如根据图1-3、5和6中描绘的实施例的用户设备。施加于每个接收机天线连接器的AWGN(附加白高斯噪声)应是不相关的。施加于每个天线连接器的测试信号的水平应如在部分5.5.5.2中定义的。
在此测试情况中,对用户设备的要求是:
1. 用户设备在点B之前不应关断其传送机,
2. 用户设备应在点C之前关断其传送机,其为点B之后的Toff=200 ms,
3. 用户设备不应在点C与E之间开启其传送机,
4. 用户设备应在点F之前开启其传送机,其为点E之后的Ton=200 ms。
虽然根据3GPP的具有静态RxDiv的用户设备在该测试期间始终使RxDiv激活并因此在整个测试过程中显示出相同的电流消耗水平,但根据在图1-3、5和6中描绘的实施例的用户设备将仅在到达点B之后接通RxDiv。在点B之后的短时间间隔δON,用户设备将检测到不同步状态,并开启RxDiv,这促使高达水平PRXDivON,UE的功率消耗增加。类似地,在点E之后的短时间间隔δOFF,用户设备将检测到同步状态并关闭RxDiv,这促使下至水平PRXDivOFF,UE的电流消耗减少。
图10示意性地图示了根据一个实施例的用于用户设备中的高饱和情景的测试情况。该测试情况是根据3GPP TS 34.121-1 V8.9.0(2009-12),部分7.8.3A“Power control in the downlink, wind up effects”。在此测试中,通过将基站的最大可用功率从阶段1中的高水平PMAX,BS切换至阶段2中的低水平PMIN,BS来迫使测试中的设备(例如根据图1-3、5和6中描绘的实施例的用户设备)进入该测试的阶段2中的高饱和情景。在阶段3中,将最大可用功率切换回至高水平PMAX,BS,这迫使用户设备离开高饱和状态。
虽然根据3GPP的具有静态RxDiv的用户设备将在整个测试过程中使用两个接收天线,即RxDiv在该测试期间始终被激活,并因此在整个测试过程中显示出相同水平的电流消耗,但根据图1-3、5和6中描绘的实施例的用户设备将仅在检测到该测试的阶段2中的高饱和之后接通RxDiv。在到达阶段2之后的短时间间隔δON,用户设备将检测到高饱和状态,并开启RxDiv,这促使高达水平PRXDivON,UE的显著的功率消耗增加。类似地,在离开阶段2之后的短时间间隔δOFF用户设备将检测到高饱和状态结束并关闭RxDiv,这促使下至水平PRXDivOFF,UE的显著的电流消耗减少。
图11示意性地图示了根据一个实施例的用户设备的性能增益图。该图描绘了根据图1-3和6中描绘的实施例的用户设备的两个性能曲线,其在多路径衰落传播(VA30)中根据3GPP TS 25.101 V7.16.0(2009-05),部分8.3.1的测试5a,被针对支持用于DCH的增强型性能要求类型1进行测试。当用户设备已将RxDiv开启时(左曲线),与RxDiv被关闭(右曲线)情况下的用户设备状态相比,基站可以将其传输功率DPCH Ec/Ior减少3至5 dB。RxDiv的性能增益取决于要求的块差错率(BLER)。当网络管理员容忍5%的高块差错率(左和右曲线的上面的点)时,在接收机分集被开启的情况下,可以达到3 dB的增益。当网络管理员要求0.2%的低块差错率(左和右曲线的下面的点)时,在接收机分集被开启的情况下,可以达到5 dB的增益。
可以假设只用当实际上要求借助于RxDiv达到的性能改善以便避免呼叫掉线时,用户设备才开启RxDiv。从而,与具有静态接收机分集的用户设备相比,可以达到如图11所示的3-5 dB的增益和几乎相同的呼叫掉线率的降低,但处于显著减少的电流消耗。
图12示意性地图示了根据图1至3和6所图示的实施例之一的用户设备的性能图。该图描绘了图示信号干扰加噪声比(SIR)的三个曲线。这三个曲线描绘了在基于由网络设定的QoS目标(目标块差错率)的DPCH传输的情况下由外环路功率控制设定或在F-DPCH的情况下根据由该网络设定的目标TPC命令差错率设定的SIR目标、对应于测量的SIR并描述在用户设备处测量的信号干扰加噪声比的ISR以及在试验状态下被测量以描述全RxDiv增益可获得时的可获得SIR的真实SIR。
图12图示了时间轴上的六个阶段。在第一阶段,断开接收机分集(RxDiv)(即断开两个天线中的一个及对应的RF和接收机电路)并仅使用活动天线来施加功率控制(PC)。如图13中所示,该系统处于状态1或2。根据图6,例如,RxDiv控制器630控制切换器621将切换器621的输入中的一个切换至其输出,以便将关于天线601、602中的一个的TPC命令622(TPC Ant1或TPC Ant2)发送回到该网络。例如,选择关于第一天线601的TPC命令TPC Ant1。在阶段1结束时,发生饱和情形,例如发生多路径衰落,其减小由第一天线601接收到的多路径信号的SIR,同时该网络不能增加其功率。
当用户设备检测到饱和情形时,分集控制器激活RxDiv(即用户设备激活两个天线,两个RF和接收机电路)并在阶段2中对两个天线执行功率控制。因此,分集控制器执行到系统状态3的状态转变。由RxDiv激活得到的较高天线增益使得测量的SIR向SIR目标会聚。一旦开始了RxDiv,就周期性地执行试验,例如在阶段3和阶段5(分集控制器执行到DLPC试验状态3a或3b的状态转变),以再次将其关闭。可以通过使用单独的定时器来确定状态3、3a和3b的持续时间。
在阶段3处,对获得较好结果的天线执行功率控制(DLPC试验状态3a或3b),同时保持RxDiv开启,并且仍发生饱和情形。因此,执行向回到状态3的状态转变,在阶段4处因而再次对两个天线执行功率控制。这里,测量的SIR向目标SIR会聚。在阶段5处,再次对较好的天线执行功率控制(DLPC试验状态3a或3b),同时保持RxDiv开启,并且最初仍发生饱和情形。但是,然后,饱和情况已结束,并且这被用户设备检测到,使得在阶段6中执行到系统状态1或2的状态转变,即断开显示出较坏性能的接收机链(天线、RF和接收机)并对较好的天线执行功率控制和接收。在阶段1(在饱和情形发生之前)和阶段6(在饱和情形发生之后)两者处,断开RxDiv且用户设备处于功率节省模式。
在图12中,在阶段2-5处保持RxDiv开启,并在阶段3和阶段5中仅针对较好的天线执行功率控制。可以容易地评估在该较好的天线的情况下是否仍存在饱和情形。仅在该较好的天线的情况下不再存在饱和情形的检验之后才关闭RxDiv。
提出了一种用于包括多个天线和多个接收机电路(每个被耦合到所述多个天线中的相应一个)的用户设备的下行链路功率控制(DLPC)的方法。该方法包括由多个天线从基站接收下行链路信号、由多个接收机电路处理接收到的下行链路信号、估计接收到的下行链路信号的质量、根据对接收到的下行链路信号的估计质量选择性地激活接收机电路中的至少一个以及基于对接收到的下行链路信号的估计质量生成传送功率控制命令。该传送功率控制命令被送往基站以调整下行链路信号的功率。可以通过估计包括在下行链路信号中的导频码元和/或TPC码元的SIR值来估计接收到的下行链路信号的质量。
提出了一种用于包括多个天线和多个接收机电路(每个被耦合到所述多个天线中的相应一个)的用户设备的上行链路功率控制(ULPC)的方法。该方法包括由多个天线从基站接收下行链路信号、由多个接收机电路处理接收到的下行链路信号、估计包括在下行链路信号中的传送功率控制命令的质量度量、根据估计质量度量来选择性地激活接收机电路中的至少一个以及基于该传送功率控制命令来调整送往基站的上行链路信号的功率。如果质量度量落在第一阈限值之下,则可以关闭上行链路信号的功率,而如果质量度量超过第二阈限值,则可以将其开启。
另外,虽然已经相对于若干实现方式中的仅一个公开了本发明的实施例的特定特征或方面,但是如对于任何给定或特定应用而言期望和有利的那样,可以将这样的特征或方面与其它实现方式的一个或多个其它特征或方面进行组合。此外,在在详细说明和/或权利要求书中使用术语“包括”、“具有”、“带有”或其其他变体的这个意义上,这样的术语意图以与术语“包括”类似的方式是包括性的。此外,应理解的是可以在分立电路、部分集成电路或完全集成电路或编程装置的方式来实现本发明的实施例。并且,术语“示例性”、“例如”和“例如”仅仅意味着作为示例,而不是最好或最佳的。还应认识到出于理解的简化和简单性的目的用相对于彼此的特定尺寸图示了本文所描绘的特征和/或元件,并且实际尺寸可以基本上与本文所图示的尺寸不同。
虽然在本文中已经图示和描述了特定实施例,但本领域的技术人员应认识到在不脱离本发明的范围的情况下可以用多种替代和/或等价实现方式来代替所示出和描述的特定实施例。例如,可以将在用户设备的背景下描述的实现方式应用到WCDMA收发机、UMTS收发机或者到与诸如像GSM或其衍生物之类的其它技术标准有关或应用诸如像TDMA、FDMA等的其它多址接入方案的移动通信收发机。本申请意图覆盖本文所讨论的具体实施例的任何适改或变体。因此,目的是本发明仅仅由权利要求书及其等价物限制。 

Claims (25)

1.一种用户设备,包括:
多个天线,其被配置为从基站接收下行链路信号;
多个接收机电路,其中的每一个被耦合到所述多个天线中的相应一个并且被配置为处理接收到的下行链路信号;
质量估计单元,用来估计接收到的下行链路信号的质量;
功率环路控制器,其被配置为基于接收到的下行链路信号的估计质量来生成传送功率控制命令,所述传送功率控制命令被配置为调整由所述基站生成的下行链路信号的功率;和
分集控制器,其被配置为基于接收到的下行链路信号的所述估计质量将所述接收机电路中的一个或多个选择性地激活和去激活。
2.如权利要求1所述的用户设备,其中,所述质量估计单元包括信号干扰和噪声比(SIR)估计单元,其被配置为估计包括在下行链路信号中的导频码元和/或TPC码元的SIR值以作为接收到的下行链路信号的质量。
3.如权利要求1所述的用户设备,还包括被配置为传送送往所述基站的上行链路信号的传送机,所述上行链路信号包括所述传送功率控制命令。
4.如权利要求1所述的用户设备,其中,所述质量估计单元包括多个SIR估计器,并且其中,所述接收机电路中的每一个被耦合到所述多个SIR估计器中的相应一个。
5.如权利要求4所述的用户设备,还包括被耦合到所述多个接收机电路中的至少两个接收机电路的组合器电路,所述组合电路被耦合到所述多个SIR估计器中的一个。
6.如权利要求4所述的用户设备,其中,所述功率环路控制器包括多个TPC确定器,其中,所述TPC确定器中的每一个被耦合到所述多个SIR估计器中的相应一个。
7.如权利要求6所述的用户设备,其中,所述多个TPC确定器中的每一个被配置为基于由被耦合到相应TPC确定器的SIR估计器估计的SIR值来确定传送功率控制命令。
8.如权利要求7所述的用户设备,还包括被耦合在所述多个TPC确定器与所述传送机之间并且被配置为将由相应TPC确定器确定的所述传送功率控制命令中的至少一个传递至所述传送机的切换器。
9.如权利要求8所述的用户设备,其中,由所述分集控制器来控制所述切换器。
10.如权利要求1所述的用户设备,其中,所述分集控制器被配置为检测高饱和情形或不同步情形、或二者。
11.如权利要求10所述的用户设备,其中,所述分集控制器被配置为在检测到高饱和或不同步情形的开始时激活所述接收机电路中的至少一个。
12.如权利要求11所述的用户设备,其中,所述分集控制器被配置为在检测到高饱和或不同步情形的结束时将被激活的接收机电路中的至少一个去激活。
13.如权利要求10所述的用户设备,其中,所述分集控制器被配置为通过将所述SIR值与目标SIR值之间的差与阈限进行比较来检测高饱和情形的开始。
14.如权利要求10所述的用户设备,其中,所述分集控制器被配置为通过将基于传送功率控制命令的质量度量与阈限进行比较来检测不同步情形的开始。
15.如权利要求10所述的用户设备,其中,所述分集控制器包括第一定时器,其在检测到高饱和或不同步情形的开始时被开始,以及
其中,所述分集控制器在所述第一定时器到期时检测高饱和或不同步情形的结束。
16.如权利要求10所述的用户设备,其中,所述分集控制器被配置为在高饱和或不同步情形期间在第一状态与第二状态之间进行切换,
其中,在所述第一状态下,所述功率环路控制器被配置为基于由至少两个被激活接收机电路接收到的下行链路信号的SIR值来生成所述传送功率控制命令,以及
其中,在所述第二状态下,所述功率环路控制器被配置为基于由至少两个被激活接收机电路中的一个接收到的下行链路信号的SIR值来生成所述传送功率控制命令。
17.如权利要求16所述的用户设备,其中,所述至少两个被激活接收机电路中的所述一个是接收到具有最大信号干扰和噪声比的下行链路信号的接收机电路。
18.如权利要求16所述的用户设备,其中,所述分集控制器包括被配置为确定所述第一状态的长度的第二定时器和被配置为确定所述第二状态的长度的第三定时器。
19.一种用户设备,包括:
对个天线,其被配置为从基站接收下行链路信号;
多个接收机电路,其中的每一个被耦合到所述多个天线中的相应一个,所述接收机电路被配置为处理接收到的下行链路信号;
传送机,其被配置为传送送往所述基站的上行链路信号;
功率环路控制器,其被配置为基于包括在下行链路信号中的传送功率控制命令来调整上行链路信号的功率;
TPC质量估计器,其被配置为估计所述传送功率控制命令的质量度量;和
分集控制器,其被配置为基于估计质量度量来将所述接收机电路中的一个或多个选择性地激活和去激活。
20.如权利要求19所述的用户设备,其中,所述功率环路控制器被配置为如果所述质量度量落在第一阈限值之下,则关闭所述传送机。
21.如权利要求20所述的用户设备,其中,所述功率环路控制器被配置为如果所述质量度量超过第二阈限值,则开启所述传送机。
22.一种用于包括多个天线和多个接收机电路的用户设备的下行链路功率控制的方法,所述多个接收机电路中的每一个被耦合到所述多个天线中的相应一个,该方法包括:
由所述多个天线从基站接收下行链路信号;
由所述多个接收机电路处理接收到的下行链路信号;
估计接收到的下行链路信号的质量;
基于对接收到的下行链路信号的估计质量将所述接收机电路中的一个或多个选择性地激活和去激活;以及
基于接收到的下行链路信号的所述估计质量来生成传送功率控制命令,所述传送功率控制命令被配置为调整由所述基站生成的下行链路信号的功率。
23.如权利要求22所述的方法,其中,估计接收到的下行链路信号的质量包括估计包括在下行链路信号中的导频码元或TPC码元的SIR值,或者二者的SIR值。
24.一种用于包括多个天线和多个接收机电路的用户设备的上行链路功率控制的方法,所述多个接收机电路中的每一个被耦合到所述多个天线中的相应一个,该方法包括:
由所述多个天线从基站接收下行链路信号;
由所述多个接收机电路处理接收到的下行链路信号;
估计包括在下行链路信号中的传送功率控制命令的质量度量;
基于估计质量度量将所述接收机电路中的一个或多个选择性地激活和去激活;以及
基于所述传送功率控制命令调整送往所述基站的上行链路信号的功率。
25.如权利要求24所述的方法,
其中,如果所述质量度量落在第一阈限值之下,则关闭上行链路信号的功率,而如果所述质量度量超过第二阈限值,则将其开启。
CN201110414175.3A 2010-12-14 2011-12-13 执行下行链路和/或上行链路功率控制的用户设备和方法 Active CN102547950B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/967180 2010-12-14
US12/967,180 US8538472B2 (en) 2010-12-14 2010-12-14 User equipment and method for performing downlink and/or uplink power control

Publications (2)

Publication Number Publication Date
CN102547950A true CN102547950A (zh) 2012-07-04
CN102547950B CN102547950B (zh) 2016-03-30

Family

ID=46144798

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110414175.3A Active CN102547950B (zh) 2010-12-14 2011-12-13 执行下行链路和/或上行链路功率控制的用户设备和方法

Country Status (3)

Country Link
US (2) US8538472B2 (zh)
CN (1) CN102547950B (zh)
DE (1) DE102011056385B4 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016033777A1 (zh) * 2014-09-04 2016-03-10 华为技术有限公司 一种上行链路优化方法及装置
CN105940617A (zh) * 2014-01-30 2016-09-14 索尼公司 用于在无线网络中的用户设备与基站之间传输数据的方法
CN107682929A (zh) * 2016-08-02 2018-02-09 上海朗帛通信技术有限公司 一种无线传输中的方法和装置
CN115776345A (zh) * 2021-09-08 2023-03-10 北京三快在线科技有限公司 一种干扰测量的方法、装置、存储介质及电子设备

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2944178B1 (fr) * 2009-04-03 2011-05-06 St Wireless Sa Procede de coupure d'un signal de transmission d'un emetteur principal relaye par une cellule d'une station de base et systeme associe.
JP5666605B2 (ja) * 2009-10-09 2015-02-12 テレフオンアクチーボラゲット エル エム エリクソン(パブル) アップリンクダイバーシチ送信の方法及び装置
US8538472B2 (en) * 2010-12-14 2013-09-17 Intel Mobile Communications GmbH User equipment and method for performing downlink and/or uplink power control
CN103620980A (zh) * 2011-06-21 2014-03-05 瑞典爱立信有限公司 选择上行多天线发送以增强覆盖
US20130021923A1 (en) * 2011-07-18 2013-01-24 Motorola Mobility, Inc. Communication drop avoidance via selective measurement report data reduction
EP2549807A1 (en) 2011-07-18 2013-01-23 Motorola Mobility LLC Method for facilitating synchronisation between a communications network and a wireless communications device operating in a cpc dtx mode and a wireless communications device
JP2013138367A (ja) * 2011-12-28 2013-07-11 Toshiba Corp 画像受信装置
US9144020B2 (en) 2012-03-19 2015-09-22 Intel Deutschland Gmbh Dynamic RxDiv for idle mode in a user equipment
TWI461080B (zh) * 2012-05-15 2014-11-11 Inst Information Industry 網路站台功率調整裝置及其功率調整方法
US9167537B2 (en) 2012-06-05 2015-10-20 Qualcomm Incorporated Methods and apparatus for DLTPC rejection in downlink windup mode
US20140126445A1 (en) * 2012-11-07 2014-05-08 Qualcomm Incorporated Apparatus and method for dcch-aligned receive diversity
US8873665B2 (en) 2012-11-21 2014-10-28 Intel Mobile Communications GmbH Communication devices and methods for receiving data
KR101925409B1 (ko) * 2012-11-22 2018-12-05 삼성전자주식회사 다중 수신단들을 포함하는 다중 경로 수신기의 전력 감소 방법 및 그 다중 경로 수신기
US9148832B2 (en) 2013-02-12 2015-09-29 Qualcomm Incorporated Reducing out-of-service and extending effective cell coverage with receiver diversity
US9379788B2 (en) 2013-02-21 2016-06-28 Intel Mobile Communications GmbH Communications terminal, and a method for selecting a transmit antenna for a transmission to a radio communications network
US9148852B2 (en) 2013-03-12 2015-09-29 Qualcomm Incorporated Method and apparatus for controlling receive diversity on a wireless device
US20140362744A1 (en) * 2013-06-11 2014-12-11 Qualcomm Incorporated Method and apparatus for transmission by time division duplexing (tdd) devices using multiple antennas
US20140369340A1 (en) * 2013-06-13 2014-12-18 Michael Horvat Method and devices for radio link monitoring
US10278232B2 (en) * 2013-09-20 2019-04-30 Qualcomm Incorporated Apparatus and method for handling out-of-sync and radio link failure with fractional DPCH calls
CN104969629B (zh) * 2013-09-27 2019-09-13 华为技术有限公司 一种调整发送功率的方法和装置
WO2016140604A1 (en) * 2015-03-04 2016-09-09 Telefonaktiebolaget Lm Ericsson (Publ) Controlling power usage
US9888448B2 (en) * 2015-10-27 2018-02-06 Verizon Patent And Licensing Inc. Initiating a transmit antenna switch during uplink-downlink imbalance
US9860848B2 (en) * 2016-05-31 2018-01-02 Apple Inc. Baseband power estimation and feedback mechanism
US10211877B2 (en) 2016-09-19 2019-02-19 Intel Corporation Multi-carrier dynamic antenna diversity
JP2018129578A (ja) * 2017-02-06 2018-08-16 富士通株式会社 無線装置及びタイミング制御方法
EP3399674B1 (en) * 2017-05-04 2022-03-02 Rohde & Schwarz GmbH & Co. KG Radio test system and method for testing a device under test
US11601166B2 (en) 2019-09-30 2023-03-07 Magic Leap, Inc. Antenna switching on MIMO devices

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1304586A (zh) * 1998-04-07 2001-07-18 艾利森电话股份有限公司 蜂窝移动无线通信系统中的下行链路功率控制
US20080200202A1 (en) * 2007-02-13 2008-08-21 Qualcomm Incorporated Power control with link imbalance on downlink and uplink
US20080220919A1 (en) * 2005-09-01 2008-09-11 Antchak John R Low Profile Tensioner with Arcuate Spring
CN1983848B (zh) * 2006-04-14 2010-07-21 华为技术有限公司 一种下行链路发射功率控制方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5267261A (en) 1992-03-05 1993-11-30 Qualcomm Incorporated Mobile station assisted soft handoff in a CDMA cellular communications system
JP3001040B2 (ja) 1996-09-20 2000-01-17 日本電気株式会社 Cdmaセルラーシステム用閉ループ送信機電力制御ユニット
DE19823237A1 (de) 1998-05-25 1999-12-02 Heinz Lindenmeier Funksystem für Fernwirkfunktionen in stehenden Fahrzeugen
AU7549500A (en) 1999-09-30 2001-04-30 Telefonaktiebolaget Lm Ericsson (Publ) Transmit power control
EP1150439B1 (en) 2000-04-25 2006-09-27 Siemens Aktiengesellschaft Antenna diversity receiver
TWI333756B (en) * 2002-11-15 2010-11-21 Interdigital Tech Corp Wireless transmit/receive units having multiple receivers and methods
US7929921B2 (en) 2003-06-10 2011-04-19 Motorola Mobility, Inc. Diversity control in wireless communications devices and methods
CN1860698B (zh) 2003-10-07 2012-06-27 艾利森电话股份有限公司 发送功率控制的方法和系统
JP4564050B2 (ja) 2004-03-05 2010-10-20 クゥアルコム・インコーポレイテッド 無線通信における受信ダイバーシティ制御のための方法および装置
US7298326B2 (en) 2004-03-30 2007-11-20 Duong Minh H Portable device and method employing beam selection to obtain satellite network positioning signals
US7437175B2 (en) 2004-05-06 2008-10-14 Telefonaktiebolaget L M Ericsson (Publ) Synchronization detection methods and apparatus
US7489913B2 (en) 2005-01-04 2009-02-10 Motorola, Inc. Method for controlling diversity receivers in a wireless communication device
US7546136B2 (en) 2005-04-29 2009-06-09 Telefonaktiebolaget L M Ericsson (Publ) Variable transmit power control strategies for high-speed downlink packet access systems
US20060252447A1 (en) 2005-05-03 2006-11-09 Tarik Muharemovic TPC Command, SIR Estimation and Channel Estimation Improvement Using TPC Command History
FR2895606A1 (fr) 2005-12-23 2007-06-29 France Telecom Procede de configuration d'un dispositif de communication avec controle de puissance et dispositif mettant en oeuvre ce procede.
US7925230B2 (en) * 2006-08-25 2011-04-12 Infineon Technologies Ag Diversity receiver with channel estimator
EP2119040B1 (en) * 2007-03-08 2017-12-27 Marvell International, Ltd. Dynamically reconfigurable receiver
US8160075B2 (en) 2007-10-01 2012-04-17 Telefonaktiebolaget Lm Ericsson (Publ) Downlink out of sync detection in continuous packet connectivity
US8902799B2 (en) 2008-01-16 2014-12-02 Wi-Lan, Inc. Power reduction with multiple receive paths
US8538472B2 (en) * 2010-12-14 2013-09-17 Intel Mobile Communications GmbH User equipment and method for performing downlink and/or uplink power control
US8897731B2 (en) 2012-03-02 2014-11-25 Apple Inc. Methods and apparatus for adaptive receiver diversity in a wireless network

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1304586A (zh) * 1998-04-07 2001-07-18 艾利森电话股份有限公司 蜂窝移动无线通信系统中的下行链路功率控制
US20080220919A1 (en) * 2005-09-01 2008-09-11 Antchak John R Low Profile Tensioner with Arcuate Spring
CN1983848B (zh) * 2006-04-14 2010-07-21 华为技术有限公司 一种下行链路发射功率控制方法
US20080200202A1 (en) * 2007-02-13 2008-08-21 Qualcomm Incorporated Power control with link imbalance on downlink and uplink

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105940617A (zh) * 2014-01-30 2016-09-14 索尼公司 用于在无线网络中的用户设备与基站之间传输数据的方法
CN105940617B (zh) * 2014-01-30 2019-09-17 索尼公司 用于传输数据的方法、用于无线网络的基站和用户设备
WO2016033777A1 (zh) * 2014-09-04 2016-03-10 华为技术有限公司 一种上行链路优化方法及装置
CN105745974A (zh) * 2014-09-04 2016-07-06 华为技术有限公司 一种上行链路优化方法及装置
CN105745974B (zh) * 2014-09-04 2019-06-11 华为技术有限公司 一种上行链路优化方法及装置
CN107682929A (zh) * 2016-08-02 2018-02-09 上海朗帛通信技术有限公司 一种无线传输中的方法和装置
CN107682929B (zh) * 2016-08-02 2021-10-29 上海朗帛通信技术有限公司 一种无线传输中的方法和装置
CN115776345A (zh) * 2021-09-08 2023-03-10 北京三快在线科技有限公司 一种干扰测量的方法、装置、存储介质及电子设备
CN115776345B (zh) * 2021-09-08 2024-02-23 北京三快在线科技有限公司 一种干扰测量的方法、装置、存储介质及电子设备

Also Published As

Publication number Publication date
DE102011056385A1 (de) 2012-06-14
US8538472B2 (en) 2013-09-17
US9307501B2 (en) 2016-04-05
US20130315170A1 (en) 2013-11-28
CN102547950B (zh) 2016-03-30
DE102011056385B4 (de) 2017-08-24
US20120149424A1 (en) 2012-06-14

Similar Documents

Publication Publication Date Title
CN102547950B (zh) 执行下行链路和/或上行链路功率控制的用户设备和方法
US20220039108A1 (en) Scheduling and coordination in a wireless network
US9883458B2 (en) Dynamic RxDiv for idle mode in a user equipment
US9231666B2 (en) Enabling coordinated multi-point reception
US7995536B2 (en) Multi-input multi-output (MIMO) for wireless transmitting and receiving stations
CN101573898B (zh) 在移动通信系统中使用的基站装置、用户装置和方法
US20130272221A1 (en) Methods and Devices for Exchanging Data in a Communications Network
JP4097918B2 (ja) 基地局における移動通信方法、移動通信基地局装置および移動局装置
KR101118416B1 (ko) 소프트 핸드오버 동안의 최적 안테나 가중치들의 도출
EP2282417A2 (en) System and method utilising transmit diversity
US20110286399A1 (en) Device and method for controlling uplink data transmission
US10003387B2 (en) Communications terminal, a network component, a method for transmitting a signal, and a method for providing feedback information to a communications terminal
CN103634242B (zh) 接收器电路和此类接收器电路执行的方法
Nakamori et al. Field experiment results of user throughput performance in WCDMA HSDPA
CN103227692B (zh) 上行闭环发送分集系统及其预编码指示异常的处理方法
Laakso Studies on high speed uplink packet access performance enhancements
Marsch et al. 3GPP Mobile Communications: WCDMA and HSPA
Baker et al. Introduction to UMTS: WCDMA, HSPA, TD-SCDMA, and LTE
EP2604086A1 (en) Methods and devices for exchanging data in a communications network
CN103227671A (zh) 一种预编码指示的设置方法、装置及系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C56 Change in the name or address of the patentee
CP01 Change in the name or title of a patent holder

Address after: Neubiberg

Patentee after: Intel Mobile Communications GmbH

Address before: Neubiberg

Patentee before: Intel Mobile Communications GmbH

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20200709

Address after: California, USA

Patentee after: INTEL Corp.

Address before: Noiberg, Germany

Patentee before: Intel Mobile Communications GmbH

Effective date of registration: 20200709

Address after: California, USA

Patentee after: Apple Inc.

Address before: California, USA

Patentee before: INTEL Corp.