CN102517000A - Alkaline earth nitride fluorescent powder and preparation method thereof - Google Patents
Alkaline earth nitride fluorescent powder and preparation method thereof Download PDFInfo
- Publication number
- CN102517000A CN102517000A CN2011104447167A CN201110444716A CN102517000A CN 102517000 A CN102517000 A CN 102517000A CN 2011104447167 A CN2011104447167 A CN 2011104447167A CN 201110444716 A CN201110444716 A CN 201110444716A CN 102517000 A CN102517000 A CN 102517000A
- Authority
- CN
- China
- Prior art keywords
- nitride phosphor
- alkaline earths
- fluorescent powder
- sintering
- manufacture
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 150000004767 nitrides Chemical class 0.000 title claims abstract description 40
- 239000000843 powder Substances 0.000 title claims abstract description 20
- 238000002360 preparation method Methods 0.000 title abstract description 10
- 238000000034 method Methods 0.000 claims abstract description 15
- 239000000126 substance Substances 0.000 claims abstract description 15
- 229910052761 rare earth metal Inorganic materials 0.000 claims abstract description 9
- 229910052788 barium Inorganic materials 0.000 claims abstract description 8
- 229910052791 calcium Inorganic materials 0.000 claims abstract description 8
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 8
- 229910052712 strontium Inorganic materials 0.000 claims abstract description 8
- 229910052684 Cerium Inorganic materials 0.000 claims abstract description 3
- 229910052692 Dysprosium Inorganic materials 0.000 claims abstract description 3
- 229910052693 Europium Inorganic materials 0.000 claims abstract description 3
- 229910052688 Gadolinium Inorganic materials 0.000 claims abstract description 3
- 229910052779 Neodymium Inorganic materials 0.000 claims abstract description 3
- 229910052777 Praseodymium Inorganic materials 0.000 claims abstract description 3
- 229910052772 Samarium Inorganic materials 0.000 claims abstract description 3
- 229910052771 Terbium Inorganic materials 0.000 claims abstract description 3
- 229910052775 Thulium Inorganic materials 0.000 claims abstract description 3
- 229910052746 lanthanum Inorganic materials 0.000 claims abstract description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 17
- 239000000956 alloy Substances 0.000 claims description 15
- 229910045601 alloy Inorganic materials 0.000 claims description 14
- 239000000463 material Substances 0.000 claims description 14
- 239000002994 raw material Substances 0.000 claims description 12
- 238000005245 sintering Methods 0.000 claims description 11
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 8
- 229910002804 graphite Inorganic materials 0.000 claims description 8
- 239000010439 graphite Substances 0.000 claims description 8
- 229910052710 silicon Inorganic materials 0.000 claims description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 3
- 150000001875 compounds Chemical class 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims description 3
- 229910052757 nitrogen Inorganic materials 0.000 claims description 3
- 239000010703 silicon Substances 0.000 claims description 3
- 239000011863 silicon-based powder Substances 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 claims 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims 4
- 238000000498 ball milling Methods 0.000 claims 1
- 238000005121 nitriding Methods 0.000 claims 1
- 238000004321 preservation Methods 0.000 claims 1
- 229910002058 ternary alloy Inorganic materials 0.000 claims 1
- 238000005303 weighing Methods 0.000 claims 1
- 238000000295 emission spectrum Methods 0.000 abstract description 3
- 229910052769 Ytterbium Inorganic materials 0.000 abstract description 2
- 238000003746 solid phase reaction Methods 0.000 abstract 1
- 238000010671 solid-state reaction Methods 0.000 abstract 1
- 238000001228 spectrum Methods 0.000 abstract 1
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 8
- 230000005284 excitation Effects 0.000 description 6
- -1 rare earth ions Chemical class 0.000 description 6
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 4
- 150000001342 alkaline earth metals Chemical class 0.000 description 4
- 239000002612 dispersion medium Substances 0.000 description 4
- 239000004570 mortar (masonry) Substances 0.000 description 4
- 239000012299 nitrogen atmosphere Substances 0.000 description 4
- 229910001615 alkaline earth metal halide Inorganic materials 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 229910004709 CaSi Inorganic materials 0.000 description 2
- 229910004122 SrSi Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910001325 element alloy Inorganic materials 0.000 description 2
- 238000000695 excitation spectrum Methods 0.000 description 2
- 150000004820 halides Chemical class 0.000 description 2
- 238000004020 luminiscence type Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000010532 solid phase synthesis reaction Methods 0.000 description 1
- 238000001778 solid-state sintering Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 150000004763 sulfides Chemical class 0.000 description 1
- XTQHKBHJIVJGKJ-UHFFFAOYSA-N sulfur monoxide Chemical class S=O XTQHKBHJIVJGKJ-UHFFFAOYSA-N 0.000 description 1
- 229910001428 transition metal ion Inorganic materials 0.000 description 1
Images
Landscapes
- Luminescent Compositions (AREA)
Abstract
Description
技术领域 technical field
本发明涉及发光材料技术领域,特别是提供了一种氮化物荧光粉及其制备方法,以高纯度MSi(M为Mg,Ca,Sr, Ba等碱土金属)的二元或多元合金及化学式为MY2(Y为F、Cl、Br)的卤化物为原料,Si3N4(或Si粉),稀土元素来源取单质或氧化物或合金为原料,通过高温固相烧结法,制备出具有优良发光性能的氮化物发光材料。 The present invention relates to the technical field of luminescent materials, and in particular provides a nitride phosphor powder and a preparation method thereof, which are binary or multi-element alloys of high-purity MSi (M is Mg, Ca, Sr, Ba and other alkaline earth metals) and the chemical formula is MY 2 (Y is F, Cl, Br) halides as raw materials, Si 3 N 4 (or Si powder), rare earth element sources take simple substances or oxides or alloys as raw materials, through high-temperature solid-state sintering method, prepared with A nitride luminescent material with excellent luminescent properties.
背景技术 Background technique
如今,半导体发光(LED)日渐应用广泛,在节能照明和显示屏行业越来越有取代传统期间的趋势。它的基本发光原理是利用以GaN为主的系列的蓝光或紫外芯片发射的短波长光来激发被封装在LED内部的一种及多种荧光粉,以此来转换发出所需颜色的光,而白光LED(WLED)则利用所发的光与剩余的蓝光合成实现发出白光的目的。 Nowadays, semiconductor light-emitting (LED) is widely used day by day, and it is more and more likely to replace the traditional period in the energy-saving lighting and display industry. Its basic luminescence principle is to use short-wavelength light emitted by GaN-based blue light or ultraviolet chips to excite one or more phosphors encapsulated inside the LED, so as to convert and emit light of the required color. The white light LED (WLED) uses the light emitted and the remaining blue light to synthesize to achieve the purpose of emitting white light.
目前的荧光粉主要以硫化物、氧化物或氧硫化物为基质,并在这些基质中掺杂少量的过渡金属离子或稀土离子为发光中心。这些化合物的不完善的方面是化学稳定性差,特别是综合发光效率低与且易发生温度猝灭,实用性差。随着社会的发展,它们已越来越难以适应白光二极管照明与现代等离子和场发射显示技术等发展对材料的要求。 Current phosphors are mainly based on sulfides, oxides or oxysulfides, and a small amount of transition metal ions or rare earth ions are doped in these matrices as luminescent centers. The disadvantages of these compounds are poor chemical stability, especially low comprehensive luminous efficiency and easy temperature quenching, and poor practicability. With the development of society, it has become more and more difficult for them to adapt to the material requirements of white light diode lighting and modern plasma and field emission display technology.
已有研究指出,在所有化合物中,氮化物具有最强的共价键性,并且其发光强度和显色性能要显然好于目前商用的氧化物、硫化物类荧光粉。而根据目前国际和国内关于氮化物荧光体的研究报道,目前制约氮化物荧光粉发展的是其合成条件较高,成本较大等因素。因此,探索一种简捷方便制备高效的氮化物荧光粉的方法显得十分重要。目前,还未有过关于合金法获取氮化物发光材料的详细应用叙述。 Studies have pointed out that among all compounds, nitrides have the strongest covalent bonding, and their luminous intensity and color rendering performance are obviously better than the current commercial oxide and sulfide phosphors. However, according to the current international and domestic research reports on nitride phosphors, the development of nitride phosphors is currently restricted by factors such as relatively high synthesis conditions and relatively high costs. Therefore, it is very important to explore a simple and convenient method for preparing high-efficiency nitride phosphors. At present, there is no detailed application description about the alloy method to obtain nitride luminescent materials.
发明内容 Contents of the invention
本发明的目的在于解决现有的氮化物荧光粉合成条件较高,成本较大的问题,提供一种氮化物发光材料及其制备方法,并获得了具有优良发光性能的氮化物发光材料。 The purpose of the present invention is to solve the problems of relatively high synthesis conditions and high cost of the existing nitride phosphors, provide a nitride luminescent material and a preparation method thereof, and obtain a nitride luminescent material with excellent luminescent performance.
本发明的氮化物发光材料化学通式为:xM3N2•aSi3N4•bMY2:mR,其中,M为Mg、Ca、Sr、Ba其中的一种或几种;Y为F、Cl、Br中的一种或几种;R代表选自稀土元素La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Tm、Yb中的一种或几种;其中0.3<x<1,0.1<a<2, 0<b<0.1,0.005<m<0.5。激发波长为位于250~550nm之间,激发光主峰波长为400nm,发射波长位于500~750nm之间,发射光主峰波长位于550~670nm之间;具体波长位置与参数m(发光中心含量)和x,a,b比例(基质元素比例)的选择有关。 The general chemical formula of the nitride luminescent material of the present invention is: xM 3 N 2 •aSi 3 N 4 •bMY 2 :mR, wherein, M is one or more of Mg, Ca, Sr, Ba; Y is F, One or more of Cl, Br; R represents one or more of rare earth elements La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Tm, Yb; where 0.3<x <1,0.1<a<2, 0<b<0.1, 0.005<m<0.5. The excitation wavelength is between 250-550nm, the main peak wavelength of the excitation light is 400nm, the emission wavelength is between 500-750nm, and the main peak wavelength of the emission light is between 550-670nm; the specific wavelength position and parameters m (luminescent center content) and x , a, b ratio (matrix element ratio) selection.
这是一种碱土族硅基氮氧化物荧光粉,所以含有Si和N元素,除此之外,碱土元素M可选Mg、Ca、Sr、Ba其中的一种或几种。本发明碱土元素来源为高纯度MSi(M为Mg、Ca、Sr、Ba等碱土金属其纯度均高于99.5%的二元或多元合金材料,)及化学式为MY2(Y为F、Cl、Br)的卤化物,硅源取自Si粉或Si3N4粉体,选用稀土元素为激活剂,其来源为稀土元素单质或氧化物或合金,其中MY2为原料和助融成相剂,通过研磨,压片(可选)后,采用以高温固相烧结工艺制备出一种含稀土离子的氮化物发光材料xM3N2•aSi3N4•bMY2:mR(M为Mg、Ca、Sr、Ba等碱土金属),本方法获得氮化物发光材料的发光性能优异。 This is an alkaline-earth silicon-based oxynitride phosphor, so it contains Si and N elements. In addition, the alkaline-earth element M can be one or more of Mg, Ca, Sr, and Ba. The source of alkaline earth elements of the present invention is high-purity MSi (M is a binary or multi-element alloy material whose purity is higher than 99.5% of alkaline earth metals such as Mg, Ca, Sr, Ba, etc.), and the chemical formula is MY 2 (Y is F, Cl, Br) halide, the silicon source is taken from Si powder or Si 3 N 4 powder, the rare earth element is selected as the activator, and its source is rare earth element simple substance or oxide or alloy, among which MY 2 is the raw material and the fusion phase agent , after grinding and tableting (optional), a kind of nitride luminescent material containing rare earth ions xM 3 N 2 •aSi 3 N 4 •bMY 2 :mR(M is Mg, Ca, Sr, Ba and other alkaline earth metals), the nitride luminescent material obtained by this method has excellent luminescent performance.
以下为具体工艺步骤: The following are the specific process steps:
(1)原料为MSi合金,ɑ-Si3N4,碱土金属卤化物MY2与R2O3粉体,纯度不均低于99.5%。其制备方法如下:根据通式xM3N2•aSi3N4•bMY2:mEu2+ 将摩尔比例为,MSi:Si3N4:MY2:R2O3=(3x-b):(a-x):b:m/2,在真空手套箱中充分研磨成粉体,待混合均匀后,烘干,压片(可选);然后将片状试样装载于石墨炉中,在1~10个大气压的N2保护下,升温到1200~1500℃烧结1~12小时,然后随炉冷却。 (1) The raw material is MSi alloy, ɑ-Si 3 N 4 , alkaline earth metal halide MY 2 and R 2 O 3 powder, and the purity is less than 99.5%. Its preparation method is as follows: According to the general formula xM 3 N 2 •aSi 3 N 4 •bMY 2 :mEu 2+ the molar ratio is, MSi:Si 3 N 4 :MY 2 :R 2 O 3 =(3x-b): (ax): b:m/2, fully ground into a powder in a vacuum glove box, after mixing evenly, drying, and tableting (optional); then load the flake sample in a graphite furnace, Under the protection of N 2 at ~10 atmospheres, the temperature is raised to 1200-1500°C for sintering for 1-12 hours, and then cooled with the furnace.
(2)原料为MSi合金,ɑ-Si3N4,碱土金属卤化物MY2,RSi合金,纯度均不低于99.5%。其制备方法如下:根据通式xM3N2•aSi3N4•bMY2:mR将摩尔比例为,MSi:Si3N4:MY2:RSi=(3x-b-m):(a-x-m/3):b:m,充分研磨成粉体,待混合均匀后,烘干,压片(可选);然后将片状试样装载于石墨炉中,在1~10个大气压的N2保护下,升温到1200~1500℃烧结1~10小时,然后随炉冷却。 (2) The raw materials are MSi alloy, ɑ-Si 3 N 4 , alkaline earth metal halide MY 2 , RSi alloy, and the purity is not less than 99.5%. Its preparation method is as follows: According to the general formula xM 3 N 2 •aSi 3 N 4 •bMY 2 :mR, the molar ratio is, MSi:Si 3 N 4 :MY 2 :RSi=(3x-bm):(axm/3) : b:m, fully ground into a powder, after mixing evenly, drying, tableting (optional); then load the sheet sample in a graphite furnace, under the protection of N 2 at 1 to 10 atmospheres, Raise the temperature to 1200-1500°C and sinter for 1-10 hours, then cool with the furnace.
(3)原料为MSi合金,ɑ-Si3N4,碱土金属卤化物MY2,R单质,纯度均不低于99.5%。其制备方法如下:根据通式xM3N2•aSi3N4•bMY2:mR将摩尔比例为,MSi:Si3N4:MY2:R=(3x-b):(a-x):b:m,充分研磨成粉体,待混合均匀后,烘干,压片(可选);然后将片状试样装载于石墨炉中,在1~10个大气压的N2保护下,升温到1200~1500℃烧结1~10小时,然后随炉冷却。 (3) The raw materials are MSi alloy, ɑ-Si 3 N 4 , alkaline earth metal halide MY 2 , R simple substance, and the purity is not less than 99.5%. Its preparation method is as follows: According to the general formula xM 3 N 2 •aSi 3 N 4 •bMY 2 :mR, the molar ratio is, MSi:Si 3 N 4 :MY 2 :R=(3x-b):(ax):b :m, fully ground into a powder, after mixing evenly, drying, and pressing into tablets (optional); then load the flake samples in a graphite furnace , and heat up to Sinter at 1200-1500°C for 1-10 hours, then cool with the furnace.
本发明的优点是: The advantages of the present invention are:
1、首次制备以xM3N2•aSi3N4•bMY2:mR基质的荧光粉,并且具有优良的发光性能,激发波长为位于250~550nm之间,激发光主峰波长为400,发射波长位于500~750nm之间,发射光主峰波长位于550~670nm之间。 1. For the first time, the phosphor powder with xM 3 N 2 •aSi 3 N 4 •bMY 2 :mR matrix was prepared, and it has excellent luminescence performance. The excitation wavelength is between 250-550nm, the main peak wavelength of excitation light is 400, and It is located between 500-750nm, and the main peak wavelength of the emitted light is located between 550-670nm.
2、特别具有创新意义的是其制备原料,是在空气中具有稳定的物理化学性质的MSi系列合金, M为Ca或(和)Sr等碱土金属组成的二元或多元替代,发光中心元素可选择其单质或氧化物或合金形式两种作为稀土离子掺入体。 2. What is particularly innovative is that its preparation raw materials are MSi series alloys with stable physical and chemical properties in the air. M is a binary or multi-element substitution composed of Ca or (and) Sr and other alkaline earth metals. The luminescent center element can be Choose its simple substance or oxide or alloy form as the rare earth ion doping body.
3、制备方法可采用直接高温固相合成的方法,工艺简单且易操作。 3. The preparation method can adopt the method of direct high-temperature solid-phase synthesis, and the process is simple and easy to operate.
4、该氮化物的物理化学性能稳定,使用寿命长。 4. The nitride has stable physical and chemical properties and long service life.
附图说明 Description of drawings
图1为本发明提供的实施例1 得到的氮化物荧光粉,当激发波长为397nm时的发射光谱。 FIG. 1 is the emission spectrum of the nitride phosphor obtained in Example 1 provided by the present invention when the excitation wavelength is 397 nm.
图2为本发明提供的实施例1 得到的氮化物荧光粉,当监测波长为609nm时的激发光谱。 FIG. 2 is the excitation spectrum of the nitride phosphor obtained in Example 1 provided by the present invention when the monitoring wavelength is 609 nm.
图3为本发明提供的实施例3 得到的氮化物荧光粉,当激发波长为397nm时的发射光谱。 FIG. 3 is the emission spectrum of the nitride phosphor obtained in Example 3 provided by the present invention when the excitation wavelength is 397 nm.
图4为本发明提供的实施例3 得到的氮化物荧光粉,当监测波长为621nm时的激发光谱。 FIG. 4 is the excitation spectrum of the nitride phosphor obtained in Example 3 provided by the present invention when the monitoring wavelength is 621 nm.
具体实施方式 Detailed ways
以下为本发明的实例和实施方式,只是为了说明本发明涉及的氮化物荧光粉极其制备方法,但是,本发明并不局限于该实施步骤和实施方式。 The following are examples and implementations of the present invention, just to illustrate the nitride phosphor and its preparation method involved in the present invention, but the present invention is not limited to the implementation steps and implementations.
实施例1 Example 1
选择配料点m=0.02,将纯度不低于99.5%的CaSi合金(摩尔比为1:1), α-Si3N4粉料,Eu2O3按摩尔比196:101:2,置于研钵中,以正己烷为分散介质,充分研磨至均匀,烘干,压片。然后装载于石墨炉内,在5个大气压的N2气氛保护下,升温至1400℃烧结4小时后随炉冷却。得到的氮化物最终具体表达式为0.653Ca3N2•1.667Si3N4:0.04Eu2+。所制得氮化物材料发射主峰位置在609nm。 Select the batching point m=0.02, put CaSi alloy with a purity of not less than 99.5% (molar ratio 1:1), α-Si 3 N 4 powder, Eu 2 O 3 molar ratio 196:101:2, in the In a mortar, use n-hexane as the dispersion medium, fully grind until uniform, dry, and press into tablets. Then load it in a graphite furnace, under the protection of N2 atmosphere at 5 atmospheres, heat up to 1400°C for sintering for 4 hours and then cool with the furnace. The final specific expression of the obtained nitride is 0.653Ca 3 N 2 •1.667Si 3 N 4 :0.04Eu 2+ . The position of the main emission peak of the prepared nitride material is at 609nm.
实施例2 Example 2
选择配料点m=0.02,将纯度不低于99.5%的CaSi合金(摩尔比为1:1), α-Si3N4粉料,EuSi按摩尔比49:25:1,置于研钵中,以正己烷为分散介质,充分研磨至均匀,烘干,。然后装载于石墨炉内,在5个大气压的N2气氛保护下,进行粉体烧结,升温至1400℃烧结4小时后随炉冷却。得到的氮化物最终具体表达式为0.653Ca3N2•1.667Si3N4:0.04Eu2+。所制得氮化物材料发射主峰位置在610nm。 Select the batching point m=0.02, put the CaSi alloy with a purity of not less than 99.5% (the molar ratio is 1:1), α-Si 3 N 4 powder, and EuSi with a molar ratio of 49:25:1, and put them in the mortar , with n-hexane as the dispersion medium, fully ground until uniform, and dried. Then load it in a graphite furnace, and carry out powder sintering under the protection of N 2 atmosphere at 5 atmospheres, heat up to 1400°C for 4 hours and then cool down with the furnace. The final specific expression of the obtained nitride is 0.653Ca 3 N 2 •1.667Si 3 N 4 :0.04Eu 2+ . The position of the main emission peak of the prepared nitride material is at 610nm.
实施例3 Example 3
选择配料点m=0.02,将纯度不低于99.5%的SrSi合金(摩尔比为1:1), α-Si3N4粉料,EuSi按摩尔比49:25:1,置于研钵中,以正己烷为分散介质,充分研磨至均匀,烘干,压片。然后装载于石墨炉内,在5个大气压的N2气氛保护下,升温至1400℃烧结4小时后随炉冷却。得到的氮化物最终具体表达式为0.653Sr3N2•1.667Si3N4:0.04Eu2+。所制得氮化物材料发射主峰位置在621nm。 Select the batching point m=0.02, put the SrSi alloy with a purity of not less than 99.5% (the molar ratio is 1:1), α-Si 3 N 4 powder, and EuSi with a molar ratio of 49:25:1, and put them in the mortar , with n-hexane as the dispersion medium, fully ground until uniform, dried, and pressed into tablets. Then load it in a graphite furnace, under the protection of N2 atmosphere at 5 atmospheres, heat up to 1400°C for sintering for 4 hours and then cool with the furnace. The final specific expression of the obtained nitride is 0.653Sr 3 N 2 •1.667Si 3 N 4 :0.04Eu 2+ . The position of the main emission peak of the prepared nitride material is at 621nm.
实施例4 Example 4
选择配料点m=0.02,将纯度不低于99.5%的SrSi合金(摩尔比为1:1), SrF2,α-Si3N4粉料,EuSi按摩尔比192:4:101:4,置于研钵中,以正己烷为分散介质,充分研磨至均匀,烘干,压片。然后装载于石墨炉内,在5个大气压的N2气氛保护下,升温至1400℃烧结4小时后随炉冷却。得到的氮化物最终具体表达式为0.639Sr3N2•1.667Si3N4:0.040SrF2:0.04Eu2+。所制得氮化物材料发射主峰位置在620nm。 Select the batching point m=0.02, mix SrSi alloy with a purity of not less than 99.5% (molar ratio is 1:1), SrF 2 , α-Si 3 N 4 powder, and EuSi in a molar ratio of 192:4:101:4, Put it in a mortar, use n-hexane as the dispersion medium, fully grind until uniform, dry, and press into tablets. Then load it in a graphite furnace, under the protection of N2 atmosphere at 5 atmospheres, heat up to 1400°C for sintering for 4 hours and then cool with the furnace. The final specific expression of the obtained nitride is 0.639Sr 3 N 2 •1.667Si 3 N 4 :0.040SrF 2 :0.04Eu 2+ . The position of the main emission peak of the prepared nitride material is at 620nm.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011104447167A CN102517000A (en) | 2011-12-27 | 2011-12-27 | Alkaline earth nitride fluorescent powder and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011104447167A CN102517000A (en) | 2011-12-27 | 2011-12-27 | Alkaline earth nitride fluorescent powder and preparation method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102517000A true CN102517000A (en) | 2012-06-27 |
Family
ID=46288077
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2011104447167A Pending CN102517000A (en) | 2011-12-27 | 2011-12-27 | Alkaline earth nitride fluorescent powder and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102517000A (en) |
-
2011
- 2011-12-27 CN CN2011104447167A patent/CN102517000A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4565141B2 (en) | Phosphors and light emitting devices | |
TWI697544B (en) | Phosphors and uses thereof | |
JP4674348B2 (en) | Phosphor, method for producing the same, and light emitting device | |
CN101175834B (en) | β-Sialon Ceramic Phosphor | |
CN101044222B (en) | Phospher, process for producing the same and luminescence apparatus | |
JP5229878B2 (en) | Luminescent device using phosphor | |
CN100420052C (en) | Light emitting devices and lighting devices | |
JP5013374B2 (en) | Phosphor, method for producing the same, and light emitting device | |
JP2005255895A (en) | Phosphor and production method thereof | |
JP6323177B2 (en) | Semiconductor light emitting device | |
CN104087293B (en) | Preparation method and application of red phosphor and its carbothermal reduction nitriding | |
JP2007141855A (en) | Luminaire and image display device using phosphor | |
CN103347979A (en) | Phosphor, production method for same, and light-emitting device | |
JP5111181B2 (en) | Phosphor and light emitting device | |
CN101768443B (en) | Preparation method of red fluorescence material | |
JP2009138070A (en) | Phosphor, its manufacturing method, and light emitting device using the phosphor | |
CN102517000A (en) | Alkaline earth nitride fluorescent powder and preparation method thereof | |
CN113621365B (en) | A preparation method of europium-doped high-luminous-intensity red silicate fluorescent material | |
CN103347980B (en) | Fluorophor, its preparation method and light-emitting device | |
KR20240110223A (en) | Phosphor, manufacturing method thereof, and white light emitting diode including the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20120627 |