CN102516708B - Composite core for power grid transmission line wire and preparation method thereof - Google Patents
Composite core for power grid transmission line wire and preparation method thereof Download PDFInfo
- Publication number
- CN102516708B CN102516708B CN201110380721.6A CN201110380721A CN102516708B CN 102516708 B CN102516708 B CN 102516708B CN 201110380721 A CN201110380721 A CN 201110380721A CN 102516708 B CN102516708 B CN 102516708B
- Authority
- CN
- China
- Prior art keywords
- composite core
- fiber
- resin
- temperature
- transmission line
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 100
- 238000002360 preparation method Methods 0.000 title claims abstract description 30
- 230000005540 biological transmission Effects 0.000 title claims abstract description 22
- 229920005989 resin Polymers 0.000 claims abstract description 53
- 239000011347 resin Substances 0.000 claims abstract description 53
- 239000000835 fiber Substances 0.000 claims abstract description 43
- 239000000463 material Substances 0.000 claims abstract description 37
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 34
- 229920000049 Carbon (fiber) Polymers 0.000 claims abstract description 33
- 239000004917 carbon fiber Substances 0.000 claims abstract description 33
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims abstract description 31
- 229920001187 thermosetting polymer Polymers 0.000 claims abstract description 11
- 239000003365 glass fiber Substances 0.000 claims abstract description 10
- 229920002748 Basalt fiber Polymers 0.000 claims abstract description 6
- 229920006231 aramid fiber Polymers 0.000 claims abstract description 6
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims abstract description 5
- 229910052796 boron Inorganic materials 0.000 claims abstract description 5
- 238000010438 heat treatment Methods 0.000 claims description 34
- 239000003822 epoxy resin Substances 0.000 claims description 19
- 229920000647 polyepoxide Polymers 0.000 claims description 19
- 239000004020 conductor Substances 0.000 claims description 16
- 229920000768 polyamine Polymers 0.000 claims description 15
- 239000003292 glue Substances 0.000 claims description 14
- 239000002105 nanoparticle Substances 0.000 claims description 13
- 239000012745 toughening agent Substances 0.000 claims description 13
- 150000008065 acid anhydrides Chemical class 0.000 claims description 11
- 125000003118 aryl group Chemical group 0.000 claims description 10
- 239000007788 liquid Substances 0.000 claims description 8
- 239000004696 Poly ether ether ketone Substances 0.000 claims description 7
- 235000021355 Stearic acid Nutrition 0.000 claims description 7
- 125000002723 alicyclic group Chemical group 0.000 claims description 7
- 150000001412 amines Chemical class 0.000 claims description 7
- 229920001971 elastomer Polymers 0.000 claims description 7
- 238000000465 moulding Methods 0.000 claims description 7
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 claims description 7
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 claims description 7
- 229920002530 polyetherether ketone Polymers 0.000 claims description 7
- 238000011417 postcuring Methods 0.000 claims description 7
- 239000005060 rubber Substances 0.000 claims description 7
- 239000008117 stearic acid Substances 0.000 claims description 7
- 229920000106 Liquid crystal polymer Polymers 0.000 claims description 6
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 6
- 229920002492 poly(sulfone) Polymers 0.000 claims description 6
- 239000004695 Polyether sulfone Substances 0.000 claims description 5
- 239000004974 Thermotropic liquid crystal Substances 0.000 claims description 5
- 229910052901 montmorillonite Inorganic materials 0.000 claims description 5
- 229920000728 polyester Polymers 0.000 claims description 5
- 229920006393 polyether sulfone Polymers 0.000 claims description 5
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 4
- 229920000877 Melamine resin Polymers 0.000 claims description 4
- 239000004693 Polybenzimidazole Substances 0.000 claims description 4
- 239000004642 Polyimide Substances 0.000 claims description 4
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 4
- 125000001931 aliphatic group Chemical group 0.000 claims description 4
- 239000000805 composite resin Substances 0.000 claims description 4
- 150000002460 imidazoles Chemical class 0.000 claims description 4
- 150000002989 phenols Chemical class 0.000 claims description 4
- 229920001721 polyimide Polymers 0.000 claims description 4
- 229920001296 polysiloxane Polymers 0.000 claims description 4
- 229920002635 polyurethane Polymers 0.000 claims description 4
- 239000004814 polyurethane Substances 0.000 claims description 4
- 230000002787 reinforcement Effects 0.000 claims description 4
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 4
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 4
- 229920002545 silicone oil Polymers 0.000 claims description 4
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 claims description 4
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 claims description 3
- 229920001807 Urea-formaldehyde Polymers 0.000 claims description 3
- 230000009471 action Effects 0.000 claims description 3
- GZCGUPFRVQAUEE-SLPGGIOYSA-N aldehydo-D-glucose Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C=O GZCGUPFRVQAUEE-SLPGGIOYSA-N 0.000 claims description 3
- 238000005520 cutting process Methods 0.000 claims description 3
- 239000012530 fluid Substances 0.000 claims description 3
- 239000011521 glass Substances 0.000 claims description 3
- 239000004519 grease Substances 0.000 claims description 3
- 229910021392 nanocarbon Inorganic materials 0.000 claims description 3
- 229920001568 phenolic resin Polymers 0.000 claims description 3
- 239000005011 phenolic resin Substances 0.000 claims description 3
- 238000007598 dipping method Methods 0.000 claims description 2
- 238000007599 discharging Methods 0.000 claims description 2
- 238000005470 impregnation Methods 0.000 claims description 2
- 229920006149 polyester-amide block copolymer Polymers 0.000 claims 1
- 238000005336 cracking Methods 0.000 abstract description 13
- 238000000034 method Methods 0.000 abstract description 13
- 230000009477 glass transition Effects 0.000 abstract description 9
- 238000010276 construction Methods 0.000 abstract description 8
- 238000004519 manufacturing process Methods 0.000 abstract description 8
- 230000008569 process Effects 0.000 abstract description 7
- 238000005728 strengthening Methods 0.000 abstract 2
- POFFJVRXOKDESI-UHFFFAOYSA-N 1,3,5,7-tetraoxa-4-silaspiro[3.3]heptane-2,6-dione Chemical compound O1C(=O)O[Si]21OC(=O)O2 POFFJVRXOKDESI-UHFFFAOYSA-N 0.000 abstract 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 abstract 1
- 229910052740 iodine Inorganic materials 0.000 abstract 1
- 239000011630 iodine Substances 0.000 abstract 1
- 239000002245 particle Substances 0.000 abstract 1
- 102000004169 proteins and genes Human genes 0.000 abstract 1
- 108090000623 proteins and genes Proteins 0.000 abstract 1
- 239000011162 core material Substances 0.000 description 83
- GYZLOYUZLJXAJU-UHFFFAOYSA-N diglycidyl ether Chemical class C1OC1COCC1CO1 GYZLOYUZLJXAJU-UHFFFAOYSA-N 0.000 description 9
- 238000004804 winding Methods 0.000 description 9
- 239000004721 Polyphenylene oxide Substances 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 6
- 238000009472 formulation Methods 0.000 description 6
- 229920000570 polyether Polymers 0.000 description 6
- -1 that is Substances 0.000 description 6
- 239000004952 Polyamide Substances 0.000 description 5
- 150000008064 anhydrides Chemical class 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 229920002647 polyamide Polymers 0.000 description 5
- 229920005862 polyol Polymers 0.000 description 5
- 150000003077 polyols Chemical class 0.000 description 5
- 239000004593 Epoxy Substances 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 239000010410 layer Substances 0.000 description 4
- 239000012779 reinforcing material Substances 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 3
- 150000002148 esters Chemical class 0.000 description 3
- 239000006082 mold release agent Substances 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 229920005992 thermoplastic resin Polymers 0.000 description 3
- XKZQKPRCPNGNFR-UHFFFAOYSA-N 2-(3-hydroxyphenyl)phenol Chemical compound OC1=CC=CC(C=2C(=CC=CC=2)O)=C1 XKZQKPRCPNGNFR-UHFFFAOYSA-N 0.000 description 2
- PLIKAWJENQZMHA-UHFFFAOYSA-N 4-aminophenol Chemical compound NC1=CC=C(O)C=C1 PLIKAWJENQZMHA-UHFFFAOYSA-N 0.000 description 2
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- FDLQZKYLHJJBHD-UHFFFAOYSA-N [3-(aminomethyl)phenyl]methanamine Chemical compound NCC1=CC=CC(CN)=C1 FDLQZKYLHJJBHD-UHFFFAOYSA-N 0.000 description 2
- 150000001408 amides Chemical class 0.000 description 2
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 2
- PXKLMJQFEQBVLD-UHFFFAOYSA-N bisphenol F Chemical compound C1=CC(O)=CC=C1CC1=CC=C(O)C=C1 PXKLMJQFEQBVLD-UHFFFAOYSA-N 0.000 description 2
- 238000003763 carbonization Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 125000003055 glycidyl group Chemical group C(C1CO1)* 0.000 description 2
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical compound NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 description 2
- 229920006150 hyperbranched polyester Polymers 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229920001230 polyarylate Polymers 0.000 description 2
- 229920002480 polybenzimidazole Polymers 0.000 description 2
- 229920002857 polybutadiene Polymers 0.000 description 2
- 229920001707 polybutylene terephthalate Polymers 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 239000002383 tung oil Substances 0.000 description 2
- WZCQRUWWHSTZEM-UHFFFAOYSA-N 1,3-phenylenediamine Chemical compound NC1=CC=CC(N)=C1 WZCQRUWWHSTZEM-UHFFFAOYSA-N 0.000 description 1
- VILCJCGEZXAXTO-UHFFFAOYSA-N 2,2,2-tetramine Chemical compound NCCNCCNCCN VILCJCGEZXAXTO-UHFFFAOYSA-N 0.000 description 1
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 1
- AOBIOSPNXBMOAT-UHFFFAOYSA-N 2-[2-(oxiran-2-ylmethoxy)ethoxymethyl]oxirane Chemical compound C1OC1COCCOCC1CO1 AOBIOSPNXBMOAT-UHFFFAOYSA-N 0.000 description 1
- HSAOVLDFJCYOPX-UHFFFAOYSA-N 2-[4-(1,3-benzothiazol-2-yl)phenyl]-1,3-benzothiazole Chemical compound C1=CC=C2SC(C3=CC=C(C=C3)C=3SC4=CC=CC=C4N=3)=NC2=C1 HSAOVLDFJCYOPX-UHFFFAOYSA-N 0.000 description 1
- ICXAPFWGVRTEKV-UHFFFAOYSA-N 2-[4-(1,3-benzoxazol-2-yl)phenyl]-1,3-benzoxazole Chemical compound C1=CC=C2OC(C3=CC=C(C=C3)C=3OC4=CC=CC=C4N=3)=NC2=C1 ICXAPFWGVRTEKV-UHFFFAOYSA-N 0.000 description 1
- SHKUUQIDMUMQQK-UHFFFAOYSA-N 2-[4-(oxiran-2-ylmethoxy)butoxymethyl]oxirane Chemical compound C1OC1COCCCCOCC1CO1 SHKUUQIDMUMQQK-UHFFFAOYSA-N 0.000 description 1
- RNLHGQLZWXBQNY-UHFFFAOYSA-N 3-(aminomethyl)-3,5,5-trimethylcyclohexan-1-amine Chemical compound CC1(C)CC(N)CC(C)(CN)C1 RNLHGQLZWXBQNY-UHFFFAOYSA-N 0.000 description 1
- HHUZGDMRRLQZIQ-PXWUZWBYSA-N 3alpha,6alpha-Dihydroxy-5beta-pregnan-20-one Chemical compound C([C@H]1[C@@H](O)C2)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H](C(=O)C)[C@@]2(C)CC1 HHUZGDMRRLQZIQ-PXWUZWBYSA-N 0.000 description 1
- YBRVSVVVWCFQMG-UHFFFAOYSA-N 4,4'-diaminodiphenylmethane Chemical compound C1=CC(N)=CC=C1CC1=CC=C(N)C=C1 YBRVSVVVWCFQMG-UHFFFAOYSA-N 0.000 description 1
- KOGSPLLRMRSADR-UHFFFAOYSA-N 4-(2-aminopropan-2-yl)-1-methylcyclohexan-1-amine Chemical compound CC(C)(N)C1CCC(C)(N)CC1 KOGSPLLRMRSADR-UHFFFAOYSA-N 0.000 description 1
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- MQJKPEGWNLWLTK-UHFFFAOYSA-N Dapsone Chemical compound C1=CC(N)=CC=C1S(=O)(=O)C1=CC=C(N)C=C1 MQJKPEGWNLWLTK-UHFFFAOYSA-N 0.000 description 1
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical compound NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- 229910001335 Galvanized steel Inorganic materials 0.000 description 1
- 239000004944 Liquid Silicone Rubber Substances 0.000 description 1
- 239000004976 Lyotropic liquid crystal Substances 0.000 description 1
- 229920000459 Nitrile rubber Polymers 0.000 description 1
- 229920006282 Phenolic fiber Polymers 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- 229910000629 Rh alloy Inorganic materials 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- IMUDHTPIFIBORV-UHFFFAOYSA-N aminoethylpiperazine Chemical compound NCCN1CCNCC1 IMUDHTPIFIBORV-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- JRPRCOLKIYRSNH-UHFFFAOYSA-N bis(oxiran-2-ylmethyl) benzene-1,2-dicarboxylate Chemical compound C=1C=CC=C(C(=O)OCC2OC2)C=1C(=O)OCC1CO1 JRPRCOLKIYRSNH-UHFFFAOYSA-N 0.000 description 1
- ZXOATMQSUNJNNG-UHFFFAOYSA-N bis(oxiran-2-ylmethyl) benzene-1,3-dicarboxylate Chemical compound C=1C=CC(C(=O)OCC2OC2)=CC=1C(=O)OCC1CO1 ZXOATMQSUNJNNG-UHFFFAOYSA-N 0.000 description 1
- KIKYOFDZBWIHTF-UHFFFAOYSA-N bis(oxiran-2-ylmethyl) cyclohex-3-ene-1,2-dicarboxylate Chemical compound C1CC=CC(C(=O)OCC2OC2)C1C(=O)OCC1CO1 KIKYOFDZBWIHTF-UHFFFAOYSA-N 0.000 description 1
- XFUOBHWPTSIEOV-UHFFFAOYSA-N bis(oxiran-2-ylmethyl) cyclohexane-1,2-dicarboxylate Chemical compound C1CCCC(C(=O)OCC2OC2)C1C(=O)OCC1CO1 XFUOBHWPTSIEOV-UHFFFAOYSA-N 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 description 1
- BQQUFAMSJAKLNB-UHFFFAOYSA-N dicyclopentadiene diepoxide Chemical compound C12C(C3OC33)CC3C2CC2C1O2 BQQUFAMSJAKLNB-UHFFFAOYSA-N 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229920006351 engineering plastic Polymers 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 239000008397 galvanized steel Substances 0.000 description 1
- WJRBRSLFGCUECM-UHFFFAOYSA-N hydantoin Chemical compound O=C1CNC(=O)N1 WJRBRSLFGCUECM-UHFFFAOYSA-N 0.000 description 1
- 229940091173 hydantoin Drugs 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229940018564 m-phenylenediamine Drugs 0.000 description 1
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- AFEQENGXSMURHA-UHFFFAOYSA-N oxiran-2-ylmethanamine Chemical class NCC1CO1 AFEQENGXSMURHA-UHFFFAOYSA-N 0.000 description 1
- PXXKQOPKNFECSZ-UHFFFAOYSA-N platinum rhodium Chemical compound [Rh].[Pt] PXXKQOPKNFECSZ-UHFFFAOYSA-N 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920006376 polybenzimidazole fiber Polymers 0.000 description 1
- 238000006068 polycondensation reaction Methods 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 150000008442 polyphenolic compounds Chemical class 0.000 description 1
- 235000013824 polyphenols Nutrition 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 150000007519 polyprotic acids Polymers 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 239000012783 reinforcing fiber Substances 0.000 description 1
- 239000012763 reinforcing filler Substances 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- KKEYFWRCBNTPAC-UHFFFAOYSA-L terephthalate(2-) Chemical compound [O-]C(=O)C1=CC=C(C([O-])=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-L 0.000 description 1
- FAGUFWYHJQFNRV-UHFFFAOYSA-N tetraethylenepentamine Chemical compound NCCNCCNCCNCCN FAGUFWYHJQFNRV-UHFFFAOYSA-N 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Landscapes
- Reinforced Plastic Materials (AREA)
Abstract
Description
技术领域 technical field
本发明属于成型复合材料,即含有增强材料、填料或预成型件的塑性材料领域,具体讲涉及一种用于电网输电线路导线的复合芯及其制备方法。The invention belongs to the field of molding composite materials, that is, plastic materials containing reinforcing materials, fillers or preforms, and specifically relates to a composite core used for power grid transmission line conductors and a preparation method thereof.
背景技术 Background technique
钢芯铝绞线为单层或多层铝股线绞合在镀锌钢芯线外的加强型导线,具有结构简单、架设与维护方便、线路造价低、传输容量大、又利于跨越江河和山谷等特殊地理条件的敷设、具有良好的导电性能和足够的机械强度、抗拉强度大、塔杆距离可放大等特点。因此广泛应用于各种电压等级的架空输配电线路中。Steel-cored aluminum stranded wire is a reinforced wire with single-layer or multi-layer aluminum strands twisted outside the galvanized steel core wire. The laying of special geographical conditions such as valleys has the characteristics of good electrical conductivity, sufficient mechanical strength, high tensile strength, and the distance between towers and poles can be enlarged. Therefore, it is widely used in overhead transmission and distribution lines of various voltage levels.
现代工业对供电可靠性、电能质量要求的日益提高以及电力负荷需求的逐步增加,对电力行业提出了更加严峻的考验。电网输电线路的建设正面临着土地资源日益紧张、有色金属资源的稀缺、电力传输的快速扩容及环境保护等问题。20世纪末人们尝试用有机复合材料代替金属材料制作导线的芯材,开发出新型复合材料合成芯导线。Modern industry's increasing requirements for power supply reliability and power quality, as well as the gradual increase in power load demand, pose a more severe test to the power industry. The construction of power grid transmission lines is facing problems such as increasing shortage of land resources, scarcity of non-ferrous metal resources, rapid expansion of power transmission and environmental protection. At the end of the 20th century, people tried to use organic composite materials instead of metal materials to make the core material of the wire, and developed a new composite material synthetic core wire.
复合芯与传统的钢芯铝绞线相比具有重量轻、强度高、热稳定性好、弛度低、载流量大及耐腐蚀等优点。解决电力线路输送容量提高的同时又能充分利用已有铁塔,尽量避免了线路走廊用地增加这一技术难题,对老旧线路的增容改造和土地资源紧张地区的线路重建具有重要意义。Comparing with the traditional ACSR, the composite core has the advantages of light weight, high strength, good thermal stability, low sag, large carrying capacity and corrosion resistance. It solves the problem of increasing the transmission capacity of power lines while making full use of existing iron towers, and avoids the technical problem of increasing the land use of line corridors as much as possible.
国外关于复合芯的研制包括,日本于20世纪90年代开发了复合材料合成芯导线,产品分为碳纤维芯铝绞线和耐热碳纤维芯耐热铝合金绞线两种。复合芯的质量是常规钢芯的1/5,线膨胀系数约为钢芯的1/12。试验证明,新型复合材料芯导线的抗拉强度大幅提高,常温下的拉伸曲线特性呈现弹性体特性,即材料断裂时没有塑性变形,断后延伸率约为1.6%,塑性不如钢芯导线。The development of composite cores abroad includes that Japan developed composite core conductors in the 1990s. The products are divided into two types: carbon fiber core aluminum stranded wire and heat-resistant carbon fiber core heat-resistant aluminum alloy stranded wire. The mass of the composite core is 1/5 of the conventional steel core, and the coefficient of linear expansion is about 1/12 of the steel core. Tests have proved that the tensile strength of the new composite material core conductor has been greatly improved, and the tensile curve characteristics at room temperature show elastic properties, that is, there is no plastic deformation when the material breaks, and the elongation after fracture is about 1.6%, which is not as plastic as steel core conductors.
美国的CTC公司于2003年推出碳纤维复合芯铝绞线,其芯线是以碳纤维为中心层和玻璃纤维包覆制成的单根芯棒,碳纤维采用聚酰胺耐火处理、碳化而成;高强度、高韧性配方的环氧树脂具有很强的耐冲击性、耐抗力应力和弯曲应力。将碳纤维与玻璃纤维进行预拉伸后,在环氧树脂中浸渍,然后在高温模具中固化成型为复合材料芯线。芯线外层与邻外层为梯形截面铝线股。此芯线与传统导线相比具有重量轻、强度大、低线损、弛度小等优点,但其韧性较差,复合芯在生产、运输及挂线施工过程中有因脆性因素造成开裂及断裂的几率,给电网输电线路施工及运行安全性产生威胁。The CTC company in the United States launched carbon fiber composite core aluminum stranded wire in 2003. The core wire is a single mandrel made of carbon fiber as the center layer and glass fiber covering. The carbon fiber is made of polyamide refractory treatment and carbonization; high strength , Epoxy resin with high toughness formula has strong impact resistance, resistance to tensile stress and bending stress. After the carbon fiber and glass fiber are pre-stretched, they are impregnated in epoxy resin, and then cured in a high-temperature mold to form a composite material core wire. The outer layer and adjacent outer layer of the core wire are aluminum wire strands with trapezoidal cross-section. Compared with traditional wires, this core wire has the advantages of light weight, high strength, low wire loss, and small sag, but its toughness is poor, and the composite core may crack due to brittle factors during production, transportation, and wire hanging construction. The probability of breakage poses a threat to the safety of power grid transmission line construction and operation.
国内现有的导线都是由导电性能好的金属丝或金属条形成,这种导线抗拉强度低。同时由于金属的特性,用金属制成的导线随环境温度的变化热胀冷缩严重,较易出现脆断。鉴于此,国内也有人开始研究碳纤维复合芯铝绞线,但没有具体的使用参数,研发与生产还存在一定的差距。The existing wires in China are all formed of metal wires or metal strips with good electrical conductivity, and the tensile strength of such wires is low. At the same time, due to the characteristics of metals, the wires made of metals will expand and contract severely with the change of ambient temperature, and are more prone to brittle fracture. In view of this, some people in China have begun to study carbon fiber composite aluminum cored wire, but there is no specific use parameter, and there is still a certain gap between research and development and production.
本发明人于2009年提出的申请号为CN200910237469.6,发明名称为“一种适用于输电线路扩容导线的树脂基复合材料及其制备工艺”的发明专利申请,其技术方案涉及到一种适用于稳定连续生产的高强度、耐高温、表面规整、光洁度高的复合芯的制备工艺,解决了现有制备工艺固化周期长、容易出现模具堵塞、制品表面光洁度欠缺、树脂包覆纤维不彻底、树脂固化工艺引起的力学强度下降等问题,并且提高了制品的综合性能,节约了材料消耗。但此专利申请没有考虑材料韧性问题,由于复合材料用于制备电网输电线路复合芯时,要求复合芯在生产、运输及挂线施工过程中不因脆性因素造成开裂及断裂,因此复合材料的韧性不容忽视。The inventor filed an application number of CN200910237469.6 in 2009, and an invention patent application titled "A Resin-based Composite Material Suitable for Power Transmission Line Expansion Conductors and Its Preparation Process", and its technical solution relates to an application for The preparation process for stable and continuous production of high-strength, high-temperature resistant, regular surface, and high-gloss composite cores solves the problems of long curing cycle, prone to mold blockage, lack of product surface finish, incomplete resin-coated fibers, and problems in existing preparation processes. The problems such as the decline of mechanical strength caused by the resin curing process, and the comprehensive performance of the product are improved, and the material consumption is saved. However, this patent application does not consider the issue of material toughness. When the composite material is used to prepare the composite core of the power grid transmission line, it is required that the composite core should not be cracked or broken due to brittle factors during the production, transportation and hanging construction process. Therefore, the toughness of the composite material Can not be ignored.
申请号为CN200910011099.4,发明名称为“输电线路导线的玻璃纤维与碳纤维复合芯”的发明专利申请看,公开了一种输电线路导线的玻璃纤维与碳纤维复合芯,复合芯由碳纤维50%~55%、玻璃纤维10%~15%、树脂及辅助材料30%~40%组成。本发明申请制备的复合芯具有良好的抗拉强度,但复合芯的制备原料中没有为提高材料的韧性而特意添加的原料,只强调复合芯的抗拉强度。The application number is CN200910011099.4, and the invention patent application titled "glass fiber and carbon fiber composite core for transmission line conductors" discloses a glass fiber and carbon fiber composite core for transmission line conductors. The composite core is made of 50% to 50% carbon fibers 55%, glass fiber 10% to 15%, resin and auxiliary materials 30% to 40%. The composite core prepared by the application of the present invention has good tensile strength, but there is no raw material specially added to improve the toughness of the material in the preparation raw materials of the composite core, and only the tensile strength of the composite core is emphasized.
纤维增强树脂基复合芯的抗拉强度可以很好的得到保证,但由于纤维韧性较差,因此,如何在保证复合芯综合力学性能的同时,有效提高复合芯的韧性是急需解决的问题。The tensile strength of the fiber-reinforced resin-based composite core can be well guaranteed, but due to the poor toughness of the fiber, how to effectively improve the toughness of the composite core while ensuring the comprehensive mechanical properties of the composite core is an urgent problem to be solved.
发明内容 Contents of the invention
本发明目的在于提供一种用于电网输电线路导线的复合芯及其制备方法,本发明的复合芯在保证抗拉强度的前提下,即复合芯纤维含量Vf=50~80%,复合芯拉伸强度不低于2100MPa,复合芯玻璃化转变温度不低于190℃;和普通复合芯相比,韧性提高20~50%,卷绕性能由55D、2圈、不开裂,提高到30~45D、2圈、不开裂;且复合芯表面光洁,粗糙度相对较低。The object of the present invention is to provide a composite core used for power grid transmission line conductors and its preparation method. Under the premise of ensuring the tensile strength of the composite core, that is, the composite core fiber content V f =50-80%, the composite core The tensile strength is not lower than 2100MPa, and the glass transition temperature of the composite core is not lower than 190°C; compared with ordinary composite cores, the toughness is increased by 20-50%, and the winding performance is improved from 55D, 2 turns, no cracking, to 30-30 45D, 2 turns, no cracking; and the surface of the composite core is smooth and the roughness is relatively low.
为实现上述发明目的,本发明采取的技术方案为:For realizing above-mentioned purpose of the invention, the technical scheme that the present invention takes is:
一种用于电网输电线路导线的复合芯,所述复合芯用材料由树脂材料和纤维增强材料制成,其改进之处在于按体积分数计:所述树脂材料为20%-50%,纤维增强材料为50-80%;A composite core used for power grid transmission line conductors, the material for the composite core is made of resin material and fiber reinforcement material, the improvement is that in terms of volume fraction: the resin material is 20%-50%, the fiber Reinforcement material is 50-80%;
所述树脂材料包括:热固性树脂100份、固化剂50-150份、促进剂1-20份、脱模剂1-20份、增韧剂5-20份及纳米颗粒0.1-10份。The resin material includes: 100 parts of thermosetting resin, 50-150 parts of curing agent, 1-20 parts of accelerator, 1-20 parts of release agent, 5-20 parts of toughening agent and 0.1-10 parts of nano particles.
其中:所述纤维增强材料为任意选自碳纤维、玻璃纤维、玄武岩纤维、硼纤维、芳纶纤维、碳化硅纤维或PBI纤维中的一种或几种。Wherein: the fiber reinforcement material is one or more selected from carbon fiber, glass fiber, basalt fiber, boron fiber, aramid fiber, silicon carbide fiber or PBI fiber.
其中:所述热固性树脂为任意选自酚醛树脂、脲醛树脂、三聚氰胺-甲醛树脂、环氧树脂、不饱和树脂、聚氨酯或聚酰亚胺中的一种或几种。Wherein: the thermosetting resin is any one or more selected from phenolic resin, urea-formaldehyde resin, melamine-formaldehyde resin, epoxy resin, unsaturated resin, polyurethane or polyimide.
其中:所述固化剂为任意选自酸酐类、脂肪多元胺类、脂环多元胺类及芳香族多胺中的一种或几种。Wherein: the curing agent is one or more selected from acid anhydrides, aliphatic polyamines, alicyclic polyamines and aromatic polyamines.
其中:所述促进剂促进剂是选自胺类、苯酚类或咪唑类中的一种或几种。Wherein: the accelerator accelerator is one or more selected from amines, phenols or imidazoles.
其中:所述脱模剂是选自硬脂酸锌、硬脂酸、硅油类、硅脂类或自制内脱模剂的一种或几种。Wherein: the release agent is one or more selected from zinc stearate, stearic acid, silicone oil, silicone grease or self-made internal release agents.
其中:所述增韧剂是选自热塑聚醚多元醇、聚醚砜、聚砜、聚醚醚酮、超支化聚酰胺酯、液态橡胶、热致液晶聚合物、聚酯中的一种或几种。Wherein: the toughening agent is selected from thermoplastic polyether polyol, polyethersulfone, polysulfone, polyether ether ketone, hyperbranched polyamide ester, liquid rubber, thermotropic liquid crystal polymer, polyester or several.
其中:所述纳米颗粒是选自纳米蒙脱土、纳米碳纤维、纳米TiO2、纳米SiO2、BaTiO3或纳米Al2O3中的一种或几种。Wherein: the nanoparticles are one or more selected from nano-montmorillonite, nano-carbon fiber, nano-TiO 2 , nano-SiO 2 , BaTiO 3 or nano-Al 2 O 3 .
一种制备如权利要求1所述的复合芯方法,其改进之处在于所述方法步骤如下:A method for preparing a composite core as claimed in claim 1, wherein the improvement is that the steps of the method are as follows:
1)开卷纱束即纤维增强材料在牵引机的拉力下,经180~200℃干燥预处理1-2分钟,经过导向辊和集束栅板、集纱辊后,进入浸渍胶槽,浸透树脂材料的胶液0.5-1h;1) The uncoiled yarn bundle, that is, the fiber reinforced material, is dried and pretreated at 180-200°C for 1-2 minutes under the pulling force of the tractor, and then enters the impregnation tank after passing through the guide roller, the bundle grid plate and the yarn collection roller, and soaks the resin material The glue solution is 0.5-1h;
其中浸渍胶槽温度定为40℃~80℃;Among them, the temperature of the dipping tank is set at 40°C to 80°C;
2)经树脂材料胶液浸润的纤维增强材料,通过具有一定界面形状的预成型模具,排出多余的树脂和气泡,进行预成型;2) The fiber reinforced material infiltrated by the resin material glue is preformed by discharging excess resin and air bubbles through a preforming mold with a certain interface shape;
其中预成型模内的温度为70℃~120℃;The temperature in the preforming mold is 70°C to 120°C;
3)固化成型:3) Curing molding:
复合材料的树脂胶液在前段固化模具内逐步升温,经粘流态、凝胶态、玻璃态后成型固化,在内脱模剂的作用下,由牵引装置拉出脱模成型;The resin glue of the composite material is gradually heated up in the front-stage curing mold, and then formed and solidified after passing through the viscous fluid state, gel state, and glass state. Under the action of the internal release agent, it is pulled out by the traction device for demoulding;
其中前段固化模具第一加热区间温度为120-180℃;第二加热区间温度为130~200℃;第三加热区间温度为140~190℃;Among them, the temperature of the first heating zone of the front curing mold is 120-180°C; the temperature of the second heating zone is 130-200°C; the temperature of the third heating zone is 140-190°C;
树脂基复合材料后固化成型采用四段连续加热,加热区间的温度为170~220℃;The post-curing molding of resin-based composite materials adopts four-stage continuous heating, and the temperature in the heating zone is 170-220°C;
其中牵引速度不低于0.5m/min;Among them, the traction speed is not lower than 0.5m/min;
4)由收线机进行制品收卷,通过切割装置切成所需长度的复合芯。4) The product is rolled up by the wire take-up machine, and cut into a composite core of required length by a cutting device.
由于采用了上述技术方案,与现有技术相比,本发明的有益效果包括:Owing to adopting above-mentioned technical scheme, compared with prior art, the beneficial effect of the present invention comprises:
1)复合芯韧性显著提高1) The toughness of the composite core is significantly improved
按照本发明所述制备材料及制备工艺得到的复合芯,按照国家电网公司企业标准Q/GDW388-2009卷绕性能进行测试,最终碳纤维复合芯制品的性能指标应达到:和普通复合芯相比,韧性提高20~50%,即:卷绕性能由55D、2圈、不开裂,提高到30~45D、2圈、不开裂,高韧性降低了碳纤维复合芯在生产、运输及挂线施工过程中因脆性因素造成的断裂及开裂几率;The composite core obtained according to the preparation material and preparation process of the present invention is tested according to the winding performance of State Grid Corporation of China Enterprise Standard Q/GDW388-2009, and the performance index of the final carbon fiber composite core product should reach: compared with ordinary composite cores, The toughness is increased by 20-50%, that is, the winding performance is improved from 55D, 2 turns, no cracking, to 30-45D, 2 turns, no cracking, and the high toughness reduces the carbon fiber composite core during production, transportation and hanging construction. Fracture and cracking probability caused by brittle factors;
2)复合芯的抗拉强度保持在一定水平2) The tensile strength of the composite core is maintained at a certain level
复合芯纤维含量Vf=50~80%,复合芯拉伸强度不低于2100MPa;Composite core fiber content Vf = 50-80%, composite core tensile strength not less than 2100MPa;
3)采用DMA测试方法,复合芯玻璃化转变温度不低于180℃;3) Using the DMA test method, the glass transition temperature of the composite core should not be lower than 180°C;
4)制备方法简单,易于操作4) The preparation method is simple and easy to operate
本发明的制备方法对具体的参数:牵引速度、固化温度和加热区长度等进行合理设计,尽量缩减制备工序,使得复合芯的制备方法简单,且复合芯成型速度快,生产效率高。The preparation method of the present invention rationally designs the specific parameters: traction speed, curing temperature and heating zone length, etc., and minimizes the preparation process, so that the preparation method of the composite core is simple, and the composite core molding speed is fast and the production efficiency is high.
具体实施方式 Detailed ways
下面结合实例对本发明进行详细的说明。Below in conjunction with example the present invention is described in detail.
本发明公开了电网输电线路导线用碳纤维复合芯的树脂配方及制备工艺,复合芯具有高强度、高韧性、高玻璃化转变温度及表面光洁度。本发明在保持复合芯优异综合性能的同时,显著提高了其韧性,进一步降低了复合芯在生产、运输及挂线施工过程中因脆性因素造成的断裂及开裂几率。The invention discloses a resin formula and a preparation process of a carbon fiber composite core for a power grid transmission line conductor. The composite core has high strength, high toughness, high glass transition temperature and smooth surface. While maintaining the excellent comprehensive performance of the composite core, the invention significantly improves its toughness, and further reduces the fracture and cracking probability of the composite core caused by brittle factors during production, transportation and wire-hanging construction.
本发明所述的高韧性碳纤维复合芯制备工艺的树脂体系配方为:一种热固性树脂、固化剂、促进剂、脱模剂、增韧剂及纳米颗粒等。其中,固化剂是选自酸酐类、脂肪多元胺类、脂环多元胺类及芳香族多胺类中的一种或几种;促进剂是选自胺类、苯酚类、咪唑类中的一种或几种;脱模剂是选自硬脂酸锌、硬脂酸、硅油类、硅脂类、自制内脱模剂中的一种或几种;增韧剂是选自聚醚多元醇、聚醚砜、聚砜、聚醚醚酮、超支化聚酰胺酯、液态橡胶、热致液晶聚合物、聚酯的一种或几种;纳米颗粒是选自选自纳米蒙脱土、纳米碳纤维、纳米TiO2、纳米SiO2、BaTiO3或纳米Al2O3中的一种或几种。The resin system formulation of the high-toughness carbon fiber composite core preparation process of the present invention is: a thermosetting resin, a curing agent, an accelerator, a release agent, a toughening agent, and nanoparticles. Among them, the curing agent is one or more selected from acid anhydrides, aliphatic polyamines, alicyclic polyamines and aromatic polyamines; the accelerator is selected from one or more of amines, phenols, and imidazoles. one or more; the release agent is one or more selected from zinc stearate, stearic acid, silicone oil, silicone grease, self-made internal release agent; the toughening agent is selected from polyether polyol , polyethersulfone, polysulfone, polyether ether ketone, hyperbranched polyester amide, liquid rubber, thermotropic liquid crystal polymer, polyester or one or more; nanoparticles are selected from nano montmorillonite, nano One or more of carbon fiber, nano-TiO 2 , nano-SiO 2 , BaTiO 3 or nano-Al 2 O 3 .
高韧性复合芯的树脂配方按照如下配比的成分:树脂100份、固化剂50~150份、促进剂1~20份、增韧剂5-20份,纳米颗粒0.1~10份,脱模剂1~20份。The resin formulation of the high-toughness composite core has the following ingredients: 100 parts of resin, 50-150 parts of curing agent, 1-20 parts of accelerator, 5-20 parts of toughening agent, 0.1-10 parts of nanoparticles, and release agent 1 to 20 copies.
其中增强纤维为:碳纤维、玄武岩纤维、玻璃纤维、硼纤维、芳纶纤维、碳化硅纤维、PBI纤维中的一种或几种。The reinforcing fiber is one or more of carbon fiber, basalt fiber, glass fiber, boron fiber, aramid fiber, silicon carbide fiber, and PBI fiber.
热固性树脂是指在加热、加压下或在固化剂、紫外光作用下,进行化学反应,交联固化成为不溶不熔物质的一大类合成树脂,热固性树脂在固化后,由于分子间交联,形成网状结构,因此刚性大、硬度高、耐温高、不易燃、制品尺寸稳定性好,常用热固性树脂有酚醛树脂、脲醛树脂、三聚氰胺-甲醛树脂、环氧树脂、丁二烯树脂、不饱和树脂、聚氨酯、聚酰亚胺等。本发明所述热固性树脂包括:环氧树脂、聚酰亚胺、丁二烯树脂、聚氨酯。环氧树脂可以为缩水甘油醚类、缩水甘油酯类、缩水甘油胺类、脂环族环氧化合物、芳香族环氧化合物中的一种或几种。其中缩水甘油醚类可以为双酚A(二酚基丙烷缩水甘油醚)、双酚F型环氧树脂、多酚型缩水甘油醚环氧树脂、聚乙二醇二缩水甘油醚、聚丙二醇二缩水甘油醚、1,4-丁二醇二缩水甘油醚中的一种或几种。缩水甘油酯类可以为邻苯二甲酸二缩水甘油酯、间苯二甲酸二缩水甘油酯、四氢邻苯二甲酸二缩水甘油酯、六氢邻苯二甲酸二缩水甘油酯中的一种或几种。脂环族环氧化合物可以为二氧化双环戊二烯、环己烯酯环氧树脂、二氧化双环戊烯基醚中的一种或几种。缩水甘油胺类可以为4,4`-二氨基二苯甲烷环氧树脂、对氨基苯酚环氧树脂、三聚氰胺环氧树脂及海因环氧树脂中的一种或几种。芳香族环氧化合物可以为芳香族聚醚缩水甘油醚环氧树脂、芳香族超支化聚酯型环氧树脂等。Thermosetting resin refers to a large class of synthetic resins that undergo chemical reactions under heating, pressure, or under the action of curing agents and ultraviolet light, and cross-link and solidify into insoluble and infusible substances. , forming a network structure, so it has high rigidity, high hardness, high temperature resistance, non-flammability, and good dimensional stability of the product. Commonly used thermosetting resins include phenolic resin, urea-formaldehyde resin, melamine-formaldehyde resin, epoxy resin, butadiene resin, Unsaturated resin, polyurethane, polyimide, etc. The thermosetting resin in the present invention includes: epoxy resin, polyimide, butadiene resin and polyurethane. The epoxy resin can be one or more of glycidyl ethers, glycidyl esters, glycidyl amines, alicyclic epoxy compounds, and aromatic epoxy compounds. Among them, the glycidyl ethers can be bisphenol A (diphenol propane glycidyl ether), bisphenol F type epoxy resin, polyphenol type glycidyl ether epoxy resin, polyethylene glycol diglycidyl ether, polypropylene glycol diol One or more of glycidyl ether and 1,4-butanediol diglycidyl ether. Glycidyl esters can be one of diglycidyl phthalate, diglycidyl isophthalate, diglycidyl tetrahydrophthalate, diglycidyl hexahydrophthalate, or Several kinds. The alicyclic epoxy compound may be one or more of dicyclopentadiene dioxide, cyclohexenyl ester epoxy resin, and dicyclopentenyl ether dioxide. Glycidylamines can be one or more of 4,4'-diaminodiphenylmethane epoxy resin, p-aminophenol epoxy resin, melamine epoxy resin and hydantoin epoxy resin. The aromatic epoxy compound may be an aromatic polyether glycidyl ether epoxy resin, an aromatic hyperbranched polyester epoxy resin, or the like.
增强材料主要用于增加热固性树脂的韧性和强度,增强材料的分类有如木粉、矿物粉、纤维或纺织品,本发明的增强材料选用纤维,纤维为任意选自碳纤维、玄武岩纤维、玻璃纤维、硼纤维、芳纶纤维、碳化硅纤维、聚苯并咪唑纤维中的一种或几种;碳纤维为用聚丙烯腈纤维、沥青纤维、粘胶丝或酚醛纤维经碳化制得;玄武岩纤维是玄武岩石料在1450℃~1500℃熔融后,通过铂铑合金拉丝漏板高速拉制而成的连续纤维;芳纶纤维为聚对亚苯基苯并双恶唑纤维、聚对亚苯基苯并双噻唑纤维、聚醚醚酮纤维或聚砜基酰胺纤维中的一种或几种。The reinforcing material is mainly used to increase the toughness and strength of the thermosetting resin. The classification of the reinforcing material is like wood powder, mineral powder, fiber or textiles. The reinforcing material of the present invention is selected from fiber, and the fiber is selected from carbon fiber, basalt fiber, glass fiber, boron arbitrarily. Fiber, aramid fiber, silicon carbide fiber, polybenzimidazole fiber or one or more; carbon fiber is made of polyacrylonitrile fiber, pitch fiber, viscose or phenolic fiber by carbonization; basalt fiber is basalt rock After melting at 1450 ° C ~ 1500 ° C, it is a continuous fiber drawn by a platinum-rhodium alloy drawing bushing at high speed; aramid fiber is poly-p-phenylene benzobisoxazole fiber, poly-p-phenylene benzobisthiazole One or more of fiber, polyether ether ketone fiber or polysulfone amide fiber.
本发明中的固化剂是任意选自酸酐类、脂肪多元胺类、脂环多元胺类及芳香族多胺中的一种或几种,酸酐类固化剂使用的配方体系粘度低,使用期长,可分为芳香族酸酐、脂肪酸酐和卤化酸酐等。本发明配方中所涉及的酸酐类固化剂可以为70酸酐,70酸酐是丁二烯与顺丁烯二酸酐反应而得的改性酸酐;80#阻燃液体酸酐,它是含溴的液体酸酐,其固化产物具有离火自熄的阻燃性、优良的电气性能、耐潮性和物理机械性能;82酸酐,是桐油改性顺丁烯二酸酐所得的桐油酸酐,有内增塑作用,可以使固化物的力学性能和防水性能均有所改善。脂肪多元胺可以为乙二胺、二亚乙基三胺、三亚乙基四胺、四亚乙基五胺、己二胺、间苯二甲胺等。脂环多元胺类固化剂可以为孟烷二胺、N-氨乙基哌嗪、异佛尔酮二胺等。芳香族多胺类固化剂可以为间苯二甲胺、间苯二胺、二氨基二苯基砜等。The curing agent in the present invention is one or more selected from acid anhydrides, aliphatic polyamines, alicyclic polyamines and aromatic polyamines. The formula system used for acid anhydride curing agents has low viscosity and long service life. , can be divided into aromatic anhydrides, fatty acid anhydrides and halogenated anhydrides. The acid anhydride curing agent involved in the formula of the present invention can be 70 acid anhydride, which is a modified anhydride obtained by the reaction of butadiene and maleic anhydride; 80# flame-retardant liquid anhydride, which is a bromine-containing liquid anhydride , the cured product has self-extinguishing flame retardancy, excellent electrical properties, moisture resistance and physical and mechanical properties; 82 acid anhydride is tung oil anhydride obtained from tung oil modified maleic anhydride, which has internal plasticizing effect and can The mechanical properties and waterproof properties of the cured product are improved. The fatty polyamines can be ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, hexamethylenediamine, m-xylylenediamine and the like. The alicyclic polyamine curing agent can be menthane diamine, N-aminoethylpiperazine, isophorone diamine and the like. The aromatic polyamine curing agent can be m-xylylenediamine, m-phenylenediamine, diaminodiphenyl sulfone and the like.
本发明中的促进剂是任意选自自胺类、苯酚类、咪唑类中的一种或几种;促进剂一是作为补强树脂的固化剂,提高橡胶制品的硬度;二是与间苯二酚等助剂一起构成粘合体系,对橡胶与纤维的粘合起着重要作用。Accelerator among the present invention is to be selected from one or more in amines, phenols, imidazoles arbitrarily; Accelerator one is as the curing agent of reinforcing resin, improves the hardness of rubber product; Additives such as diphenol together form the bonding system, which plays an important role in the bonding of rubber and fiber.
本发明中的脱模剂是任意选自选自硬脂酸锌、硬脂酸、硅油类、硅脂类中的一种或几种。The release agent in the present invention is arbitrarily selected from one or more of zinc stearate, stearic acid, silicone oils, and silicone greases.
本发明中的增韧剂是任意选自聚醚多元醇、聚醚砜、聚砜、聚醚醚酮、超支化聚酰胺酯、液态橡胶、热致液晶聚合物、聚酯的一种或几种;聚醚砜、聚砜、聚醚醚酮等热塑性树脂具有受热软化、冷却硬化的性能,而且不起化学反应,无论加热和冷却重复进行多少次,均能保持这种性能,,热塑性树脂的优点是加工成型简便,具有较高的机械能。超支化聚酰胺酯具有粘度低、官能度高、溶解性能良好及无缠结等优点。液态橡胶主要指液态丁腈橡胶、液态硅橡胶等。热致液晶聚合物是继溶致液晶聚合物之后兴起的,其综合性能优异,而且能够进行注塑、挤出成型加工。聚酯,由多元醇和多元酸缩聚而得的聚合物总称。主要指聚对苯二甲酸乙二酯(PET),习惯上也包括聚对苯二甲酸丁二酯(PBT)和聚芳酯等线型热塑性树脂。聚芳酯是一类高性能的工程塑料,主要有聚对苯二甲酸二烯丙酯,聚对羟基苯甲酸酯和U-聚合物三种。The toughening agent in the present invention is one or more selected from polyether polyol, polyether sulfone, polysulfone, polyether ether ketone, hyperbranched polyamide ester, liquid rubber, thermotropic liquid crystal polymer, polyester Species; thermoplastic resins such as polyethersulfone, polysulfone, and polyetheretherketone have the properties of softening by heating and hardening by cooling, and do not react chemically. No matter how many times heating and cooling are repeated, this property can be maintained. Thermoplastic resins The biggest advantage is that it is easy to process and shape, and has high mechanical energy. Hyperbranched polyamide has the advantages of low viscosity, high functionality, good solubility and no entanglement. Liquid rubber mainly refers to liquid nitrile rubber, liquid silicone rubber, etc. Thermotropic liquid crystal polymers are emerging after lyotropic liquid crystal polymers. They have excellent comprehensive properties and can be processed by injection molding and extrusion. Polyester is a general term for polymers obtained by polycondensation of polyols and polybasic acids. It mainly refers to polyethylene terephthalate (PET), and customarily also includes linear thermoplastic resins such as polybutylene terephthalate (PBT) and polyarylate. Polyarylate is a class of high-performance engineering plastics, mainly including polydiallyl terephthalate, polyparaben and U-polymer.
本发明中的纳米颗粒是任意选自纳米蒙脱土、纳米碳纤维、纳米TiO2、纳米SiO2、BaTiO3或纳米Al2O3中的一种或几种。纳米颗粒和增韧剂的加入,使得本发明复合材料韧性得到较大改善。纳米颗粒的加入使得复合材料在收到外力时,容易吸收应力;增韧剂的加入使得树脂体系配方的韧性大大改善,复合材料的卷绕性能得以提升,从而降低复合芯在生产、运输及挂线施工过程中因脆性因素造成开裂及断裂几率。The nano particles in the present invention are one or more selected from nano-montmorillonite, nano-carbon fiber, nano-TiO 2 , nano-SiO 2 , BaTiO 3 or nano-Al 2 O 3 . The addition of the nanoparticles and the toughening agent greatly improves the toughness of the composite material of the present invention. The addition of nanoparticles makes the composite material easy to absorb stress when receiving external force; the addition of toughening agent greatly improves the toughness of the resin system formulation, and the winding performance of the composite material is improved, thereby reducing the composite core during production, transportation and hanging. During the line construction process, the probability of cracking and fracture is caused by brittle factors.
本发明所述的新型高韧性复合芯制备工艺对应的相应参数在如下基础上得出:以复合芯制备工艺所涉及的树脂固化过程对应的模具内温度场和树脂固化度动态变化为参照,以牵引速度,固化温度,加热区间长度作为三因素,耐热性、拉伸强度、韧性作为三水平进行正交化设计。The corresponding parameters corresponding to the preparation process of the novel high-toughness composite core described in the present invention are obtained on the following basis: taking the temperature field in the mold corresponding to the resin curing process involved in the composite core preparation process and the dynamic change of the resin curing degree as a reference, and taking The traction speed, curing temperature, and length of the heating zone are used as three factors, and heat resistance, tensile strength, and toughness are used as three levels for orthogonal design.
本发明提供了一种新型高韧性电网输电线路导线用碳纤维复合芯的制备工艺,包括以下步骤:The invention provides a preparation process of a novel carbon fiber composite core for a high-toughness power grid transmission line conductor, comprising the following steps:
(1)开卷纱束(所选纤维)在牵引机的拉力下,经180~200℃干燥处理1分钟,通过一系列导向辊和集束栅板、集纱辊后,进入浸渍胶槽,充分浸透所选树脂配方的胶液;(1) The uncoiled yarn bundle (selected fiber) is dried at 180-200°C for 1 minute under the pulling force of the tractor, and after passing through a series of guide rollers, gathering grids and yarn collecting rollers, it enters the impregnating glue tank and is fully soaked The glue of the selected resin formula;
(2)所选纤维经纳米改性高韧性树脂配方胶液充分浸润,通过具有一定界面形状的预成型模具,排出多余的树脂和气泡,进行预成型;(2) The selected fiber is fully infiltrated by the nano-modified high-toughness resin formula glue, and the excess resin and air bubbles are discharged through a pre-forming mold with a certain interface shape for pre-forming;
(3)固化成型:通过前段固化模具,所选纳米改性高韧性树脂配方胶液在模具内逐步升温,经粘流态、凝胶态、玻璃态后成型固化,在内脱模剂的作用下,由牵引装置拉出脱模成型;(3) Curing molding: through the front-stage curing mold, the selected nano-modified high-toughness resin formula glue gradually heats up in the mold, and is molded and solidified after passing through the viscous fluid state, gel state, and glass state. The role of the internal release agent Next, it is pulled out by the traction device for demoulding;
(4)后固化处理;(4) post-curing treatment;
(5)由收线机进行制品收卷,通过切割装置切成所需长度的制品。(5) The product is rolled up by the wire take-up machine, and the product is cut into the required length by the cutting device.
其中,所述浸渍纳米改性高韧性树脂配方体系的胶槽温度恒定为40-80℃,预成型模内的温度为70~120℃。Wherein, the temperature of the glue tank for impregnating the nano-modified high-toughness resin formulation system is constant at 40-80°C, and the temperature inside the preforming mold is 70-120°C.
其中,适用于纳米改性高韧性树脂配方体系的前段固化模具第一加热区间温度为120-180℃;第二加热区间温度为130~200℃;第三加热区间温度为140~190℃。Among them, the temperature of the first stage of the curing mold suitable for the nano-modified high-toughness resin formulation system is 120-180 °C; the temperature of the second heating area is 130-200 °C; the temperature of the third heating area is 140-190 °C.
其中,适用于纳米改性高韧性碳纤维复合芯的后固化工艺采用四段连续加热,加热区间的温度为170~220℃。Among them, the post-curing process suitable for the nano-modified high-toughness carbon fiber composite core adopts four-stage continuous heating, and the temperature in the heating interval is 170-220°C.
其中,牵引速度不低于0.5m/min。Among them, the traction speed is not lower than 0.5m/min.
本发明所述的电网输电线路导线用碳纤维复合芯的树脂体系配方及制备工艺,按照国家电网公司企业标准Q/GDW388-2009卷绕性能进行测试,最终碳纤维复合芯制品的性能指标应达到:和普通复合芯相比,韧性提高20~50%(卷绕性能由55D、2圈、不开裂,提高到30~45D、2圈、不开裂),复合芯纤维含量Vf=50~80%,复合芯拉伸强度不低于2100MPa,复合芯玻璃化转变温度不低于190℃(采用DMA测试方法)。The resin system formula and preparation process of the carbon fiber composite core for the wire of the grid transmission line according to the present invention are tested according to the winding performance of the enterprise standard Q/GDW388-2009 of the State Grid Corporation of China, and the performance index of the final carbon fiber composite core product should reach: and Compared with the ordinary composite core, the toughness is increased by 20-50% (the winding performance is improved from 55D, 2 turns, no cracking, to 30-45D, 2 turns, no cracking), the fiber content of the composite core V f =50-80%, The tensile strength of the composite core is not lower than 2100MPa, and the glass transition temperature of the composite core is not lower than 190°C (using DMA test method).
实施例1Example 1
本发明所述的新型高韧性碳纤维复合芯制备工艺所涉及的树脂配方,按照如下配比:热固性树脂(缩水甘油醚类环氧树脂)100份、固化剂(酸酐类)100份、促进剂(胺类)8份、纳米颗粒(纳米蒙脱土)5份、增韧剂(聚醚多元醇类)10份、脱模剂(硬脂酸)3份。The resin formula involved in the preparation process of the novel high-toughness carbon fiber composite core of the present invention is according to the following ratio: 100 parts of thermosetting resin (glycidyl ether epoxy resin), 100 parts of curing agent (acid anhydride), accelerator ( Amines) 8 parts, nanoparticles (nano-montmorillonite) 5 parts, toughening agent (polyether polyols) 10 parts, mold release agent (stearic acid) 3 parts.
胶槽的温度恒定为60℃,经树脂浸润的碳纤维在模具前段预热区的温度为100℃。The temperature of the glue tank is constant at 60°C, and the temperature of the resin-infiltrated carbon fiber in the preheating zone at the front of the mold is 100°C.
本发明所述的新型高韧性的复合芯制备工艺对应的前段固化模具,对应的第一加热区间为160℃;第二加热区间为180℃;第三加热区间为170℃。后固化区间,采用四段连续加热方式,加热区间的温度均为210℃。The front-stage curing mold corresponding to the preparation process of the novel high-toughness composite core described in the present invention corresponds to a first heating zone of 160°C; a second heating zone of 180°C; and a third heating zone of 170°C. In the post-curing section, a four-stage continuous heating method is adopted, and the temperature in the heating section is 210°C.
牵引速度设为0.5m/min。Traction speed is set to 0.5m/min.
按照上述新型高韧性复合芯制备工艺制备得到的样品经检测,碳纤维复合芯卷绕性能为42D、2圈、不开裂复合芯韧性提高24%,玻璃化转变温度为190℃,拉伸强度2257MPa。The samples prepared according to the above-mentioned new high-toughness composite core preparation process have been tested. The winding performance of the carbon fiber composite core is 42D, 2 turns, and the toughness of the composite core without cracking is increased by 24%. The glass transition temperature is 190°C and the tensile strength is 2257MPa.
实施例2Example 2
本发明所述的新型高韧性复合芯制备工艺所涉及的树脂配方,按照如下配比:树脂(缩水甘油醚类环氧树脂)100份、固化剂(酸酐类)100份、促进剂(胺类)12份、纳米颗粒(纳米SiO2)3份、增韧剂(超支化聚酰胺酯)20份、脱模剂(硬脂酸)5份。The resin formula involved in the preparation process of the novel high-toughness composite core according to the present invention is as follows: 100 parts of resin (glycidyl ether epoxy resin), 100 parts of curing agent (acid anhydrides), accelerator (amines) ) 12 parts, nanoparticles (nano SiO 2 ) 3 parts, toughening agent (hyperbranched polyamide ester) 20 parts, mold release agent (stearic acid) 5 parts.
胶槽的温度恒定为60℃,经树脂浸润的碳纤维在模具前段预热区的温度为110℃。The temperature of the glue tank is constant at 60°C, and the temperature of the resin-infiltrated carbon fiber in the preheating zone at the front of the mold is 110°C.
本发明所述的新型高韧性复合芯制备工艺对应的前段固化模具,对应的第一加热区间为145℃;第二加热区间为180℃;第三加热区间为175℃。后固化区间,采用四段连续加热方式,加热区间的温度均为220℃。The front-stage curing mold corresponding to the preparation process of the new high-toughness composite core described in the present invention corresponds to a first heating zone of 145°C; a second heating zone of 180°C; and a third heating zone of 175°C. In the post-curing section, a four-stage continuous heating method is adopted, and the temperature in the heating section is 220°C.
牵引速度设为0.6m/min。Traction speed is set to 0.6m/min.
按照上述新型高韧性复合芯制备工艺制备得到的样品经检测,碳纤维复合芯卷绕性能为38D、2圈、不开裂复合芯韧性提高31%,玻璃化转变温度为198℃,拉伸强度2340MPa。The samples prepared according to the above-mentioned new high-toughness composite core preparation process were tested. The winding performance of the carbon fiber composite core was 38D, 2 turns, and the toughness of the composite core without cracking increased by 31%. The glass transition temperature was 198°C and the tensile strength was 2340MPa.
实施例3Example 3
本发明所述的新型高韧性复合芯制备工艺所涉及的树脂配方,按照如下配比:树脂(芳香族聚醚缩水甘油醚环氧树脂)100份、固化剂(酸酐类)110份、促进剂(胺类)10份、纳米颗粒(纳米SiO2)2份、增韧剂(聚醚醚酮)18份、脱模剂(硬脂酸)5份。The resin formula involved in the preparation process of the novel high-toughness composite core of the present invention is according to the following ratio: 100 parts of resin (aromatic polyether glycidyl ether epoxy resin), 110 parts of curing agent (acid anhydrides), accelerator (amines) 10 parts, nanoparticles (nanometer SiO 2 ) 2 parts, toughening agent (polyether ether ketone) 18 parts, mold release agent (stearic acid) 5 parts.
胶槽的温度恒定为60℃,经树脂浸润的碳纤维在模具前段预热区的温度为110℃。The temperature of the glue tank is constant at 60°C, and the temperature of the resin-infiltrated carbon fiber in the preheating zone at the front of the mold is 110°C.
本发明所述的新型高韧性复合芯制备工艺对应的前段固化模具,对应的第一加热区间为150℃;第二加热区间为185℃;第三加热区间为170℃。后固化区间,采用四段连续加热方式,加热区间的温度为200℃。The front-stage curing mold corresponding to the preparation process of the novel high-toughness composite core described in the present invention corresponds to a first heating zone of 150°C; a second heating zone of 185°C; and a third heating zone of 170°C. In the post-curing section, a four-stage continuous heating method is adopted, and the temperature in the heating section is 200°C.
牵引速度设为0.55m/min。The traction speed is set to 0.55m/min.
按照上述新型高韧性复合芯制备工艺制备得到的样品经检测,碳纤维复合芯卷绕性能为40D、2圈、不开裂,韧性提高27%,玻璃化转变温度为195℃,拉伸强度2308MPa。The samples prepared according to the above-mentioned new high-toughness composite core preparation process have been tested. The carbon fiber composite core has a winding performance of 40D, 2 turns, no cracking, a 27% increase in toughness, a glass transition temperature of 195°C, and a tensile strength of 2308MPa.
此处已经根据特定的示例性实施例对本发明进行了描述。对本领域的技术人员来说在不脱离本发明的范围下进行适当的替换或修改将是显而易见的。示例性的实施例仅仅是例证性的,而不是对本发明的范围的限制,本发明的范围由所附的权利要求定义。The invention has been described herein in terms of specific exemplary embodiments. Appropriate substitutions or modifications will be apparent to those skilled in the art without departing from the scope of the present invention. The exemplary embodiments are illustrative only, and not limiting of the scope of the invention, which is defined by the appended claims.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110380721.6A CN102516708B (en) | 2011-11-25 | 2011-11-25 | Composite core for power grid transmission line wire and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110380721.6A CN102516708B (en) | 2011-11-25 | 2011-11-25 | Composite core for power grid transmission line wire and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102516708A CN102516708A (en) | 2012-06-27 |
CN102516708B true CN102516708B (en) | 2014-07-02 |
Family
ID=46287801
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201110380721.6A Active CN102516708B (en) | 2011-11-25 | 2011-11-25 | Composite core for power grid transmission line wire and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102516708B (en) |
Families Citing this family (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103578665B (en) * | 2012-07-25 | 2016-04-27 | 远东电缆有限公司 | Overhead transmission line stranded fiber strengthens the preparation method of resin-based composite core |
CN102977552B (en) * | 2012-10-18 | 2015-08-05 | 国网智能电网研究院 | A kind of fiber-reinforced resin matrix compound material and preparation method thereof |
CN103522558A (en) * | 2013-09-27 | 2014-01-22 | 江苏亨通光电股份有限公司 | Method for manufacturing PE (poly ethylene) fiber pole |
CN103529526A (en) * | 2013-09-27 | 2014-01-22 | 江苏亨通光电股份有限公司 | Method for manufacturing basalt fiber rod |
CN103500610A (en) * | 2013-10-18 | 2014-01-08 | 上海大学 | Fiber composite rope core for overhead conducting wire |
CN103772979A (en) * | 2013-12-20 | 2014-05-07 | 上海珀理玫化学科技有限公司 | Formula for synthetizing protein-bound iodine (PBI) fiber composite material |
WO2016047357A1 (en) * | 2014-09-25 | 2016-03-31 | Dic株式会社 | Epoxy resin composition, cured product, fiber-reinforced composite material, fiber-reinforced resin molded article, and method for producing fiber-reinforced resin molded article |
CN104403279B (en) * | 2014-12-26 | 2017-09-12 | 芜湖市汽车产业技术研究院有限公司 | A kind of preparation method of high-toughness epoxy resin carbon fibre composite |
CN106710668B (en) * | 2014-12-29 | 2018-06-29 | 江苏亨通电力特种导线有限公司 | Electric power overhead aluminum stranded conductor |
CN104672782B (en) * | 2014-12-31 | 2017-11-07 | 国家电网公司 | A kind of fiber-reinforced resin matrix compound material core and its manufacture method |
CN104861421A (en) * | 2015-05-08 | 2015-08-26 | 安徽梦谷纤维材料科技有限公司 | Plate for electric control box and manufacturing method thereof |
CN105017717A (en) * | 2015-08-19 | 2015-11-04 | 苏州凯欧曼新材料科技有限公司 | High polymer insulating material for electrical conducting wires and preparation method thereof |
CN105513706A (en) * | 2015-08-23 | 2016-04-20 | 国网山东省电力公司临沂供电公司 | Fiber composite core wire for transmission line |
CN105176001B (en) * | 2015-10-09 | 2018-03-20 | 远东电缆有限公司 | Wisdom energy carbon fibre resin base composite core low-cost high-temperature pultrusion epoxy resin |
CN105419230A (en) * | 2015-11-19 | 2016-03-23 | 华瑞电器股份有限公司 | Reinforcing ring for reversing device and preparation method thereof |
CN105719768B (en) * | 2016-05-03 | 2018-09-25 | 上海电缆研究所有限公司 | Aerial condutor aluminium packet fiber-reinforced composite core and its manufacturing method |
CN105885137A (en) * | 2016-06-20 | 2016-08-24 | 李文军 | Anti-acid and anti-alkali insulating material and production process thereof |
CN106373649B (en) * | 2016-09-29 | 2018-04-24 | 国网山东省电力公司荣成市供电公司 | A kind of composite core of grid power transmission conducting wire and preparation method thereof |
CN108929523A (en) * | 2017-05-24 | 2018-12-04 | 江苏创曦复合材料科技有限公司 | A kind of high-performance composite materials and preparation method thereof for photovoltaic bracket |
CN107226998A (en) * | 2017-06-22 | 2017-10-03 | 合肥励仙电力工程有限公司 | A kind of thermally curable polymer conductive material and preparation method thereof |
CN108044954A (en) * | 2017-11-30 | 2018-05-18 | 安徽坤大化学锚固有限公司 | A kind of processing technology of high strength glass steel anchor rod |
CN108962423B (en) * | 2018-07-04 | 2019-12-13 | 凤凰电力有限公司 | Carbon fiber composite core for cable and manufacturing method thereof |
CN109637722B (en) * | 2018-11-06 | 2020-11-03 | 深圳烯湾科技有限公司 | Carbon nanotube fiber wire |
CN109537287A (en) * | 2019-01-08 | 2019-03-29 | 徐致伟 | High voltage power transmission and transforming route carbon fiber composite conductor strengthening core and preparation method thereof |
CN110343367B (en) * | 2019-07-31 | 2021-11-12 | 国网河南省电力公司电力科学研究院 | High-toughness carbon fiber composite core for overhead conductor |
CN112071482A (en) * | 2020-07-24 | 2020-12-11 | 福建创立佳科技有限公司 | A kind of aramid/carbon fiber composite core stranded wire, its preparation device and preparation method |
CN112095250A (en) * | 2020-07-24 | 2020-12-18 | 福建创立佳科技有限公司 | Preparation method of aramid fiber composite core |
CN112048151A (en) * | 2020-07-24 | 2020-12-08 | 福建创立佳科技有限公司 | Resin composition for preparing aramid composite core by pultrusion process |
CN111923449A (en) * | 2020-07-24 | 2020-11-13 | 福建创立佳科技有限公司 | A kind of method for preparing aramid fiber composite core by hot stretching and shaping of aramid fiber |
CN112556752B (en) * | 2020-12-01 | 2022-07-12 | 国网浙江省电力有限公司经济技术研究院 | Method, device and system for testing mechanical properties of in-service carbon fiber composite core wires |
CN112940454A (en) * | 2021-02-19 | 2021-06-11 | 陕西泰普瑞电工技术有限公司 | High-temperature-resistant high-voltage partial discharge-free epoxy resin insulating material and preparation method thereof |
US11955782B1 (en) | 2022-11-01 | 2024-04-09 | Typhon Technology Solutions (U.S.), Llc | System and method for fracturing of underground formations using electric grid power |
CN116178933B (en) * | 2023-05-05 | 2023-08-01 | 西隆电缆有限公司 | High-flame-retardance high-wear-resistance cable material and cable |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101572132A (en) * | 2009-07-11 | 2009-11-04 | 程显军 | Glass fiber and carbon fiber composite core for wire of transmission line |
CN101864145A (en) * | 2010-06-08 | 2010-10-20 | 桂林五环电器制造有限公司 | High heat conductive insulating impregnated resin used for air reactor and preparation method thereof |
-
2011
- 2011-11-25 CN CN201110380721.6A patent/CN102516708B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101572132A (en) * | 2009-07-11 | 2009-11-04 | 程显军 | Glass fiber and carbon fiber composite core for wire of transmission line |
CN101864145A (en) * | 2010-06-08 | 2010-10-20 | 桂林五环电器制造有限公司 | High heat conductive insulating impregnated resin used for air reactor and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN102516708A (en) | 2012-06-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102516708B (en) | Composite core for power grid transmission line wire and preparation method thereof | |
CN102977552B (en) | A kind of fiber-reinforced resin matrix compound material and preparation method thereof | |
CN104672782B (en) | A kind of fiber-reinforced resin matrix compound material core and its manufacture method | |
CN102176345B (en) | Hybrid fiber pultruded composite material, and preparation method and molding device thereof | |
CN102279449B (en) | Basalt fiber optical cable reinforced core and manufacturing method thereof | |
CN1898085A (en) | Aluminum conductor composite core reinforced cable and method of manufacture | |
CN105694444B (en) | A kind of long basalt fibre enhancing PA6 composites and its melt impregnation preparation method | |
CN111873490A (en) | Pre-embedded strip, equipment and process for epoxy resin-based fiber-reinforced high-modulus wind turbine blades | |
CN101908391B (en) | Carbon fiber-resin composite core for overhead cable | |
CN106808762A (en) | A kind of high intensity drawing and extruding section bar and preparation method thereof | |
CN102504523B (en) | High-toughness polyurethane composite insulator core rod and preparation method thereof | |
CN110305450A (en) | Fiber-reinforced resin-based composite core for overhead lines and preparation method thereof | |
Cooke | High performance fiber composites with special emphasis on the interface a review of the literature | |
CN114506129A (en) | Composite material rod and preparation method and application thereof | |
CN101722658B (en) | A resin-based composite material suitable for expansion wires of transmission lines and its preparation process | |
CN104517673A (en) | Carbon fiber composite core wire and production method | |
CN202540829U (en) | Fiber reinforced composite core | |
CN110343367B (en) | High-toughness carbon fiber composite core for overhead conductor | |
CN110517820A (en) | A kind of electric power line carbon fiber compound core conducting wire plug | |
CN202209482U (en) | FRP material composite stainless steel pipe | |
RU2461588C1 (en) | Composite reinforcing article | |
CN110566134B (en) | Fiber composite material core stranded metal wire sucker rod and preparation method and application thereof | |
CN102615886A (en) | Basalt fiber reinforced polypropylene composite material moulding process | |
CN111554440B (en) | High-strength aluminum alloy power transmission wire | |
CN201838372U (en) | Conducting wire core rod made of thermoplastic resin matrix composite material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
ASS | Succession or assignment of patent right |
Owner name: STATE ELECTRIC NET CROP. Effective date: 20130520 |
|
C41 | Transfer of patent application or patent right or utility model | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20130520 Address after: 100192 Beijing city Haidian District Qinghe small Camp Road No. 15 Applicant after: China Electric Power Research Institute Applicant after: State Grid Corporation of China Address before: 100192 Beijing city Haidian District Qinghe small Camp Road No. 15 Applicant before: China Electric Power Research Institute |
|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |