CN102497219B - 用于电力线通信的系统和方法 - Google Patents
用于电力线通信的系统和方法 Download PDFInfo
- Publication number
- CN102497219B CN102497219B CN201110076537.2A CN201110076537A CN102497219B CN 102497219 B CN102497219 B CN 102497219B CN 201110076537 A CN201110076537 A CN 201110076537A CN 102497219 B CN102497219 B CN 102497219B
- Authority
- CN
- China
- Prior art keywords
- data
- time slot
- power line
- signal
- emission period
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 74
- 238000004891 communication Methods 0.000 title abstract description 7
- 230000005540 biological transmission Effects 0.000 claims abstract description 24
- 230000004044 response Effects 0.000 claims description 4
- 238000012790 confirmation Methods 0.000 claims 1
- 230000001360 synchronised effect Effects 0.000 abstract description 10
- 238000010586 diagram Methods 0.000 description 20
- 238000012545 processing Methods 0.000 description 16
- 238000007476 Maximum Likelihood Methods 0.000 description 13
- 238000005516 engineering process Methods 0.000 description 8
- 238000001914 filtration Methods 0.000 description 8
- 238000013459 approach Methods 0.000 description 7
- 238000001514 detection method Methods 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 230000008878 coupling Effects 0.000 description 6
- 238000010168 coupling process Methods 0.000 description 6
- 238000005859 coupling reaction Methods 0.000 description 6
- 238000005070 sampling Methods 0.000 description 5
- 230000009466 transformation Effects 0.000 description 5
- 230000001681 protective effect Effects 0.000 description 4
- 230000008054 signal transmission Effects 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 4
- 230000003321 amplification Effects 0.000 description 3
- 239000012634 fragment Substances 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 238000003199 nucleic acid amplification method Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 230000003139 buffering effect Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000000875 corresponding effect Effects 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- WPPDXAHGCGPUPK-UHFFFAOYSA-N red 2 Chemical compound C1=CC=CC=C1C(C1=CC=CC=C11)=C(C=2C=3C4=CC=C5C6=CC=C7C8=C(C=9C=CC=CC=9)C9=CC=CC=C9C(C=9C=CC=CC=9)=C8C8=CC=C(C6=C87)C(C=35)=CC=2)C4=C1C1=CC=CC=C1 WPPDXAHGCGPUPK-UHFFFAOYSA-N 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B3/00—Line transmission systems
- H04B3/54—Systems for transmission via power distribution lines
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J13/00—Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
- H02J13/00006—Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
- H02J13/00007—Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using the power network as support for the transmission
- H02J13/00009—Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using the power network as support for the transmission using pulsed signals
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J13/00—Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
- H02J13/00006—Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
- H02J13/00007—Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using the power network as support for the transmission
- H02J13/0001—Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using the power network as support for the transmission using modification of a parameter of the network power signal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/38—Synchronous or start-stop systems, e.g. for Baudot code
- H04L25/40—Transmitting circuits; Receiving circuits
- H04L25/49—Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems
- H04L25/4902—Pulse width modulation; Pulse position modulation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/0002—Modulated-carrier systems analog front ends; means for connecting modulators, demodulators or transceivers to a transmission line
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/10—Frequency-modulated carrier systems, i.e. using frequency-shift keying
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B2203/00—Indexing scheme relating to line transmission systems
- H04B2203/54—Aspects of powerline communications not already covered by H04B3/54 and its subgroups
- H04B2203/5404—Methods of transmitting or receiving signals via power distribution lines
- H04B2203/5416—Methods of transmitting or receiving signals via power distribution lines by adding signals to the wave form of the power source
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B2203/00—Indexing scheme relating to line transmission systems
- H04B2203/54—Aspects of powerline communications not already covered by H04B3/54 and its subgroups
- H04B2203/5404—Methods of transmitting or receiving signals via power distribution lines
- H04B2203/542—Methods of transmitting or receiving signals via power distribution lines using zero crossing information
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02B90/20—Smart grids as enabling technology in buildings sector
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S10/00—Systems supporting electrical power generation, transmission or distribution
- Y04S10/50—Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
- Y04S10/52—Outage or fault management, e.g. fault detection or location
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S40/00—Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
- Y04S40/12—Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment
- Y04S40/121—Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment using the power network as support for the transmission
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
- Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
- Radio Transmission System (AREA)
Abstract
描述了一种电力线通信系统。该通信系统中的发射系统把时间轴分为多个同步的时隙,使得一个时隙可以在电力线信号的零交叉周围开始。将这些时隙称作信道,并从1至n编号。描述了一种调制方法,使用窄带连续相位PSK,其中使用m个调制频率,配置为使得整数个完整周期与所有m个频率的每一个信道时隙相适合。所述系统仅在聚集在电力线波形的零交叉附近的可用时隙(信道)的子集中进行发送,在该处噪声典型地为最小。
Description
分案申请说明
本申请是申请日为2006年3月16日、申请号为200680016887.7(国际申请号PCT/CA2006/000400)、题为“用于电力线通信的系统和方法”的发明专利申请的分案申请。
技术领域
本发明涉及一种用于电力线介质通信的系统和方法,具体涉及当存在与线路相连的高振幅、非静态噪声源时的传输。
背景技术
当前,电力线介质上的高速通信(例如家庭配线标准)使用多种调制技术以克服高噪声的环境。两种类型的系统得以普遍使用。首先,可以使用宽带系统,其使用扩展频谱以抵抗干扰,例如参见美国专利No.:5574748、5090024、5263046、6243413、6616254、5579335以及5748671,将其内容在此引入作为参考。
其次,可以使用窄带系统,其使用在频率或相位上进行调制的一个或更多个频率。例如参见美国专利No.:5504454和4475217,将其内容在此引入作为参考。
注意的是,某种类型的调制技术还可以使用各种同步。美国专利No.6734784;6577231;6784790;6907472;以及5553081中描述了典型技术,将其内容在此引入作为参考。
所使用的系统类型还取决于使用国家中所允许的频谱。多数国家没有为宽带扩频系统分配足够的频谱,所以窄带系统是有利的,例如参见:
-USA:FCC,PART 15 47 CFR CH.1A,RADIO FREQUENCY DEVICES(PART15);
-EUROPE:EN50065-1 SIGNALING ON LOW-VOLTAGE ELECTRICALINSTALLATIONS IN THE FREQUENCY RANGE 3kHz TO 148.5kHz;以及
-CANADA:ICES-006,Issue 1,August 25,2001,AC Wire CarrierCurrent Devices(Unintentional Radiators),将其内容在此引入作为参考。
这些系统的一个特征是他们针对每一个消息使用连续的传输,其中消息典型地由100个比特组成。然而,从来自现场的多个数据样本中已经观察到的是,连接有多个干扰设备的典型电力线上的噪声在时间或频率上不是恒定的,但是在这两个维度上展现出平静的时间段。当前的系统没有有效地处理这些情况。
需要提供一种解决这些问题中至少一些的信号传输系统和方法。
发明内容
在第一方面,提供了一种用于对电力线上待发送数据进行编码的方法,所述电力线在一时段上携带AC电力信号的电力线上发送,所述方法包括:把所述时段与所述电力信号的预定点相关联;以及使用信号分集方案,在所述时段上至少一个信号中把所述数据编码到电力信号中。所述多样性方案可以包括针对所所发送数据信号的时间和频率多样性技术。
在该方法中,所述数据编码步骤包括:把所述时段分为多个时隙;使用针对每一个时隙的不同信号对数据信号进行调制;并把所产生的信号与所述电力信号相加。在说明书的余下部分中,可以将这个把已调制的数据信号有选择地与所述电力信号相加的过程看作把所述数据编码到电力信号中。
在该方法中,所述数据调制步骤可以利用FSK信号把所述数据编码到电力信号中;以及可以将m个调制频率用于调制所述数据,并且可以选择m使得整数个完整周期与所有m个频率的每一个时隙相适合。
在该方法中,可以在两个或更多个时隙中对所述数据进行编码。备选地或附加地,可以使用每一个均具有不同频率的两个或更多个信号对所述数据进行编码。此外,所述信号的初始相位可以不同。此外,可以在两个时隙内将所述数据编码在信号中,以及使用在所述两个时隙中每一个时隙中检测到的能量差来确定所述数据的值。
该方法还可以包括:通过检测所述两个时隙中每一个时隙的能量差,对来自所述电力信号的数据进行解码。
在该方法中,可以在至少两个时隙上对所述数据进行编码。
该方法还可以包括:通过把从至少两个时隙中提取出的信号进行求和和合并,对来自该时隙的数据进行解码。
在第二方面中,提供了一种用于在AC电力信号中发送出站数据和接收入站数据的电路。所述系统包括:与AC电力信号的连接;用于检测所述电力信号的零交叉的电路;编码模块,用于对所述出站数据进行编码,并且在所述零交叉附近在一个时段上的至少一个信号中将出站数据注入到所述电力信号中;以及解码模块,用于根据所述零交叉周围的时段周围的电力信号,对入站数据进行提取和解码。在该系统中,使用FSK信号对入站和出站数据进行编码和解码。
在该电路中,可以在所述零交叉周围的时段中的两个或更多个时隙上对出站数据进行编码。备选地或附加地,在具有不同频率的两个信号中对出站数据进行编码,将所述两个信号编码到所述零交叉周围的AC电力信号中。此外,所述信号的初始相位可以不同。
在该电路中,可以通过对所述零交叉周围的两个时隙中检测到的信号中的能量差进行估测,对入站数据进行解码。
在该电路中,可在至少两个时隙上并行地对出站数据进行编码。
在该电路中,可在至少两个时隙上并行地对出站数据进行编码。
在该电路中,可通过对从多个时隙中每一个时隙提取出的信号进行求和和合并,对多个时隙上编码的入站数据进行解码。所述信号可以包括实电压值和复电压值。
在第三方面,提供了一种用于在某个时段中在电力线上发送数据的方法。所述方法包括:把所述时段分为同步的多个时隙,使得一个时隙在用于发送所述数据的电力线信号的零交叉周围开始,每一个时隙与信道有关,并从1至n编号;调制其中使用个数m个的调制频率的窄带连续相位FSK,并且配置为使得整数个完整周期与所有m个频率的每一个所述信道的每一个所述时隙相适合;以及仅在聚集在所述电力线信号的零交叉周围的可用时隙的子集期间发送数据。
在其他方面中,提供了上述方面的集合和子集的各种组合。
附图说明
根据本发明特定实施例的以下描述以及附图,本发明的方面将会变得更加明显,其中附图仅作为示例示出了本发明的原理。在附图中,相似的数字表示相似的元件(其中单独的元件具有唯一的字母后缀):
图1a是由实施例产生的半个电力线周期中的示范性FSK突发时隙(burst slot)的图;
图1b是图1a的FSK突发时隙的另一个视图,示出了零交叉周围的FSK突发时隙;
图2是与图1a有关的实施例的两个频率FSK的相关接收机的方框图;
图3是与图1a有关的实施例的模拟前端(AFE)的方框图;
图4是图3的AFE的发射机电路的示意图;
图5是图3的AFE的低通滤波器的示意图;
图6是图3的AFE的高通滤波器的示意图;
图7是图3的AFE的保护电路的示意图;
图8是图3的AFE的带通滤波器和放大器的示意图;
图9是图3的AFE的高通滤波器的示意图;
图10是图3的AFE的保护二极管电路的示意图;
图11是图3的AFE的带通滤波器和放大器的示意图;
图12是图3的AFE的另一个低通滤波器的示意图;
图13是图3的AFE的另一个带通滤波器和放大器的示意图;
图14是图3的AFE的限幅器的示意图;
图15a和15b是图3的AFE的自动增益控制放大器的示意图;
图16是示出针对图3的实施例使用正弦波的最优化多频率接收和发射的图表;
图17是由图3的实施例所处理的信号的频谱密度图;
图18是与微控制器相连的另一个实施例的另一个模拟前端(AFE)的方框图;
图19是图18的AFE所使用的零相交算法的流程图;
图20是由图18的AFE所处理的一组信号的电压-时间图;
图21是由图18的AFE所实现的接收窗信号算法的流程图;
图22是由图18的AFE所实现的合并信道算法的方框图;
图23是图18的AFE所使用的信号幅度计算方程;
图24是图18的AFE所使用的频率值表和相关的比特编码的集合;
图25是图18的AFE所使用的差分比特编码算法所产生的一组信号的电压-时间图表;以及
图26是针对图18的AFE所使用的图19的零交叉算法的具有6窗结构的示范性信号处理的方框图。
具体实施方式
通过本发明原理的特定实施例的示例或示例说明,提供下文的描述和这里所描述的实施例。提供这些示例为的是说明而不是限制本发明的原理。在下文描述中,贯穿说明书和附图中,相似的部分标记相同的相应附图标记。
简要地说,与本发明的实施例有关的信号传输系统和方法使用传输信号的时间和频率多样性以改进系统的鲁棒性。当存在大量的非静态电力线噪声时,该鲁棒性的改进是显著的。由此,该实施例实现了非常恶劣情况下的显著性能改进。
在实施例的一方面,所述传输系统把时间轴分为多个同步的时隙。使得一个时隙在交流(AC)电力线信号(50或60Hz,取决于地区)的零交叉处开始。将这些时隙称作信道,并从1至n编号。对于该实施例,信道和时隙的概念可以互换地使用。然而,如果需要,该术语可以指代不同的概念。具体地,可以将信道当作逻辑边界,而时隙可以是信道的特定实现。优选地使用的调制方法是窄带连续相位FSK,其中使用m个调制频率,其排列使得整数个完整周期适合所有m个频率的每一个信道时隙。所述系统仅在集中于电力线波形的零交叉附近的可用时隙(信道)的子集期间进行传输,其中在零交叉处噪声典型地为最小。另外,可以改变单独频率的初始相位(从零正到零负)。这允许差分接收,其中仅使用两个突发之间的能量差来代替实际值,导致当存在噪声时更强的鲁棒性。
不同的信道可以用于在相同时刻向不同客户端传送数据。另外,如下文所述,还可以把不同的信道进行组合以提供多样性。
通过在一个或更多个信道(时隙)和一个或更多个频率以及两个相位之一上传输相同的比特,所述系统可以使用信号传输多样性。其使用确认应答协议(positive acknowledgment protocol),利用反向信道告诉发射机在任意给定时刻使用哪种冗余方法。所述发射机和接收机均与电力线信号零交叉同步,而且缺省传输方法是使用最大多样性的最低比特率。优选地,所述系统使用循环冗余校验(CRC)多项式,以检测正确的消息接收。如果没有正确地接收CRC,则不会发送应答,且发射机将在一段可编程的延迟后回复到其缺省的高冗余度状态。
在下文的描述中,使用60Hz电力线上的4个信道和2个频率的具体示例来描述所述系统的实施例。然而,本领域的技术人员可以理解,在其他实施例中,这可以容易地改变为n个信道和m个频率以及使用其他的电力线频率(例如50Hz)。
突发模式FSK
对于该实施例,可使用的一种传输方法是具有两个频率的传统FSK。参考图1a和1b,示出了电力波102。图1a是半个电力线周期中的FSK脉冲串时隙,图1b是零交叉周围的FSK脉冲串时隙。将电力线波形的周期分为多个片段,数据传输在某些而不是全部这些片段中进行。因此,考虑在60Hz电力线中的600μsec的片段,周期是16.67msec且半周期是8.33msec,在半个周期中给出14个595μsec的时隙。在这些时隙中,系统在4个595μsec时隙中进行传输,而周期的剩余部分为空。这4个时隙非对称地排列,1个在零交叉之前,而3个在零交叉之后,如图1a和1b所示。将这些时隙编号为1至4。图1所示的示范性信号与其中不使用冗余的最简单情况相对应。信道104和108以频率1调制并编码为0,而信道106和110以频率2调制并编码为1。表示比特图案的数据是0101,并在这一个突发期间传输。
实施例中的系统使用连续相位FSK,传输的信号如下:
选择Δf,使得:
其提供了突发T结尾处的无缝切换。选择T=600μsec,且:
f2=f1+Δf=133.3kHz
完成了对突发的定义。接收机使用图3所示的一组相关器。将相关器与电力线波形的零交叉同步,并且在最接近周期T结尾的峰值之处对输出进行采样,使零交叉检测中任意抖动所产生的影响最小。
参考图2,通过下式提供在T处采样的这些信号的互相关:
参考图2,示出了针对FSK波形的示范性匹配滤波接收机。在上分支中,输入信号202(r(t))在乘法器204中与第一FSK频率基准s1(t)相乘,其结果在积分器208中的完整周期T上进行积分。所得到的信号由212进行采样,由加法器216进行缩放并且并馈送至判决判决电路220。
在下分支中,输入信号202(r(t))在乘法器206中与第二FSK频率基准s2(t)相乘,其结果在积分器210中在完整周期T上进行积分。所产生的信号由214进行采样,由加法器218进行定标并馈入判决电路220。
判决电路220从所馈入的两个信号中选择较大者,并做出判决:如果加法器216的结果大于加法器218的结果则发送信号s1(t),否则发送信号s2(t)。
这个等式具有两个部分,一部分在于DC而另一部分在载波频率fc的两倍。两部分的积分结果是:
其中fc*T=70且Δf*T=10。注意,通过把相关值除以信号功率而把该值归一化。这个相关值还表示了上述零交叉中的抖动的影响。在这种情况下,该相关在较短周期上进行,导致输出端较小的能量。如果通过简单地选取原始突发结尾附近的最大输出而对相关器进行同步,则该影响可以近似为由于抖动引起的减小的突发长度Tred与原始突发长度T的比率,如下所示:
其中假定Tred*fo。以及Tred*Δf仍旧为整数。这表示在f1和f2的整数个周期上进行相关。
对于使用余弦波的两个相位进行调制的情况,该相关导致:
这给出:
fcT=整数
使用时间和频率多样性的传输方法
可以将4个时隙看作4个独立的信道。因此,信号多样性技术可以用于改进存在噪声时的鲁棒性。具体地,通过在不同信道上传输多个副本并使用一个或两个频率以及两个可能的相位之一,可以使用时间和频率多样性,如下文进一步所述。之后,可以使用各种组合技术以改进检测的鲁棒性。
除了采用时间、频率和相位多样性,实施例还使用差分接收技术以改进鲁棒性。在这个方法中,除了依赖于给定频率、相位和时间上的能量,优选地使用特定顺序的两个能量突发的组合来发送比特(例如“1”)-相反的组合用于发送相反的比特(例如“0”)。这样,通过检测两个能量突发之间的特定转变,替代了对在给定相位、时间和频率的信道上的能量的依赖,从而进一步增强了具有很大噪声的信道中的鲁棒性。下文给出了若干示例,尽管本领域的技术人员可以通过其他技术来实现这个冗余。
对于该实施例,可以使用如下传输参数A-E:
A.480bps/2频率/1比特每信道/4比特每突发
B.240bps/2频率/2比特每突发/信道0和1合并/信道2和3合并
C.120bps/2频率/1比特每突发/信道0和1合并/信道2和3合并/将“0”看作从F1至F2的转变;而将“1”看作从F2至F1的转变
D.120bps/2频率/1比特每突发/所有信道合并
E.60bps/2频率/1/2比特每突发/所有信道合并/将“0”看作从F1至F2的转变;而将“1”看作从F2至F1的转变
通过使用更多信道和更多频率可以使用其他方法。
这些参数的实现在表1至5中示出,并在下文描述:
表1方法A
表2方法B
表3方法C
表4方法D
表5方法E
使用时间、频率和相位多样性的检测算法
对于该实施例,检测器使用时间和频率多样性方法以改进传输的鲁棒性。将4个信道和2个频率用于依赖于所传输的序列而做出组合判决。接收机对信道进行监测,并做出根据哪个传输方法可以获得最佳结果的判决。反向信道协议用于把该判决通知发射机。
下文参考表1-5给出了可以使用的一些检测方法,尽管本领域的技术人员可以使用其他方法。基本特征是:首先,通过在多个时隙中重复相同的信息、或通过忽略噪声过大的时隙而减小所用时隙的数目,使用时间多样性;然后,通过仅使用两个频率之一而利用频率多样性把所检测的信号进行组合以做出判决,忽略判断为为噪声过大的另一个信号。在一般情况下,使用n个时隙中的k个时隙以及m个频率中的1个频率。
方法A:
1.使用来自相关器的最大似然判决。
方法B
1.使用来自合并信道上的相关器的最大似然判决;
2.使用仅来自合并信道1、2上的相关器的最大似然判决。
方法C
1.使用来自合并信道1、2和3、4上的相关器的最大似然判决,然后应用差分解码;
2.使用仅来自合并信道1、2上的相关器的最大似然判决,然后应用差分解码;
3.与1或2相同,但仅监测F1的变化;
4.与1或2相同,但仅监测F2的变化。
方法D
1.使用来自合并信道1、2、3、4上的相关器的最大似然判决;
2.使用仅来自合并信道1、2上的相关器的最大似然判决;
3.使用仅来自信道1上的相关器的最大似然判决;
4.使用仅来自信道2上的相关器的最大似然判决。
方法E
1.使用来自合并信道1、2、3、4上的相关器在突发1和突发2中的最大似然判决,然后应用差分解码;
2.使用仅来自合并信道1、2上的相关器在突发1和突发2中的最大似然判决,然后应用差分解码;
3.使用仅来自信道1上的相关器在突发1和突发2中的最大似然判决,然后应用差分解码;
4.使用仅来自信道2上的相关器在突发1和突发2中的最大似然判决,然后应用差分解码;
5.与1至4相同,但仅监视F1的变化;
6.与1至4相同,但仅监视F2的变化。
同步、启动和跟踪
对于该实施例,优选地所述实施例使用链路层协议进行启动和跟踪。通过检测电力线信号的零交叉、然后搜索较大相关器输出的最大值以确定零交叉后接近T毫秒处的突发的结尾,从而实现同步(注意,如果零交叉的检测较晚则相关器将包含第二突发部分,或者只有由于抖动导致检测较早则相关器将包含噪声。然而如上所示,其影响较小)。零检测电路可以使用本领域的技术人员已知的任意信号监测或检测电路。其他实施例可以使用其他同步点,用于确定在何处插入并期待电力信号中的数据。可以将零检测电路设计为:当电力信号的值接近零时,即其逼近或接近零伏,则触发同步信号。
链路层协议在开始时传输由消息同步模式的开始所约束的消息,并在消息结尾处传输CRC字节。接收机使用这个CRC来确定是否实现正确的操作,并向发射机发送肯定应答以表明实现正确的操作。
注意,在其他实施例中,可以把其他链路层协议结合传输系统来使用,这对于本领域的技术人员是明显的。
通过以最低比特率进行传输(该情况下为1/2比特每突发)而实现启动。一旦实现以该比特率的成功传输(接收到正确的CRC),则接收机监测所有信道以及所有频率,以确定是否可以维持更高的比特率。然后,其经由控制消息告知发射机,使用其他传输模式之一并相应地切换其检测算法。应当注意的是,另一种实现可以从最高比特率开始,并在出现失败的CRC时减小比特率。通过对每一个消息进行确认应答,可以提供改进的鲁棒性。这允许发射机在信道恶化到使接收机不能接收到正确的数据且不能发送应答的程度时恢复到最低比特率。对于该实施例,这提供了与频率的同步,使得接收机能够从发射机接收信息。
模拟前端
参考图3,模拟前端(AFE)是包括发射电路和接收电路的模拟电路。这个电路提供了从系统中的数字信号处理部分到电力线的模拟部分的连接。接收机电路一直开启,而发射机电路必须在TX_Enb引脚上的逻辑高(1)时启用。这两个电路都具有保护二极管电路,以限制出现在电力线上并通过耦合的尖峰(spike)和信号。对于该实施例,AFE是与微控制器(例如下文在图18中所述的微控制器1804)的分立电路。然而,本领域的技术人员可以理解,在其他实施例中可以使用其他电路布置。
在300处示出了AFE的简化方框图。对于该实施例,下文提供了AFE中可以使用的不同滤波器的概要:
表6-AFE规范
下文简要描述与AFE的不同方面有关的细节。美国专利No.6,727,804提供了与AFE有关的更多细节,将其内容在此引入作为参考。现在参考图3,提供了示范性的AFE 300。AFE 300包括放大器306和312、低通滤波器304和310、带通滤波器314和318、以及高通滤波器316。连接320把AFE 300耦合至耦合电路,连接302和308提供用于发射机和接收机电路的电力线,如下所述。
发射机电路
参考图4,AFE的示范性放大器部分400由两级组成:
●发射滤波器(TX滤波器);以及
●电压/电流级,低失真地放大输入信号,以满足FCC、ICES和CENELEC要求。优选地,输出级具有低输出阻抗。该放大器由Tx_Enb信号来控制。当Tx_Enb为低时,电流级为高阻抗以允许电力线信号由RX部分接收。当Tx_Enb为高时,电流级对来自电压放大器的信号进行放大,并将其发送至耦合器。
放大增益为11±1dB。由此,该范围是峰峰值为1.7伏。当进行发射时输出阻抗小于1Ω,而在空闲状态时输出阻抗大于250Ω。优选地,发射机使用集成电路提供放大。优选地,放大器支持不会使信号传输产生失真的电力线上的低阻抗。
对于该实施例,两个放大器306和312与桥结构合作以根据单一的5V电源而在线路上传输6Vpp信号。没有对发射放大器306的输出提供保护以免于地和输出之间的短路。对于大于6Ω的负载,输出信号以6Vpp而发射。对于小于6Ω的负载,输出信号减小,但失真仍保持低水平以避免在电力线上发射谐波。
优选地,放大器中的带通滤波器具有从80kHz到150kHz的通带范围。由于电路提供脉宽调制信号,优选地使用无源低通滤波器对该信号进行滤波,对信号进行整形以便放大。发射滤波器用于对从电路获取的信号进行滤波,并将其馈入电压/电流放大器306。这通过去除放大器输入端上的TX信号的高频而完成。这可以由图5所示的低通滤波器500而完成。图6示出了高通滤波器的典型电路600。
接收机电路
对于该实施例,优选地总是启用接收电路。其从电力线接收信号,并针对该电路对信号进行滤波。接收机提供了如下功能:
-通过有效的滤波,提取耦合电路输出端上出现的噪声的入站信号;
-当达到最大幅度时,对信号进行压缩但不对其进行剪切,以保留该形状;
-当需要时依赖于于电力线上出现的衰减来放大该信号;
-当信号被压缩并且线路具有噪声时,警告该电路。
为了执行这些功能,将接收机分为彼此独立的若干部分。依赖于于不同应用所需的性能,可以向电路添加或去除不同的部分。对于该实施例,如下部分是可用的:
高通滤波器
保护二极管电路
带通滤波器和放大器
高通滤波器
保护二极管电路
带通滤波器和放大器
低通滤波器
带通滤波器和放大器
用作该电路的保护的限幅器
自动增益控制放大器,控制这三个放大器中的两个放大器的增益
优选地,这些部分使信号变得干净(clean),但不会饱和(saturate),而且保留了信号的形状。如果噪声底部(floor)小于-97dB(Vpp),则AFE所检测的最小信号是30μV。这给出-97dB的敏感度。
现在依次描述接收机电路中的每一个部分。首先参考图6和9,分别示出了高通滤波器600和900。可以理解的是,每一个滤波器以本领域的技术人员已知的方式而工作。还可以理解的是,任一滤波器的通带点可以根据系统所需的操作特性而设置。
参考图7、10和14,示出了保护电路700、1000和1400。任一保护电路都可以把电压钳位至预定电平,以防止其下游电路的过载。可以提供其他保护电路。具体地,限幅器1400可用作处理电路的保护。
参考图8、11和13,分别示出了带通滤波器和放大器电路800、1100和1300。可以理解的是,每一个带通滤波器以本领域的技术人员已知的方式操作。还可以理解的是,每一个滤波器的通带点可以根据系统所需的操作特性而设置。每一个放大器操作以对带通滤波器的输出信号进行放大。可以将放大级别设置为满足系统所需的操作特性。
参考图12,示出了低通滤波器1200。还可以理解的是,该滤波器的通带点可以根据系统所需的操作特性而设置。
参考图15a和15b,示出了对三个放大器中两个放大器的增益进行控制的自动增益控制(AGC)放大器1500a和1500b。将该AGC设计为具有80μS内的快速响应。这对于控制接收机中不同部分的放大并向电路提供反馈来说是足够快的。
现在参考图16,现在描述并在图表1600中示出使用单一正弦波的多频率最佳接收和发射。如图所示,RAM存储器中存储有356点2.5kHZ正弦波(对于采样率为每秒采样888888.8个)。DSP使用这个单一正弦波对2.5kHZ倍数的任意频率执行离散时间傅立叶变换(DTFT)。
下面的函数使用这个表执行110kHz上的DTFT。注意,仅需要修改N个寄存器以便选择任意频率:
参考图17,图1700示出了各种输入信号和信道之间的关系。具体地,其提供了图1所示信息的三维描绘。这里,典型系统使用12个连续时隙[0]、[1]、[2]...[11]的12个信道。在其他实施例中,可以使用更多或更少的时隙。围绕AC信号的零交叉在信道中对数据进行编码。这些在以信号块1702、1704和1706分组地示出的突发信号中表示。每一个突发信号包括在12个信道的每一个信道中编码的数据。每一个零交叉中的每一个信道的峰值信号是编码后的数据元素。信道中的信号的其他能量包括噪声和与注入信号相关联的谐波。区域1708输出其中具有较少的能量,因为其表示非零交叉区域周围的电力信号,而在该区域处的电力信号中没有编码的数据。
发射机和接收机电路
现在参考图18至26,示出了另一个实施例的方面。具体地,描述了互补发射和接收模块,实现了较早描述的同步、发射和接收技术的方面。
图18示出了系统1800,其中AFE 1802从电力线1806接收模拟信号并向电力线1806上的信号插入数据。电力线1806是这样的介质,即通过其电力信号可以交换数据。微控制器1804提供了用于使用这里描述的系统和方法而对来自电力信号的数据进行编码和解码的模块。微处理器1804上操作的软件存储在非易失存储器的位置中(未示出),并控制微处理器的操作,即微处理器怎样处理信息并与AFE 1802进行数据的接收和发送。参考图20,在初始化时,发射机和接收机借助于具有零交叉2006、2008的电力线2002对其自身进行同步。电力线2002的零交叉点2006、2008用于估计发射机将要发射的“突发”或接收机将要捕获的“突发”的位置。
再次参考图18,接收时,AFE 1802通过耦合电路1808从电力线1806接收数据信号。模拟前端借助耦合电路来接收数据信号,带通滤波器和增益1810用于对信号进行滤波并增大其强度。在这一级之后,把信号路由至微控制器1804上的微控制器ADC或比较器1818。然后,把接收到的采样根据需要存储到RAM 1824。然后,微控制器1804可以对来自信号的数据进行解码。在对数据的解码中,微控制器可以确定数据所来自的信道(如果存在),而且可以使用该数据重建原始数据串,如果需要来自额外信号或突发的额外数据。
发射时,微控制器1804确定待编码的数据、待发送数据的信道(如果存在),然后经由其脉宽调制器或DAC 1820把数据编码为PWM信号,启动发射。然后把这个模拟信号发送至AFE 1802并进行滤波,以便满足滤波器1814的任意可用规则。一旦经过滤波,该信号由放大器1812进行放大,并经由耦合电路1808传输至电力线1806进行发射。可以通过零检测电路部分地控制信号插入的定时。
参考图19和20,示出了零交叉电路实现算法1900。首先参考图19,流程图1900示出了零交叉同步的示例,其中使用2个定时器并且“突发”在零交叉点之前开始。。参考图20,图19所述的定时器用于计算先前的零交叉(例如图20中的2008)与当前的零交叉脉冲(例如图20中的2006)之间的延迟。然后,在这个计算出的数值减去“突发”偏移量并且加载到第二定时器。这样,这个第二定时器在“突发”(例如图20中的2004)开始时到时,并且,取决于设备状态,其可以发出进行发射或接收的命令。这个过程可以无限地重复。在这个示例中,零交叉脉冲出现在T1和T2。定时器A(1)所加载的持续时间等于(T2-T1)偏移量。定时器A(2)在T3到时,此时无论是在TX模式还是RX模式,都会进行脉冲串处理。
参考图21,更加详细地示出了流程图1900中的RX窗处理步骤。当RX窗处理开始时,接收机和发射机已经同步,而且该同步不再是问题。RX窗处理的目标是示出“突发”期间如何对多少信道和频率进行处理。这个处理由图18中的微控制器1804来执行。所接收的信号是ADC或比较器1818的输出。在步骤2102处,在突发的开始,在突发的整个持续时间中对RX采样进行缓冲。由此,RAM存储器1824中缓冲有n个样本。将该突发分为多个信道,其中样本是均匀分布的。一旦完成该缓冲,则在步骤2108-2116针对每一个信道和每一个频率而计算离散傅立叶变换(DFT)。例如,如果每一个突发中存在4个信道且接收机对8个频率进行分析,则执行32-DFT。
一旦将每一个信道的频率DFT结果存储到存储器中,则执行合并信道处理步骤2118,如下文详细所述。之后,执行计算频率幅度步骤2120,而且在步骤2120处对所有幅度进行处理后,在步骤2122执行比特处理步骤。对于该实施例,一旦每一个信道的频率DFT结果存储到存储器中,则执行合并信道处理步骤2118,如下文详细所述。之后,执行计算频率幅度步骤2120。使用这个步骤以根据先前步骤输出的复数而确定每一个频率的相对功率。在步骤2120处对所有幅度进行处理后,在步骤2122执行比特处理步骤。这个步骤用于通过比较各个频率幅度而确定设备正在接收0还是1。
图22示出了针对支持8个信道的接收机的信道合并的示例。注意,这个合并必须针对接收机所支持的每个频率而执行。参考图22,在2200处示出了用于根据上述步骤2118而提供合并信道处理的元件的方框图。在这一级,已经完成所有的信号滤波和处理,而且合并信道处理不再与信号采样有关,而是与作为上述DFT或FFT的输出的复数有关。在该实施例中,执行信道合并以支持较低的波特率/解调技术,并增大对噪声的鲁棒性。例如,图22示出了可以对多个信道之和进行分析,以创建对噪声更具鲁棒性的较慢处理。
由于DFT的输出是复数,所以合并信道处理可通过执行两个信道的复数DFT输出的复数加法而把两个信道相加。由于每个信道中可以存在多个频率,所以针对每一个频率而执行单独的求和。因此,该复数和是待合并的两个信道的虚部相加以及待合并的信道的两个实部相加:
4个信道中信道1的实部=(8个信道中信道1的实部+8个信道中信道2的实部)
4个信道中信道1的虚部=(8个信道中信道1的虚部+8个信道中信道2的虚部)
例如,参考图22,通过把8个基础信道进行合并,创建了7个合并信道,如流程图2200中所示。需要对每个所支持的频率执行7次求和操作,以创建这些扩展信道。可以理解的是,还可以创建其他的信道,例如可以通过对4个信道中信道2和4个信道中信道3进行求和而创建合并信道。
参考图23,在2300处示出了用于每个步骤2120于计算频率幅度的方程。如上所述,FFT和DFT过程的输出来自图21,而且图22中信道合并处理的输出针对每信道和每频率表示为复数。例如,对于2频率调制,如果每个突发存在2个信道,且这2个信道求和得到1个合并信道,则来自合并信道处理的处理输出将是如下6个复数
复数1(信道1频率1)
复数2(信道1频率2)
复数3(信道2频率1)
复数4(信道2频率2)
复数5(复数1和复数3之和)
复数6(复数2和复数4之和)
可以将复数表示为具有实部和虚部的二维矢量。矢量的角度是针对给定频率的输入信号的相位。矢量的长度是频率的功率(或幅度)。图23所示的等式用于基于与所述频率相关联的复数而计算该频率的功率。计算每一个频率的幅度以便查找具有较高功率的频率。
参考图24,示出了指示如何把频率映射到比特编码的一组表,针对上述每次执行步骤2122时。处理比特处理步骤的输入是针对每个信道和频率的幅度。利用每个频率的幅度,可以确定发射机设备关于FSK解调而最可能发射的频率(即具有最高振幅的频率),如上文所述。
图24中的表提出了针对每一个频率的典型比特编码,取决于设备所支持的频率的数目。下面示出了表示另一组频率的表的另一个示例:
另外,下面示出了用于差分比特接收机的比特编码的另一个示例:
参考图25和26,提供了针对信号的差分比特编码处理的示例。图25和26示出了差分比特编码传输的示例。图25示出了子介质上传输“011”所需的6个突发,如2500处所示。图26示出了图表2600。对于每一个比特,需要2个突发。‘0’需要100kHZ突发,之后是110kHz突发,而‘1’需要110kHz突发,之后是100kHz突发。图26中,将突发1至6映射到时间。这些突发与电力线(例如参见图18中的部分1806)和零交叉(例如参见图18中的部分1816和1822)同步。
可以理解的是,相同的原理可以应用于传输中,以产生脉宽调制波。
上文的实施例描述了用于在AC信号的零交叉周围的时隙中把数据编码到AC信号中的系统和方法。可以理解的是,在其他实施例中,可以使用AC信号中其他预定点。例如可以使用峰值/槽型检测电路,并且可以把数据插入到信号的峰值/槽型值处或附近。替换地,可以把数据插入到与峰值/槽型值距离预定偏移量处。
此外,在其他实施例中,可以把数据插入非AC信号。例如,可以在双绞传输线上提供基于DC的信号。
尽管已经参考特定实施例描述了本发明,本领域的技术人员可以理解,在不背离本发明的范围的前提下,可以做出各种修改。
Claims (26)
1.一种使用发射机的方法,包括:
通过所述发射机在第一发射时段内在AC电力线信号上发射数据,初始将所述发射的数据调制到划分所述第一发射时段的第一时隙集合;以及
响应于在接收机处没有正确接收到第一发射时段的所述发射数据的表示,在划分第二发射时段的第二时隙集合中根据调制方案在第二发射时段中在所述AC电力线信号上发射数据,所述调制方案包括将所述数据的至少一个比特编码到比根据初始调制将发生的时隙编号更大编号的时隙。
2.根据权利要求1所述的方法,其中所述第一和第二时隙集合包括在不同发射时段中的类似时隙。
3.根据权利要求1所述的方法,其中所述第一和第二时隙集合包括在每一个发射时段内的每一个可用时隙。
4.根据权利要求1所述的方法,其中所述第一和第二时隙集合包括在不同发射时段中的不同时隙。
5.根据权利要求1所述的方法,其中在所述初始调制和所述调制方案中使用二元频移键控调制。
6.根据权利要求1所述的方法,将所述第一和第二时隙集合以所述AC电力线信号的不同零交叉为中心。
7.根据权利要求1所述的方法,其中在所述第一时隙集合的每一个时隙中初始调制所述数据的一个比特。
8.根据权利要求7所述的方法,其中所述调制方案包括在多个所述第二时隙集合上对所述数据的至少一个比特进行冗余编码。
9.根据权利要求8所述的方法,其中所述调制方案包括在以所述AC电力线信号的相同零交叉为中心的多个第二时隙集合上对所述数据的至少一个比特进行冗余编码。
10.根据权利要求8所述的方法,其中所述调制方案包括在以所述AC电力线信号的不同零交叉为中心的多个第二时隙集合上对所述数据的至少一个比特进行冗余编码。
11.根据权利要求1所述的方法,其中所述调制方案包括使用频率分集对所述数据的至少一个比特进行冗余编码。
12.根据权利要求11所述的方法,其中在每一个第二发射时段中,按照不同的频率在多个第二发射时段中的至少一个时隙中对所述冗余编码数据进行编码,所述第二发射时段的每一个具有以所述AC电力线信号的各个零交叉为中心的时隙。
13.根据权利要求1所述的方法,其中所述表示是不能在预定时间内从所述接收机接收分集确认。
14.根据权利要求13所述的方法,其中所述发射机配置用于通过确认应答协议接收所述分集确认。
15.根据权利要求1所述的方法,还包括反复地在每一次发生所述表示之后将所述数据发射到具有增加冗余的附加时隙集合中。
16.一种电路,包括:
与AC电力线信号的连接;
编码模块,用于将数据初始调制为划分所述AC电力线信号的第一发射时段的第一时隙集合;以及
处理设备,用于确定在接收机处是否正确地接收到了所述初始调制的数据,所述编码模块在第二发射时段将确定为不正确接收的数据调制到第二时隙集合中,不正确接收数据的调制包括将所述不正确接收的数据的至少一个比特编码到比根据所述初始调制将发生的时隙编号更大编号的时隙。
17.根据权利要求16所述的电路,其中所述处理设备是微控制器,并且所述编码模块是所述微控制器的一部分。
18.一种使用发射机的方法,包括:
通过所述发射机在电力线信号中划分时段的多个时隙上初始发射第一数据;以及
基于在所述发射机处从适合所述初始发射的接收机接收到的发射信息,随后通过所述发射机在可能产生最少噪声的不同时段中的时隙子集合上发射第二数据。
19.根据权利要求18所述的方法,其中所述第一数据与所述第二数据不同。
20.根据权利要求18所述的方法,其中所述第一数据与所述第二数据相同。
21.根据权利要求18所述的方法,其中所述发射信息提供用于在所述多个时隙上比较噪声级别的基础。
22.根据权利要求21所述的方法,其中所述发射信息识别可能产生最少噪声的所述时隙子集合。
23.根据权利要求18所述的方法,其中每一个时段包括所述电力线信号的零交叉。
24.根据权利要求18所述的方法,其中至少一个时段包括所述电力线信号的多个零交叉。
25.根据权利要求18所述的方法,还包括基于在所述发射机处接收到的发射信息,初始在所述多个时隙中在多个频率上发射所述第一数据,并且随后在可能产生最少噪声的所述多个频率的子集合上发射所述第二数据。
26.根据权利要求18所述的方法,还包括基于在所述发射机处接收到的发射信息,初始在所述多个时隙中在多个相位上发射所述第一数据,并且随后在可能产生最少噪声的所述多个相位的子集合上发射所述第二数据。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA002500699A CA2500699A1 (fr) | 2005-03-16 | 2005-03-16 | Powerline communication system |
CA2,500,699 | 2005-03-16 | ||
CA2,528,799 | 2005-12-01 | ||
CA002528799A CA2528799A1 (en) | 2005-12-01 | 2005-12-01 | System and method for power line communications |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNA2006800168877A Division CN101176270A (zh) | 2005-03-16 | 2006-03-16 | 用于电力线通信的系统和方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102497219A CN102497219A (zh) | 2012-06-13 |
CN102497219B true CN102497219B (zh) | 2014-09-10 |
Family
ID=36991249
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201110076537.2A Expired - Fee Related CN102497219B (zh) | 2005-03-16 | 2006-03-16 | 用于电力线通信的系统和方法 |
Country Status (4)
Country | Link |
---|---|
US (2) | US8223880B2 (zh) |
EP (1) | EP1864394B1 (zh) |
CN (1) | CN102497219B (zh) |
WO (1) | WO2006096987A1 (zh) |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102497219B (zh) * | 2005-03-16 | 2014-09-10 | 美国亚德诺半导体公司 | 用于电力线通信的系统和方法 |
CA2569944A1 (fr) * | 2006-12-05 | 2008-06-05 | 9016-0987 Quebec Inc. | Systeme de detection de fuite d'eau intelligent pour residence et edifices commerciaux legers |
EP1988664A1 (en) * | 2007-04-30 | 2008-11-05 | British Telecommunications Public Limited Company | Communications network |
EP3065303B1 (en) | 2007-08-22 | 2019-01-02 | Sony Corporation | Method for transmitting a signal via a power line network, transmitter, receiver, power line communication modem and power line communication system |
US8094034B2 (en) | 2007-09-18 | 2012-01-10 | Georgia Tech Research Corporation | Detecting actuation of electrical devices using electrical noise over a power line |
CN101944937B (zh) * | 2009-07-01 | 2013-09-11 | 深圳长城科美技术有限公司 | 电力载波通信系统及方法 |
US9766277B2 (en) | 2009-09-25 | 2017-09-19 | Belkin International, Inc. | Self-calibrating contactless power consumption sensing |
US9291694B2 (en) | 2010-07-02 | 2016-03-22 | Belkin International, Inc. | System and method for monitoring electrical power usage in an electrical power infrastructure of a building |
NZ605433A (en) | 2010-07-02 | 2015-01-30 | Belkin International Inc | System for monitoring electrical power usage of a structure and method of same |
US9055620B1 (en) * | 2011-01-19 | 2015-06-09 | Cirrus Logic, Inc. | Consolidation of lamp power conversion and external communication control |
US9250274B2 (en) * | 2011-08-25 | 2016-02-02 | Asco Power Technologies, L.P. | Power analysis module for monitoring an electrical power source |
US8924604B2 (en) * | 2011-09-26 | 2014-12-30 | Belkin International, Inc. | Systems and methods for data compression and feature extraction for the purpose of disaggregating loads on an electrical network |
US8958487B2 (en) * | 2011-12-22 | 2015-02-17 | Landis+Gyr Technologies, Llc | Power line communication transmitter with amplifier circuit |
WO2013121589A1 (ja) * | 2012-02-17 | 2013-08-22 | 三菱電機株式会社 | 電力変換装置、及び電力変換システム |
KR101206386B1 (ko) * | 2012-06-14 | 2012-11-29 | 김정호 | 대용량 부하에 대한 폐회로 전력선 통신 시스템 |
CN203535791U (zh) * | 2013-02-04 | 2014-04-09 | 深圳市航天泰瑞捷电子有限公司 | 智能电网环境下的载波通信单元 |
CN103297091B (zh) * | 2013-05-10 | 2015-03-04 | 中国科学院微电子研究所 | 一种电力线通信发射系统及接收系统 |
US9722729B2 (en) | 2013-05-31 | 2017-08-01 | Qualcomm Incorporated | Extracting zero cross information in a powerline communication device |
US9467394B2 (en) * | 2013-09-12 | 2016-10-11 | Texas Instruments Incorporated | Time and frequency diversity modulation system and method |
WO2018105695A1 (ja) * | 2016-12-09 | 2018-06-14 | パナソニックIpマネジメント株式会社 | 電力伝送システム |
JP7002052B2 (ja) * | 2017-03-03 | 2022-02-04 | パナソニックIpマネジメント株式会社 | 電力伝送システム |
CN114584178B (zh) * | 2022-03-01 | 2023-12-29 | 广东电网有限责任公司江门供电局 | 一种基于电力线信道的码索引时分多址接入方法及装置 |
CN114584181B (zh) * | 2022-03-01 | 2024-01-23 | 广东电网有限责任公司江门供电局 | 基于电力线的扩频通信方法、系统、发送模块及接收模块 |
US20230420998A1 (en) * | 2022-06-23 | 2023-12-28 | Apple Inc. | Wireless Power Systems With Frequency-Shift-Keying Communications |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4300126A (en) * | 1980-04-11 | 1981-11-10 | General Electric Co. | Method and apparatus, for power line communications using zero crossing load interruption |
CN1388654A (zh) * | 2002-06-25 | 2003-01-01 | 中山大学 | 数字脉冲间隔调制电力线载波通信方法与收发装置 |
CN1516350A (zh) * | 2003-01-08 | 2004-07-28 | 西北工业大学 | 基于电力线载波通信的远程安防监控系统 |
Family Cites Families (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3689886A (en) * | 1971-02-09 | 1972-09-05 | Thomas Industries Inc | Control system having transmitter-receiver sets for operating functional device over power lines |
US4479215A (en) * | 1982-09-24 | 1984-10-23 | General Electric Company | Power-line carrier communications system with interference avoidance capability |
US4556866A (en) * | 1983-03-16 | 1985-12-03 | Honeywell Inc. | Power line carrier FSK data system |
US5448593A (en) | 1984-03-06 | 1995-09-05 | Cyplex Corporation | Frequency hopping time-diversity communications systems and transceivers for local area networks |
US4577333A (en) * | 1984-09-13 | 1986-03-18 | Gridcomm Inc. | Composite shift keying communication system |
US5090024A (en) * | 1989-08-23 | 1992-02-18 | Intellon Corporation | Spread spectrum communications system for networks |
US6144292A (en) | 1992-10-22 | 2000-11-07 | Norweb Plc | Powerline communications network employing TDMA, FDMA and/or CDMA |
US5491463A (en) * | 1993-06-28 | 1996-02-13 | Advanced Control Technologies, Inc. | Power line communication system |
FR2736781B1 (fr) * | 1995-07-13 | 1997-09-26 | Sgs Thomson Microelectronics | Circuit de transmission de donnees binaires sur le reseau electrique utilisant plusieurs canaux de transmission |
FR2736780B1 (fr) * | 1995-07-13 | 1997-09-26 | Sgs Thomson Microelectronics | Circuit d'affectation d'un canal de transmission sur le reseau electrique |
US5828293A (en) * | 1997-06-10 | 1998-10-27 | Northern Telecom Limited | Data transmission over a power line communications system |
US5852636A (en) * | 1997-08-08 | 1998-12-22 | Serge Mathieu | Method of and apparatus for modulation of FSK carrier in a very narrow band |
IL127223A (en) * | 1998-11-24 | 2002-08-14 | Systel Dev And Ind Ltd | Power-line digital communication system |
WO2000072606A2 (en) * | 1999-05-25 | 2000-11-30 | Transtek, Inc. | Facility-wide communication system and method |
CN1134120C (zh) * | 1999-09-20 | 2004-01-07 | 北京海通嘉讯科技有限公司 | 一种利用交流线路遥控通讯的方法 |
US6954465B2 (en) * | 2000-03-22 | 2005-10-11 | At&T Corp. | Dynamic channel assignment |
US7088701B1 (en) * | 2000-04-14 | 2006-08-08 | Qualcomm, Inc. | Method and apparatus for adaptive transmission control in a high data rate communication system |
AUPQ865900A0 (en) * | 2000-07-07 | 2000-08-03 | Cleansun Pty Ltd | Power line communications method |
EP1198096B1 (en) * | 2000-10-11 | 2005-12-07 | Matsushita Electric Industrial Co., Ltd. | Communications control method |
US6559757B1 (en) * | 2000-10-26 | 2003-05-06 | Home Tough Lighting Systems Llc | Data communication over power lines |
KR100395745B1 (ko) | 2001-05-16 | 2003-08-27 | 주식회사 젤라인 | 전력선 통신시스템의 다중 채널 주파수 시프트 키잉변복조장치 |
US7089478B2 (en) * | 2001-06-22 | 2006-08-08 | Broadcom Corporation | FEC block reconstruction system, method and computer program product for mitigating burst noise in a communications system |
US7333458B2 (en) * | 2002-01-10 | 2008-02-19 | Harris Corporation | Wireless communication network including directional and omni-directional communication links and related methods |
US6972672B2 (en) * | 2002-07-03 | 2005-12-06 | Siemens Vdo Automotive Corporation | Tire sensor localization utilizing speed corrected frequency |
US20040037311A1 (en) * | 2002-08-07 | 2004-02-26 | Phonex Broadband Corporation | Digital narrow band power line communication system |
US7623598B2 (en) * | 2002-08-19 | 2009-11-24 | Infineon Technologies Ag | Demodulation of a frequency-modulated received signal by means of a Viterbi algorithm |
AU2003250523A1 (en) * | 2002-08-20 | 2004-03-11 | Optinetix (Israel) Ltd. | Method and apparatus for transferring data within viewable portion of video signal |
AU2003276972A1 (en) * | 2002-09-25 | 2004-04-19 | Enikia Llc | Method and system for timing controlled signal transmission in a point to multipoint power line communications system |
US6954890B2 (en) * | 2002-09-26 | 2005-10-11 | Sharp Laboratories Of America, Inc. | System and method for increasing capacity in a noisy communication environment |
EP1554848A4 (en) * | 2002-10-21 | 2010-03-03 | Intellon Corp | CONSTRUCTIVE ACCESS INTERVALS IN A CSMA NETWORK |
DE60312839T2 (de) * | 2003-07-16 | 2007-12-13 | Sony Deutschland Gmbh | Erkennung von Rundfunksignalen für die Definition von brauchbaren Frequenzbändern für die Powerlinekommunikation |
US7102490B2 (en) * | 2003-07-24 | 2006-09-05 | Hunt Technologies, Inc. | Endpoint transmitter and power generation system |
US7145438B2 (en) * | 2003-07-24 | 2006-12-05 | Hunt Technologies, Inc. | Endpoint event processing system |
RU2246136C1 (ru) * | 2003-10-31 | 2005-02-10 | Общество с ограниченной ответственностью "ДиС ПЛЮС" | Система сбора данных по распределительной электросети переменного тока |
US7451381B2 (en) * | 2004-02-03 | 2008-11-11 | Phonex Broadband Corporation | Reliable method and system for efficiently transporting dynamic data across a network |
US7265654B1 (en) * | 2004-04-22 | 2007-09-04 | Powerline Control Systems, Inc. | Powerline pulse position modulated transmitter apparatus and method |
US7551606B2 (en) * | 2004-08-20 | 2009-06-23 | Sony Corporation | Isochronous transmission for IP-oriented network |
EP1643658A1 (en) * | 2004-10-04 | 2006-04-05 | Sony Deutschland GmbH | Power line communication method |
US7345998B2 (en) * | 2004-12-15 | 2008-03-18 | Smart Labs, Inc. | Mesh network of intelligent devices communicating via powerline and radio frequency |
CN102497219B (zh) * | 2005-03-16 | 2014-09-10 | 美国亚德诺半导体公司 | 用于电力线通信的系统和方法 |
JP5129617B2 (ja) * | 2008-03-12 | 2013-01-30 | キヤノン株式会社 | 通信制御方法、通信システム、通信装置及びコンピュータプログラム |
-
2006
- 2006-03-16 CN CN201110076537.2A patent/CN102497219B/zh not_active Expired - Fee Related
- 2006-03-16 WO PCT/CA2006/000400 patent/WO2006096987A1/en active Application Filing
- 2006-03-16 EP EP06721671.3A patent/EP1864394B1/en active Active
- 2006-03-16 US US11/376,949 patent/US8223880B2/en active Active
-
2012
- 2012-06-13 US US13/495,575 patent/US20120314783A1/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4300126A (en) * | 1980-04-11 | 1981-11-10 | General Electric Co. | Method and apparatus, for power line communications using zero crossing load interruption |
CN1388654A (zh) * | 2002-06-25 | 2003-01-01 | 中山大学 | 数字脉冲间隔调制电力线载波通信方法与收发装置 |
CN1516350A (zh) * | 2003-01-08 | 2004-07-28 | 西北工业大学 | 基于电力线载波通信的远程安防监控系统 |
Also Published As
Publication number | Publication date |
---|---|
EP1864394A4 (en) | 2008-04-23 |
EP1864394A1 (en) | 2007-12-12 |
US20120314783A1 (en) | 2012-12-13 |
EP1864394B1 (en) | 2013-06-19 |
CN102497219A (zh) | 2012-06-13 |
US8223880B2 (en) | 2012-07-17 |
US20060226958A1 (en) | 2006-10-12 |
WO2006096987A1 (en) | 2006-09-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102497219B (zh) | 用于电力线通信的系统和方法 | |
CN101176270A (zh) | 用于电力线通信的系统和方法 | |
KR920002268B1 (ko) | 파우어라인 통신장치 | |
AU647405B2 (en) | Spread spectrum communications system for networks | |
US6496104B2 (en) | System and method for communication via power lines using ultra-short pulses | |
AU615350B2 (en) | Transmission of data via power lines | |
KR970706662A (ko) | 초광대역 통신 시스템 및 방법(an ultrawide-band communications system and method) | |
CN102754404B (zh) | 延迟检波电路以及接收装置 | |
KR20150132183A (ko) | 캐리어 전류를 통한 저 데이터-레이트 통신을 위한 시스템 및 방법 | |
WO2006109925A1 (en) | Wide band-dcsk modulation method, transmitting apparatus thereof, wide band-dcsk demodulation method, and receiving apparatus thereof | |
EP1938467B1 (en) | Method, devices and system for transmitting information on power supply electric line | |
KR101757014B1 (ko) | 초광대역 통신 장치 및 방법 | |
EP1441458B1 (en) | Transmission apparatus, transmission method, transmission control program, medium containing transmission control program, reception apparatus, reception method, reception control program, and medium containing reception control program | |
AU6362999A (en) | Method and apparatus for communication using pulse decoding | |
CN103326981B (zh) | 一种基于ofdm的电力线载波通信的控制信号调制方法 | |
JP4607777B2 (ja) | スキャニング式列車検知装置及びスキャニング式列車検知方法 | |
JP2009118486A (ja) | デジタル信号と電力ケーブルを統合する方法及び装置 | |
JP2922860B2 (ja) | 電力線通信装置 | |
US7342971B2 (en) | Bipolar waveform modulation for ultra wideband (UWB) communication networks | |
US12009954B2 (en) | Device and method for decoding data from wireless signals | |
CN109600150A (zh) | 一种交流电力线路载波通讯系统 | |
WO2004114585A1 (en) | A device and method for encoding a datum, and a device and method for decoding an encoded datum | |
JP2961568B2 (ja) | モ−メント法による拡散信号の復調方法 | |
CN103414495A (zh) | 一种电力线载波通信的信号调制方法 | |
CN102763390B (zh) | 延迟检波电路以及接收装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20140910 |
|
CF01 | Termination of patent right due to non-payment of annual fee |