[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN102460781B - 用于锂离子电池电极的导电性聚合物粘合剂 - Google Patents

用于锂离子电池电极的导电性聚合物粘合剂 Download PDF

Info

Publication number
CN102460781B
CN102460781B CN201080033669.0A CN201080033669A CN102460781B CN 102460781 B CN102460781 B CN 102460781B CN 201080033669 A CN201080033669 A CN 201080033669A CN 102460781 B CN102460781 B CN 102460781B
Authority
CN
China
Prior art keywords
cooh
electrode
polymer
following formula
cooch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201080033669.0A
Other languages
English (en)
Other versions
CN102460781A (zh
Inventor
G·刘
S·训
V·S·巴塔利亚
H·郑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of California
Original Assignee
University of California
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of California filed Critical University of California
Publication of CN102460781A publication Critical patent/CN102460781A/zh
Application granted granted Critical
Publication of CN102460781B publication Critical patent/CN102460781B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • C08G61/10Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aromatic carbon atoms, e.g. polyphenylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/005Reinforced macromolecular compounds with nanosized materials, e.g. nanoparticles, nanofibres, nanotubes, nanowires, nanorods or nanolayered materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/121Charge-transfer complexes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0409Methods of deposition of the material by a doctor blade method, slip-casting or roller coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0416Methods of deposition of the material involving impregnation with a solution, dispersion, paste or dry powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/314Condensed aromatic systems, e.g. perylene, anthracene or pyrene
    • C08G2261/3142Condensed aromatic systems, e.g. perylene, anthracene or pyrene fluorene-based, e.g. fluorene, indenofluorene, or spirobifluorene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/51Charge transport
    • C08G2261/516Charge transport ion-conductive
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2365/00Characterised by the use of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Derivatives of such polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Dispersion Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

本发明公开了在供锂离子电池使用的负极的制造中作为硅粒子的粘合剂的一类含羧酸基团的芴/芴酮共聚物。这些粘合剂使得能够使用硅作为电极材料,因为它们通过防止电极随时间降解而显著改善硅的循环能力。具体地说,这些聚合物在首次充电时变得导电,它们结合电极的硅粒子,具有柔性以更好地适应充电/放电期间电极的膨胀和收缩,且导电促进电池电流流动。

Description

用于锂离子电池电极的导电性聚合物粘合剂
相关申请的交叉引用 
本PCT申请要求Liu等发明人在2009年5月18日提交的美国临时申请61/179,258号和在2009年9月16日提交的美国临时申请61/243,076号的优先权,这两篇美国临时专利申请的标题都为“用于锂离子电池电极的导电性聚合物粘合剂”,其各自通过引用结合到本文中,如同将它们整体陈述一般。 
政府资助声明 
本文描述并要求保护的本发明部分地利用由美国能源部以合约DE-AC02-05CH 11231号提供的资助进行。美国政府对本发明享有一定权利。 
发明领域
概括地讲,本发明涉及锂离子电池,更具体讲,涉及用于形成产生电荷密度增加的电池电极的硅电极的改善的聚合物粘合剂。 
发明背景 
锂离子电池是一类可再充电电池,其中锂离子在负极与正极之间移动。在放电期间锂离子从负极经电解质移动到正极,反过来,在再充电期间锂离子从正极经电解质移动到负极。负极最常由石墨制成,该材料由于在充电和放电循环期间的稳定性而特别优选,因为其形成具有极小体积变化的固态电解质界面(SEI)层。 
锂离子电池被日益接受作为需要高能密度和长寿命的便携式电子设备如移动式电话和膝上型计算机的电源。这类电池也作为电源而在再充电循环能力和能量密度为关键要求的汽车中获得应用。在这方 面,正在改善电解质和改善电极的领域进行研究。为了满足当前作为目标的40英里插电式混合动力汽车的能量密度要求,还有待开发用于锂离子电池的大容量电极。 
一种方法是用硅代替石墨作为负极。值得注意的是,石墨电极按LiC6倍率为372mAh/g(毫安小时/克),而硅电极按Li4.4Si倍率为4,200mAh/g,其要好十倍以上。然而,许多问题妨碍该材料用作锂离子电池的负极材料。Si的全容量循环由于在嵌锂(锂化)和脱锂(去锂化)期间的大体积变化而导致显著容量衰减。在合理循环率期间的该体积变化在微米尺寸粒子中引发显著量的应力,导致粒子破碎。因此,用微米尺寸粒子制成的电极必须在有限的电压范围内循环以使体积变化减至最小。 
使粒度降低到纳米尺寸可为适应体积变化的有效方法。然而,循环期间的重复体积变化也可引起粒子在电极基体中再定位和导致粒子自导电基体脱位。即使硅粒子没有破碎,该粒子脱位也导致电极容量在循环期间迅速衰减。已经使用了新的纳米制造策略来解决硅电极中见到的一些问题,并获得了一定程度的成功。然而,这些方法引起生产成本显著升高,因为一些方法与当前的锂离子制造技术不相容。因此,仍然需要改善供锂离子电池用的硅电极的稳定性和循环能力的简单、有效且成本有效的方法。 
发明概述 
通过本发明,设计并合成了将在含硅电极的制造中使用的新一类粘合剂。这些新粘合剂在首次充电时变得导电,它们对Si表面提供改善的结合力以帮助整个电极保持优良的电连通性,因此促进电流流过电极。用这些粘合剂制成的电极具有改善的Si循环能力,这部分归因于其弹性和与在电极制造中使用的硅粒子的结合能力。 
更详细地讲,发现了可用作供阳极电极使用的导电粘合剂的新一类导电聚合物。这些聚合物包括聚9,9-二辛基芴和9-芴酮共聚物。所 述聚芴聚合物可降低约1.0V(相对于金属锂电位)且从0-1.0V变得非常导电。因为负极(如Si)在0-1.0V窗内操作,这允许聚芴用作锂离子电池中的阳极粘合剂以提供机械结合和电通路。作为该聚合物的独特特征,通过将与Si纳米晶体结合的官能团如-COOH使聚芴导电聚合物的侧链改性,可实现粘着性的显著改善。 
附图简述 
在结合附图阅读时,技术人员从说明性实施方案的以下描述中可以容易地理解上述方面等。 
图1表示根据本发明的一个实施方案的导电聚合物粘合剂的化学通式。 
图2为用根据本发明的一个实施方案的图1的导电粘合剂制成的Si阳极的电极容量与循环次数的图,其中R1=R2=(CH2)7CH3,R5=COOCH3,R6=H且x=0.5,x′=0,y=0.175且z=0.325。 
图3为图2的相同Si阳极/导电粘合剂电极的库仑效率(%)与循环次数关系的图。 
图4表示在嵌锂和脱锂的最初数次循环中图2的电极的电压曲线。 
图5表示相同电极在不同充电速率下的脱锂性能。 
图6为图2的电极在固定容量下的Si电极循环性能的图。当锂化限于选定的容量时,如所示,脱锂容量在100次循环中稳定。 
图7为与包含在EC/DEC+10%FEC中的LiPF6的电解质组合使用的PFFOMB(聚(9,9-二辛基芴-共-芴酮-共-甲基苯甲酸))粘合剂的循环结果的图。 
发明详述 
根据发明,本文开发的导电聚合物充当用于构造负阳极(negative anode)的硅粒子的粘合剂。其在浆料法中与硅纳米尺寸硅粒子混合, 随后涂布在诸如铜或铝的基材上,此后使其干燥以形成薄膜电极。虽然硅粒子可在微米至纳米尺寸范围内,但优选使用纳米尺寸粒子,因为其使电极材料可以更好地适应体积变化。 
以下陈述用于合成本发明的粘合剂聚合物的一个实施方案的制造方法。首先提供制备在聚合物形成中使用的单体之一(即,2,5-二溴-1,4-苯二甲酸)的方法,制备该单体的反应方案马上在下一段落中说明。 
当苯二甲酸原料(staring material)仅具有一个CH3基团时,反应结束时在最终产物中仅具有一个R=COOCH3基团。 
A.合成聚合物PFFO(聚(9,9-二辛基芴-共-芴酮))
根据下一段落中陈述的反应流程,对于一个实施方案提供形成本发明的聚合物之一的方法的实例。在氩气气氛下在剧烈搅拌下使从Sigma-Aldrich Company购得的9,9-二辛基芴-2,7-二硼酸双(1,3-丙二醇)酯(0.83g,1.5mmol)、2,7-二溴-9-芴酮(0.50g,1.5mmol)、(PPh3)4Pd(0)(0.085g,0.07mmol)和数滴Aliquat 336在10mL THF(四氢呋喃)和4.5mL 2M Na2CO3溶液的混合物中的混合物回流72小时。在聚合期间,淡褐色固体从溶液中沉淀出。收集固体且其通过索格利特(Soxhlet)萃取用丙酮作为溶剂纯化两天,产率为86%。 
B.合成PFFOMB(聚(9,9-二辛基芴-共-芴酮-共-甲基苯甲酸))
在氩气气氛下在剧烈搅拌下使9,9-二辛基芴-2,7-二硼酸双(1,3-丙二醇)酯(0.80g,1.43mmol)、2,7-二溴-9-芴酮(0.24g,0.72mmol)、2,5-二溴苯甲酸甲酯(0.21g,0.72mmol)、(PPh3)4Pd(0)(0.082g,0.072mmol)和数滴Aliquat 336在13mL THF(四氢呋喃)和5mL 2M Na2CO3溶液的混合物中的混合物回流72小时。在反应停止后,溶液通过真空蒸发浓缩且使聚合物从甲醇中沉淀。所得聚合物通过从甲醇中沉淀两次来进一步纯化。最终聚合物通过抽滤收集且在真空下干燥,产率为87%。 
C.合成PFFOBA(聚(9,9-二辛基芴-共-芴酮-共-苯甲酸))
在氩气气氛下使PFFOMB(0.36g)和KOH(2g,35mmol)在20mLTHF和2mL H2O中的混合物回流48小时。在反应停止后,溶液通过真空蒸发浓缩且使聚合物从甲醇中沉淀。在剧烈搅拌下使所得聚合物悬浮在10mL浓硫酸中历时12小时。将最终产物过滤,用水洗涤且干燥,产率为96%。 
用于形成在侧链上具有-COOCH3基团的导电聚合物(PFFOMB)和在侧链上具有-COOH基团的导电聚合物(PFFOBA)的反应方案。 
已经发现-COOH基团的存在用以增加聚合物对电极的硅粒子的结合能力。具体地说,可以使羧酸基团在芴骨架的第9位定位。下式表示这类聚合物的通用结构。 
其中x=0,x′和y≥0且z≤1,且x′+y+z=1,R3和R4可为(CH2)nCOOH,n=0-8,且R5和R6可为H、COOH和COOCH3的任何组合。 
另一变体为由下式如下说明通过使x单体共聚到主链中来调节COOH基团的数目。通过调节x∶x′比,可在不改变导电粘合剂的电性质的情况下控制-COOH基团的数目。这种组成的实例由下式如下说明。 
其中x、x′、y>0且z≤1,其中x+x′+y+z=1。R1和R2可为(CH2)nCH3,n=0-8。R3和R4可为(CH2)nCOOH,n=0-8。R5和R6可为H、COOH和COOCH3的任何组合;且“x、x′”单元为在9位和9′位具有烷基或烷基羧酸的芴;“y”单元为芴酮。芴酮和芴的骨架的H位置也可用诸如COOH、F、Cl、Br、SO3H等的官能团取代。 
在又一实施方案中,可通过在重复单元之间引入柔性部分(section)增加聚合物的柔性。这如下文所示来说明,其中诸如烷基或聚亚乙基的柔性链部分可用以将A部分连接在一起以进一步改善弹性,该结构由下式说明: 
其中n≥0,且A部分如下定义: 
其中 
0≤x、x′、y和z≤1且x+x′+y+z=1。 
R1和R2可为(CH2)nCH3,n=0-8,R3和R4可为(CH2)nCOOH,n=0-8,R5和R6可为H、COOH和COOCH3的任何组合。 
大部分高度共轭的导电聚合物具有刚性骨架,且聚合物的弹性较低。为了适应在合金中嵌锂和脱锂期间引起的体积膨胀,重要的是导电聚合物粘合剂具有一定程度的弹性。一种增加柔性的方法是将柔性单元(n)以合成方式引入到如上所示的聚合物体系中。单元n为柔性烷基或聚亚乙基部分。该柔性单元(n)视特定合金体系的要求而可为一个或多个-CH2单元或视合成简易性而可为任何类型的线性单元。x、x′、y和z单元可为一个或多个芴或芴酮单元。一种可能的结构具有沿芴主链分布的百分之几的柔性单元的无规共聚物的结构。R1-R6单元可为所述选择之一,且它们在聚合物链中不必全部相同。侧链长度增加还可影响聚合物粘合剂的柔性。因此,R1-R6单元的数目也可在优化工艺期间进行改变。可以改变R1-R6单元的数目,且如优化所表明寻找改善的电池循环性能。 
另一问题在于在活性阴极材料与电解质之间的界面的稳定性和阻抗。所述粘合剂可以较高粘合剂装载量覆盖(即,罩盖)所有活性材料。这种覆盖率将改进界面稳定性和阻抗。改变R1-R6单元的数目在优化界面处的电荷转移阻抗方面起显著作用。 
在锂离子电池中合成并试验的当前聚合物结构如下所示。 
PFFO(聚(9,9’-二辛基芴-共-芴酮)) 
PFFOMB(聚(9,9’-二辛基芴-共-芴酮-共-甲基苯甲酸)) 
PFFOBA(聚(9,9’-二辛基芴-共-芴酮-共-苯甲酸)) 
一旦合成了导电聚合物,就可将其与硅粒子混合,且涂布到诸如铜的基材上且使其干燥以形成电极材料。以下提供电极制备的更详细论述。使用本发明的这些导电聚合物的优势在于,它们易于与制备电极的当前浆料法相容,因此不需要专门的步骤和设备, 
制备导电聚合物浆料的方法
Si/导电聚合物混合物通过将0.09g图1的导电聚合物(即,PFFOB,其中R1 = R2 = (CH2)7CH3,R5 = COOCH3,R6 = H且x = 0.5,x' = 0,y = 0.175且z = 0.325))溶解于2.6g氯苯中来制得。将0.18g Si分散在聚合物溶液中以满足所需Si:聚合物比为2:1。为了确保Si纳米粒子充分混合到聚合物溶液中,使用装备有实角的Branson 450超声波仪。超声处理功率设定为70%。按序连续使用10秒脉冲接着使用30秒休止。声波分散过程耗时约30分钟。所有混合过程都在Ar填充的手套箱中进行。 
制备AB/PVDF导电胶的方法
为了比较图2和图3中说明的本发明的导电聚合物,AB∶PVDF(乙炔黑/聚偏氟乙烯)以0.2∶1重量比的浆料通过将5g PVDF溶解于95gNMP中以得到5%在NMP溶液中的PVDF来制得。将适当量的AB分散在PVDF溶液中以满足所需AB∶PVDF比。为了确保AB纳米粒子充分混合到PVDF溶液中,使用装备有实角(solid horn)的Branson 450超声波仪。超声处理功率设定为70%。按序连续使用10秒脉冲 接着使用30秒休止。声波分散过程耗时约30分钟。所有混合过程都在Ar填充的手套箱中进行。 
制备Si/AB/PVDF的浆料的方法
将0.86g Si与7.16g导电胶(PVDF∶AB=1∶0.2重量,在95%PVDF的NMP溶液中)混合。为了确保Si纳米粒子充分混合到胶溶液中,使用装备有实角的Branson 450超声波仪。超声处理功率设定为70%。按序连续使用10秒脉冲接着使用30秒休止。声波分散过程耗时约30分钟。所有混合过程都在Ar填充的手套箱中进行。 
制备电极的方法
所有电极叠层使用Mitutoyo刮刀和Yoshimitsu Seiki真空刮涂机(drawdown coater)流延到20μm厚的电池级Cu板上到约略相同的活性材料装载量/单位面积。将膜和叠层首先在红外灯下干燥1小时,直至蒸发了大部分溶剂且它们看起来已干燥。将膜和叠层在120℃下在10-2托动态真空下进一步干燥24小时。膜和叠层的厚度用准确度为±1μm的Mitutoyo测微计测量。典型膜厚为约20μm。在扣式电池组件之前使用装备有连续可调间隙的得自International Rolling Mill的压延机将电极压缩到35%孔隙率。 
制造扣式电池的方法
扣式电池组件使用标准2325扣式电池硬件进行。从叠层中冲压出直径为1.47cm的圆盘在扣式电池组件中用作工作电极。将锂箔用以制备反电极。将反电极切割成直径为1.5cm的圆盘。将工作电极置于扣式电池组件外壳的中央且加入两滴在从Ferro Inc.购买的EC∶DEC(1∶1重量比)电解质中的1M LiPF6以使电极湿润。将直径为2cm的Celgard 2400多孔聚乙烯隔片置于工作电极之上。再向隔片加三滴电解质。将反电极置于隔片的顶部。特别注意以使反电极对称地在工作电极上方。将不锈钢间隔物和贝氏弹簧置于反电极之上。将塑料索环置于电极组件的外缘之上且用加拿大国家研究委员会(National Research Council of Canada)制造的定制卷边机卷边密封。整 个电池制造程序都在Ar气氛手套箱中进行。 
试验扣式电池的方法
扣式电池性能在热腔室中在30℃下用Maccor系4000电池试验系统评估。将充电顶点时的循环电压极限设定为1.0V,且放电结束时的循环电压极限设定为0.01V。 
化学品
用于合成导电聚合物的所有起始化学材料都从Sigma-Aldrich购得。平均粒度为40nm、比表面积为60.4m2/g且材料密度为1.95g/cm3的电池级AB从Denka Singapore Private Ltd.获得。材料密度为1.78g/cm3的PVDF KF 1100粘合剂由日本的Kurcha供应。水含量为50ppm的无水N-甲基吡咯烷酮NMP从Aldrich Chemical Co.购买。 
如上所述,本发明的导电聚合物可用作Si纳米粒子电极的导电粘合剂。降低导电聚合物的LUMO水平的吸电子单元使LUMO水平相对于锂参比物降低约1V,且羧酸基团通过形成酯键在Si表面上提供与OH基团的共价结合。主链上的烷基提供给粘合剂柔性。 
所进行的各种试验的结果如图2-6的各图中所记录。图2表明,与作为对照的常规乙炔黑(AB)和聚偏二氟乙烯(PVDF)导电添加剂和粘合剂相比,与Si纳米粒子组合的新导电聚合物大大改善容量保持率。图3说明,与常规AB/PVDF方法相比较,本发明的导电粘合剂/Si电极的库仑效率改善。图4说明显示导电聚合物/Si电极与纯Si膜型电极的非常类似的电压特性的结果。图5绘制本发明的导电聚合物/Si电极的倍率性能(rate performance),显示优良结果。即使在10C倍率下,仍然存在超过一半的容量保持率。最后,图6说明用本发明的共聚物粘合剂制成的硅电极的循环能力,其在有限的容量范围内很好。在1200mAh/g和600mAh/g固定容量循环下在100次循环中没有容量衰减。 
在本文中已经非常详细地描述了本发明以提供给本领域技术人员以与应用新原理和按需要构造并使用所述专门组分有关的信息。然 而,应理解本发明可由不同设备、材料和装置进行,且可在不脱离本发明的范围本身的情况下实现对设备和操作程序的各种改变。 

Claims (11)

1.聚合物复合材料,其包含与具有下式的重复单元的导电聚合物粘合剂混合的至少一种或多种微米或纳米尺寸硅粒子:
其中0 ≤ x、x'、y和z ≤ 1且x + x'+ y + z = 1,R1和R2为(CH2)nCH3,其中n = 0-8,R3和R4为(CH2)nCOOH,其中n = 0-8且R5和R6为H、COOH和COOCH3的任何组合。
2.权利要求1的聚合物复合材料,其中所述重复单元具有下式:
3.权利要求1的聚合物复合材料,其中所述重复单元具有下式:
4.权利要求1的聚合物复合材料,其中:x = 0,x'和y各自大于0,且z < 1,x' + y + z = 1,R3和R4 = (CH2)nCOOH,其中n = 0-8且R5和R6为H、COOH和COOCH3的任何组合。
5.制造供锂离子电池用的硅电极的方法,其包括以下步骤:
a) 形成溶剂和下式的导电聚合物的溶液
其中0 ≤ x、x'、y和z ≤ 1,x + x'+ y + z = 1,R1和R2为(CH2)nCH3,其中n = 0-8,R3和R4为(CH2)nCOOH,其中n = 0-8且R5和R6为H、COOH和COOCH3的任何组合;
b) 向该溶液中加入微米或纳米硅粒子以形成浆料;
c) 混合所述浆料以形成均质混合物;
d) 使所述均质混合物的薄膜沉积在基材上;和
e) 干燥所得复合材料以形成所述硅电极。
6.权利要求5的方法,其中所述基材选自铜和铝。
7.权利要求5的方法,其中所述导电聚合物具有下式:
8.权利要求5的方法,其中所述导电聚合物具有下式:
9.权利要求5的方法,其中:x = 0,x'和y各自大于0,且z < 1,x' + y + z = 1,R3和R4 = (CH2)nCOOH,其中n = 0-8且R5和R6为H、COOH和COOCH3的任何组合。
10.锂离子电池,其具有加入了具有下式的重复单元的导电聚合物粘合剂的硅电极:
其中0 ≤ x、x'、y和z ≤ 1,x + x'+ y + z = 1,R1和R2为(CH2)nCH3,其中n = 0-8,R3和R4为(CH2)nCOOH,其中n = 0-8且R5和R6为H、COOH和COOCH3的任何组合。
11.权利要求10的电池,其中所述重复单元具有选自以下的式子:
其中:x = 0,x'和y各自大于0,且z < 1,x' + y + z = 1,R3和R4 = (CH2)nCOOH,其中n = 0-8且R5和R6为H、COOH和COOCH3的任何组合。
CN201080033669.0A 2009-05-18 2010-05-17 用于锂离子电池电极的导电性聚合物粘合剂 Active CN102460781B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US17925809P 2009-05-18 2009-05-18
US61/179258 2009-05-18
US24307609P 2009-09-16 2009-09-16
US61/243076 2009-09-16
PCT/US2010/035120 WO2010135248A1 (en) 2009-05-18 2010-05-17 Electronically conductive polymer binder for lithium-ion battery electrode

Publications (2)

Publication Number Publication Date
CN102460781A CN102460781A (zh) 2012-05-16
CN102460781B true CN102460781B (zh) 2015-02-04

Family

ID=43126463

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201080033669.0A Active CN102460781B (zh) 2009-05-18 2010-05-17 用于锂离子电池电极的导电性聚合物粘合剂

Country Status (5)

Country Link
US (2) US8852461B2 (zh)
EP (1) EP2433323A4 (zh)
JP (1) JP2012527518A (zh)
CN (1) CN102460781B (zh)
WO (1) WO2010135248A1 (zh)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9077039B2 (en) * 2009-05-18 2015-07-07 The Regents Of The University Of California Electronically conductive polymer binder for lithium-ion battery electrode
WO2010135248A1 (en) 2009-05-18 2010-11-25 The Regents Of The University Of California Electronically conductive polymer binder for lithium-ion battery electrode
KR101861212B1 (ko) 2010-09-09 2018-06-29 캘리포니아 인스티튜트 오브 테크놀로지 전기화학적 에너지 저장 시스템 및 방법
US9379368B2 (en) 2011-07-11 2016-06-28 California Institute Of Technology Electrochemical systems with electronically conductive layers
WO2013009750A2 (en) 2011-07-11 2013-01-17 California Institute Of Technology Novel separators for electrochemical systems
US10461358B2 (en) * 2011-10-11 2019-10-29 Samsung Sdi Co., Ltd. Rechargeable lithium battery
WO2013116711A1 (en) 2012-02-01 2013-08-08 The Regents Of The University Of California Conductive polymer coated si nanoparticles composite and current collectors for lithium ion negative electrode
US9450223B2 (en) 2012-02-06 2016-09-20 Samsung Sdi Co., Ltd. Lithium secondary battery
KR101683212B1 (ko) 2012-02-07 2016-12-06 삼성에스디아이 주식회사 리튬 이차 전지의 제조 방법
US20130244080A1 (en) * 2012-03-16 2013-09-19 Samsung Sdi Co., Ltd. Separator for lithium secondary battery
KR102230229B1 (ko) 2012-04-10 2021-03-18 캘리포니아 인스티튜트 오브 테크놀로지 전기화학 시스템들용 신규 세퍼레이터들
KR20140135777A (ko) * 2012-05-31 2014-11-26 가부시끼가이샤 히다치 세이사꾸쇼 리튬 이온 이차전지
JP6476627B2 (ja) * 2013-07-24 2019-03-06 三菱ケミカル株式会社 非水系二次電池負極用活物質並びにそれを用いた負極及び非水系二次電池
US20160164099A1 (en) * 2013-07-29 2016-06-09 The Penn State Research Foundation Elastic gel polymer binder for silicon-based anode
US10714724B2 (en) 2013-11-18 2020-07-14 California Institute Of Technology Membranes for electrochemical cells
WO2015074065A1 (en) 2013-11-18 2015-05-21 California Institute Of Technology Electrochemical separators with inserted conductive layers
CN103904299B (zh) * 2014-03-24 2015-10-28 宁德新能源科技有限公司 锂离子二次电池及其负极极片
US10340508B2 (en) * 2014-06-16 2019-07-02 The Regents Of The University Of California Porous silicon oxide (SiO) anode enabled by a conductive polymer binder and performance enhancement by stabilized lithium metal power (SLMP)
DE102014214899A1 (de) * 2014-07-30 2016-02-04 Bayerische Motoren Werke Aktiengesellschaft Kompositelektrode für eine elektrochemische Zelle und elektrochemische Zelle
US10263246B2 (en) 2014-11-20 2019-04-16 Ut-Battelle, Llc Lithiated and passivated lithium ion battery anodes
KR102295365B1 (ko) 2014-12-31 2021-08-31 삼성전자주식회사 복합 음극 활물질, 그 제조방법, 이를 포함하는 음극 및 리튬이차전지
KR20160139240A (ko) 2015-05-27 2016-12-07 주식회사 엘지화학 전극 합제, 이의 제조방법 및 이를 포함하는 이차전지
WO2017096258A1 (en) 2015-12-02 2017-06-08 California Institute Of Technology Three-dimensional ion transport networks and current collectors for electrochemical cells
DE112016005500T5 (de) 2016-01-07 2018-09-20 Enwair Enerji Teknolojileri A. S. Verwendung von leitfähigen und flexiblen polymeren in lithiumbatterien
US10903484B2 (en) 2016-10-26 2021-01-26 The Regents Of The University Of Michigan Metal infiltrated electrodes for solid state batteries
US10424784B2 (en) 2016-10-28 2019-09-24 GM Global Technology Operations LLC Negative electrode including silicon nanoparticles having a carbon coating thereon
KR102267599B1 (ko) * 2017-09-28 2021-06-21 주식회사 엘지에너지솔루션 전극 슬러리의 공정성 예측 및 전극 바인더 선정 방법
JP2020510953A (ja) 2018-01-19 2020-04-09 エンウェア エネルジ テクノロジレリ アー エスEnwair Enerji Teknolojileri A.S. 高性能リチウムイオン電池用のゲル(架橋)ポリマーバインダー
KR102526022B1 (ko) * 2018-05-25 2023-04-27 큐레스 주식회사 복합체, 이의 제조방법 및 이를 포함하는 전극 재료
US11205778B2 (en) 2019-06-12 2021-12-21 The Regents Of The University Of California Conductive polymer emulsion
US11374218B2 (en) 2019-08-21 2022-06-28 GM Global Technology Operations LLC Multilayer siloxane coatings for silicon negative electrode materials for lithium ion batteries
US11843110B2 (en) 2019-10-30 2023-12-12 GM Global Technology Operations LLC Methods for controlling formation of multilayer carbon coatings on silicon-containing electroactive materials for lithium-ion batteries
CN111769285B (zh) * 2020-07-01 2022-04-01 苏州凌威新能源科技有限公司 锂电池负极胶粘剂及负极片
EP4278368A2 (en) * 2021-01-13 2023-11-22 The Regents of the University of California Conductive polymers and electrode processing useful for lithium batteries
CN114539537B (zh) * 2022-02-21 2023-06-06 中化国际(控股)股份有限公司 一种锂离子电池电极材料的粘结剂及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5312874A (en) * 1992-09-07 1994-05-17 Japan As Represented By Director General Of Agency Of Industrial Science And Technology Poly(benxoic acid), method for the preparation thereof and method for the preparation of poly(p-phenylene) from poly(benzoic acid)
CN1635047A (zh) * 2004-12-08 2005-07-06 中国科学院长春应用化学研究所 蓝色电致发光高分子材料及其制备方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3471244B2 (ja) 1999-03-15 2003-12-02 株式会社東芝 非水電解液二次電池の製造方法
EP2272905A3 (en) * 2000-06-12 2014-10-22 Sumitomo Chemical Company Limited compositions for electroluminescent material and their devices
JP3466576B2 (ja) 2000-11-14 2003-11-10 三井鉱山株式会社 リチウム二次電池負極用複合材料及びリチウム二次電池
US6706447B2 (en) 2000-12-22 2004-03-16 Fmc Corporation, Lithium Division Lithium metal dispersion in secondary battery anodes
US7074885B2 (en) * 2001-05-03 2006-07-11 E.I. Du Pont De Nemours And Company Electroactive fluorene copolymers and devices made with such polymers
US20030044680A1 (en) * 2001-08-24 2003-03-06 Im&T Research, Inc. Polymer materials for use in an electrode
US7094902B2 (en) * 2002-09-25 2006-08-22 3M Innovative Properties Company Electroactive polymers
US6849348B2 (en) * 2002-12-31 2005-02-01 Eastman Kodak Company Complex fluorene-containing compounds
GB0414161D0 (en) 2004-06-24 2004-07-28 Aea Technology Battery Systems Anode for lithium ion cell
JP2006048974A (ja) * 2004-07-30 2006-02-16 Nippon Chemicon Corp 電気化学素子用電極材料
JP2006048972A (ja) * 2004-07-30 2006-02-16 Nippon Chemicon Corp 二次電池
DE112005002103T5 (de) * 2004-09-03 2007-07-26 The Regents Of The University Of California, Oakland Lösliche konjugierte Polymere verwendende Verfahren und Vorrichtungen
JP4456963B2 (ja) * 2004-09-10 2010-04-28 住友化学株式会社 共重合体及びそれを用いた高分子発光素子
JP4614735B2 (ja) * 2004-10-29 2011-01-19 住友化学株式会社 高分子材料及びそれを用いた高分子発光素子
US7615314B2 (en) * 2004-12-10 2009-11-10 Canon Kabushiki Kaisha Electrode structure for lithium secondary battery and secondary battery having such electrode structure
JP5094013B2 (ja) * 2004-12-10 2012-12-12 キヤノン株式会社 リチウム二次電池用の電極構造体及び該電極構造体を有する二次電池
KR100738057B1 (ko) 2005-09-13 2007-07-10 삼성에스디아이 주식회사 음극 전극 및 이를 채용한 리튬 전지
JP5194414B2 (ja) * 2006-09-21 2013-05-08 大日本印刷株式会社 有機エレクトロルミネッセンス素子及びその製造方法
JP2010097756A (ja) 2008-10-15 2010-04-30 Sony Corp 二次電池
US9077039B2 (en) 2009-05-18 2015-07-07 The Regents Of The University Of California Electronically conductive polymer binder for lithium-ion battery electrode
US9153353B2 (en) 2009-05-18 2015-10-06 The Regents Of The University Of California Electronically conductive polymer binder for lithium-ion battery electrode
WO2010135248A1 (en) 2009-05-18 2010-11-25 The Regents Of The University Of California Electronically conductive polymer binder for lithium-ion battery electrode
WO2011153105A1 (en) * 2010-06-02 2011-12-08 The Regents Of The University Of California Si composite electrode with li metal doping for advanced lithium-ion battery
US9419282B2 (en) * 2012-01-23 2016-08-16 Uchicago Argonne, Llc Organic active materials for batteries

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5312874A (en) * 1992-09-07 1994-05-17 Japan As Represented By Director General Of Agency Of Industrial Science And Technology Poly(benxoic acid), method for the preparation thereof and method for the preparation of poly(p-phenylene) from poly(benzoic acid)
CN1635047A (zh) * 2004-12-08 2005-07-06 中国科学院长春应用化学研究所 蓝色电致发光高分子材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"An effect of side chain length on the solution structure of poly(9, 9-dialkylfluorene)s in toluene";M. Knaapila等;《Polymer》;20080302;第49卷(第8期);第2033-2038页 *
"The Influence of UV Irradiation on Ketonic Defect Emission in Fluorene-Based Copolymers";Horst Scheiber等;《Advanced Functional Materials》;20080805;第18卷(第17期);第2480-2488页 *

Also Published As

Publication number Publication date
US20150034881A1 (en) 2015-02-05
WO2010135248A1 (en) 2010-11-25
EP2433323A1 (en) 2012-03-28
CN102460781A (zh) 2012-05-16
WO2010135248A8 (en) 2011-06-16
EP2433323A4 (en) 2013-10-23
US20120119155A1 (en) 2012-05-17
JP2012527518A (ja) 2012-11-08
US8852461B2 (en) 2014-10-07
US9653734B2 (en) 2017-05-16

Similar Documents

Publication Publication Date Title
CN102460781B (zh) 用于锂离子电池电极的导电性聚合物粘合剂
CN107641484B (zh) 粘合剂、制备该粘合剂的方法、以及包括该粘合剂的电极和锂电池
JP6461303B2 (ja) 固体電解質組成物、電極活物質及びその製造方法、電池用電極シート及びその製造方法、並びに全固体二次電池及びその製造方法
JP6442610B2 (ja) 固体電解質組成物、全固体二次電池用電極シートおよび全固体二次電池ならびに全固体二次電池用電極シートおよび全固体二次電池の製造方法
CN106129365B (zh) 一种高安全性磷酸锰铁锂电池
US20160164099A1 (en) Elastic gel polymer binder for silicon-based anode
CN105762364B (zh) 电池负电极及其制备方法和锂离子电池
CN105190968B (zh) 电化学元件电极用粘合剂、电化学元件电极用粒子复合体、电化学元件电极、电化学元件、以及电化学元件电极的制造方法
CN111725509B (zh) 一种负极材料、负极浆料、负极片及锂离子电池
US9722252B2 (en) Electronically conductive polymer binder for lithium-ion battery electrode
Kuo et al. In situ cross-linked poly (ether urethane) elastomer as a binder for high-performance Si anodes of lithium-ion batteries
WO2018000578A1 (zh) 多元功能化改性聚乙烯醇基锂离子电池水性粘结剂及在电化学储能器件中的应用
CN113725398A (zh) 锂离子电池及其正极极片
US11710829B2 (en) Method and system for water based phenolic binders for silicon-dominant anodes
KR20190077319A (ko) 다공성 실리콘 물질 및 전도성 중합체 결합제 전극
US20170170472A1 (en) Anode slurry and method for preparing the same
KR20190042673A (ko) 리튬 이온 배터리 내 신규한 실리콘/그래핀 애노드를 위한 전도성 중합체 결합제
WO2022241096A1 (en) Configuring cell performance using specific anode, cathode, and separator combinations
Jeong et al. Extended Lifespan of Low-Cost Metal Silicon Anodes via a One-Step Wet Ball-Milling Process for Ultra-Thin Polymer Protecting Layer and Optimal Particle Size
KR20130092439A (ko) 전지용 복합바인더, 이를 채용한 음극과 리튬전지
JP2018160400A (ja) 蓄電デバイス電極用バインダー
JP2012150900A (ja) 双極型二次電池用シール材および双極型二次電池
KR20220121778A (ko) 이차 전지용 바인더 조성물, 이차 전지용 슬러리 조성물, 및 고체 전해질 함유층, 그리고, 전고체 이차 전지 및 전고체 이차 전지의 제조 방법
CN109755445A (zh) 复合隔膜,其制备方法和包含其的锂离子电池
KR102732230B1 (ko) 다공성 실리콘 물질 및 전도성 중합체 결합제 전극

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant