[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN102403185A - 无碘化铊的陶瓷金属卤化物灯 - Google Patents

无碘化铊的陶瓷金属卤化物灯 Download PDF

Info

Publication number
CN102403185A
CN102403185A CN2011102835473A CN201110283547A CN102403185A CN 102403185 A CN102403185 A CN 102403185A CN 2011102835473 A CN2011102835473 A CN 2011102835473A CN 201110283547 A CN201110283547 A CN 201110283547A CN 102403185 A CN102403185 A CN 102403185A
Authority
CN
China
Prior art keywords
lamp
halide
filler
nominal
cct
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2011102835473A
Other languages
English (en)
Inventor
L·邓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of CN102403185A publication Critical patent/CN102403185A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/82Lamps with high-pressure unconstricted discharge having a cold pressure > 400 Torr
    • H01J61/827Metal halide arc lamps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/12Selection of substances for gas fillings; Specified operating pressure or temperature
    • H01J61/125Selection of substances for gas fillings; Specified operating pressure or temperature having an halogenide as principal component

Landscapes

  • Discharge Lamp (AREA)
  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)

Abstract

本发明涉及无碘化铊的陶瓷金属卤化物灯。本公开涉及能够以小于全额定功率操作而没有遭受不可取的色移、流明维持率的损失或灯效能的损失的放电灯(10)。它与剂量中没有碘化铊的陶瓷金属卤化物灯结合得到特别应用。

Description

无碘化铊的陶瓷金属卤化物灯
技术领域
本公开涉及能够以小于全额定功率操作从而展现优良流明维持率和高发光效能而没有遭受不可取色移的放电灯。它与剂量中没有碘化铊的陶瓷金属卤化物灯结合得到特别应用,并且将特别参考该陶瓷金属卤化物灯来描述。
背景技术
高强度放电(HID)灯是可以从相对小的源产生大量光的高效灯。这些灯在许多应用中广泛地使用,仅举几例来说,包括零售展示照明、公路和道路照明、例如体育场等大型场所的照明、工业和商业建筑以及商店的泛光灯照明以及投光灯。术语“HID灯”用于表示不同种类的灯。这些包括汞蒸气灯、金属卤化物灯和钠灯。特别地,金属卤化物灯在要求以相对低的成本达到高亮度水平的区域广泛地使用。HID灯不同于其他灯,因为它们的运行环境要求在高温和高压下长时段地操作。并且,由于它们的使用和成本,理想的是这些HID灯具有相对长的使用寿命并且产生一致亮度水平和光的颜色。尽管原则上HID灯可以用交流(AC)电源或直流(DC)电源操作,实际上这些灯通常通过AC电源驱动。
放电灯通过用在两个电极之间传递的电弧电离蒸气填充物材料(例如稀有气体、金属卤化物和汞的混合物等)来产生光。这些电极和填充物材料密封在半透明或透明的放电容器内,该放电容器维持被通电的填充物材料的压力并且允许发射的光通过它。这些填充物材料(也称为灯“剂量”)响应于由电弧激发来发射期望的光谱能量分布。例如,卤化物提供光谱能量分布,这些光谱能量分布提供例如色温、显色性和发光效能的光性质的广泛选择。
考虑到社会上围绕采用更高效和经济的方式使用能量的当前认识,在照明行业中对降低能耗、最好不牺牲灯性能的方式存在越来越多的兴趣。一个技术方案将是以降低的功率水平操作灯。在商业照明目的的能耗中潜在的节省以及降低作为社会的我们的能量资源的消耗的机会是可观的。
然而,在以低于它的全额定功率操作陶瓷金属卤化物(CMH)灯照明中存在至少一个缺点。当操作灯的功率水平降低时,发射的光的颜色从白偏移到绿,这与灯的相关色温(CCT)增加差不多1000°K或更多相关。CMH灯颜色主要由电弧管中处于蒸气相的卤化物剂量组成决定。例如,典型的CMH灯包含NaI、TlI、CaI2以及例如DyI3、HoI3、TmI3、CeI3或LaI3等一些稀土碘化物。当CMH灯调暗时,电弧中的卤化物蒸气压将随电弧管温度的降低而下降。另外,TlI蒸气压比稀土卤化物的蒸气压下降较慢。由于TlI发射绿光,并且保持在比剩下的碘化物相对较高的蒸气压,那么灯在调暗的状况下经历从白到绿的色移。光颜色中的这样的偏移对商业使用具有相当大的影响。例如,零售和展示场所(其常常由于CMH灯的长寿命和聚焦的光发射而采用CMH灯)可明显苦于没有使正展示的物品以它们最佳的优势、即在白光下呈现的照明。对于照明有助于顾客所经历的气氛或环境的公共场所同样如此。
借助当前技术,灯化学提供关于大多数性能指标非常有益的性质。然而,当灯以降低的功率操作以降低能耗时,可能改变这些性能指标,并且具体地可负面影响发射的光的颜色。已经做出尝试来通过改变化学剂量降低当以小于它的额定功率的100%操作灯时发生的不可取的色移,但常常这些尝试导致灯遭受降低的效能和总的流明损失。这些参数与灯发射的光的颜色直接相关,并且因此直接影响使用灯的消费者的满意度。然而,即使当剂量化学中的变化已经是最小时,旨在通过改变灯剂量解决发射颜色问题的努力导致关于其他性能和光度量参数的损失并且有时导致相当大的损失。因此,在一些实例中已经以损失其他重要的灯参数为代价这样做出改进灯颜色的努力。
例如,USPN 6,501,220、USPN 6,717,364和USPN 7,012,375公开在灯剂量中包括DyI3、TmI3、或HoI3,这些已知中断了CMH灯中的钨卤循环。因此,这些灯具有差的流明维持率。另外,上文的专利中的一些包含MgI2,其可证明关于调暗特性是有利的,但也引起灯效能和流明维持率的降低。到目前为止,缺乏可以提供优秀的调暗特性并且同时提供良好的流明维持率和效能的CMH灯。前面的缺点已经成为CMH灯在调暗、节能状况下广泛使用的限制因素。
因此,存在一种需要,其能够满足采用更加能量高效的方式而与设置无关来操作照明的需要,并且同时能够这样做而没有遭受发射的光的察觉到的白色损失,特别没有引起朝发射的光的更绿色调的偏移,没有降低流明维持率并且没有减损灯效能。期望的是能够按消费者的选择以降低的额定功率(多达差不多50%以下的功率)操作同时维持灯的白光发射、良好的流明维持率和效能的灯。
意外地,本发明实现前面理想的参数中的全部,同时没有引起或仅引起灯的其他性能和光度量参数中的可忽略不计的损失。这通过采用没有碘化铊的灯剂量连同其他卤化物组成的优化来完成。结果是灯展现关于流明、效能和光色的优良性能。
发明内容
在示范性实施例中,灯包括放电容器,其具有密封在其中的可电离填充物,该填充物至少包括惰性气体、汞和其中没有铊存在的卤化物成分,该卤化物成分包括碱金属卤化物、碱土金属卤化物和稀土卤化物。例如,没有任何卤化铊的该卤化物成分可包括卤化钠、卤化钙或卤化锶二者至少其中之一,以及卤化铈或卤化镧二者至少其中之一,并且可进一步可选择地包括卤化铯或卤化铟。
在本发明的再另一个实施例中,提供形成灯的方法。该方法包括提供具有密封在其中的电离填充物的放电容器,该填充物包括惰性气体、汞、碱金属卤化物、碱土金属卤化物和包括La或Ce中的至少一个的稀土卤化物。例如,卤化物成分可包括卤化钠、卤化钙或卤化锶二者至少其中之一,以及从由镧和铈构成的组中选择的稀土卤化物中的至少一个,并且可选择地包括卤化铯或卤化铟。该方法进一步包括在该放电容器内安置电极以响应于施加于电极的电压使填充物通电。将意识到本发明不限于任何特别的制造方法或加工。
由根据本发明的实施例的灯实现的主要益处是当灯以小于灯的全额定功率(典型地以全额定功率的大约50%的降低)操作时发射的光的增强颜色,且没有可察觉的色移,这主要是由于从灯剂量中排除碘化铊。
由根据本发明的实施例的灯实现的另一个益处是超过现有技术CMH灯的在操作3000小时后15%或更大的增强的流明维持率。
由根据本发明的实施例的灯实现的再另一个益处是超出90LPW的增强效能。
根据本发明的灯的其他特征和益处将通过阅读和理解下列详细说明变得更明显。
附图说明
图1是示出如与可比较的常规的灯的色点中的偏移相比、根据本发明的实施例的灯的6MPCD内的色点中的偏移的曲线图。
图2是根据示范性实施例的HID灯的剖视图。
图3是示出与可比较的常规的灯相比、作为根据本发明的实施例的灯的标称灯功率的百分比的函数的灯CCT(以开氏度(°K)为单位)的曲线图。
图4是示出与可比较的常规的灯相比、作为根据本发明的实施例的灯的灯寿命(以千小时为单位)的函数的%流明维持率的曲线图。
具体实施方式
本公开涉及能够以小于全额定功率操作而不遭受不可取的色移、流明维持率损失或灯效能损失的放电灯。它与包括不含卤化铊而包含卤化镧或卤化铈中的至少一个的剂量的陶瓷金属卤化物灯结合得到特别应用,其中当灯以小于它的标称灯功率操作时灯大致上展现出没有色移、良好的流明维持率和良好的效能。在示范性实施例中,灯包括放电容器,其具有密封在其中的可电离填充物,该填充物至少包括惰性气体、游离汞和其中不包括铊的卤化物成分,该卤化物成分包括碱金属卤化物、碱土金属卤化物和包括镧和/或铈中的至少一个的稀土卤化物。例如,没有任何卤化铊的卤化物成分可包括卤化钠、卤化钙或卤化锶二者至少一个和卤化铈或卤化镧二者至少一个,并且可进一步可选择地包括卤化铯或卤化铟。
在一个实施例中,提供有根据前述的放电灯,其展现至少大约90并且优选地高达97的流明每瓦(LPW),并且在操作3000小时后进一步展现大于大约90%、即大约93%的流明维持率。当以降低的功率水平(低至额定灯功率的大约50%)操作时灯CCT偏移小于+/-200K。如本文使用的,术语“额定功率”、“标称灯功率和“灯额定功率”或其任何形式(其可在本文中可交换地使用)指根据行业标准规定灯操作的最佳瓦数。在这方面,例如,白炽灯可作为100W、70W或50W灯销售,瓦数(W)指示灯的全额定功率。同样地,HID灯通常可作为150W、100W、70W、50W、39W和20W灯销售。
在另一个实施例中,提供有陶瓷金属卤化物灯,其当以小于它的标称灯功率的80%并且甚至以小于它的标称灯功率的大约50%(即,它的标称灯功率的43%)操作时展现大致上与如果以它的标称灯功率的100%操作的灯的CCT相同,或在其大约+/-100°K内的CCT。因此,由于CCT保持大致上相同的事实,灯发射没有经历任何明显的色移,即由灯发射的光被察觉为白光。除前述之外,根据本发明的至少一个实施例的灯展现优秀的流明输出和效能。证实这些特性的CMH灯包括一种剂量,其不包括碘化铊,但其包括卤化钠、钙或锶的卤化物,以及卤化铈或卤化镧二者至少一个。如此,下列公开提供具有提高的效能和比其他当前可用的可比较的灯更好的颜色表现的灯(甚至当这样的灯以小于它的标称灯功率操作时)。
如在各种方面中描述的,灯能够同时满足光度量目标而不损害目标可靠性或流明维持率。在根据本文的灯设计中可取的光度量性质包括流明、CRI、CCT和Dccy。
术语“流明”在本文中指从源(在该实例中是CMH灯)发射的可见光的总量。灯的效能或发光效能是光通量(以流明为单位)与功率(通常以瓦为单位测量)的比率。一般,在测量源的输出中或在测量源从给定量的电力多优地提供可见光中,以流明每瓦LPW为单位测量发射。换句话说,流明效能表示由装置发射的总光通量(流明)和由该装置消耗的输入功率的总量(瓦)之间的比率。输入能量中的一些采用热或除了可见光辐射之外的形式损失。
相关色温(CCT)限定为当黑体辐射体的色度(颜色)最接近地匹配光源的色度时,以开氏度(K)表达的黑体辐射体的绝对温度。CCT可从Commission Intemationale de l′Eclairage(国际照明委员会(CIE))1960颜色空间中的色度坐标(u,v)的位置中估计。从这个角度来看,CCT等级是光源是多“暖”或多“冷”的指示。数字越高,灯越冷。数字越低,灯越暖。示范性灯可提供例如大约2700K和大约4500K、大约3300K和大约3200K之间的相关色温(CCT),例如3000K。例如,具有包括NaI、CaI2、TlI和LaI3连同惰性气体和游离汞的常规填充物组成的CMH灯可以在它的70W的标称灯功率以大约3000°K的CCT操作。然而,当以降低的灯功率操作时,该相同灯经历CCT的增加,使得当在它的标称灯功率的大约50%操作时,CCT是大约4400°K。CCT的近似1400°K的该上升对应于从白朝绿的色移。然而,如果类似地测试根据本发明的至少一个实施例的灯,其在它的剂量组成中没有碘化铊,并且其包括NaI、CaI2或SrI2以及LaI3和/或CeI3二者至少一个,该灯在它的标称灯功率的100%展现3000°K的CCT并且在它的标称灯功率的50%展现仅仅大约3100°K的CCT。CCT中的该大约100°K的微增(从3000°K至3100°K)不引起足够大而被大多数消费者察觉到的色移。因此,根据本发明的灯提供以降低功率发射的光的提高的颜色质量,使该灯成为能量高效照明的选择。前面仅仅是示范性的并且仅仅提供来证实本主题的灯剂量如何致使提高的颜色质量。如此,应该意识到本发明没有以任何方式限于上文描述的具体实施例,并且在本文中预想到其各种修改(包括填充物和温度)。
Dccy是Y轴上的色点的色度(CCY)与标准黑体曲线的色度的差异。关于图1,黑体曲线或轨迹示出为实黑弧线。在该弧线下面并且定位在X轴(CCY)上的大约0.42和0.45之间,示出通常称为MacAdam椭圆。术语“MacAdam椭圆”指在常规色度图上的区域,其包含对于平常人眼无法与该椭圆中心的颜色区分的所有颜色。这些椭圆使用由色点的独立观察员做出的匹配开发。MacAdam观察到由观察员做出的全部匹配落入CIE 1931色度图上的椭圆中。在该色度图上的25个点做出测量,并且发现在该图上的这些椭圆的大小和取向根据测试颜色大范围地变化。使用这些MacAdam椭圆,已经确定以100%标称灯功率开始、接着降低至80%、70%、60%和50%的不同的操作功率测量的单个灯的色点必须留在将察觉为未变化的发射的颜色的椭圆内。一般,可以理解在超出6MPCD(最小可察觉色差)的色点中的差别指示发射的光的颜色中的偏移。图1清楚地图示如上文阐述的包括TlI的常规70W CMH灯不产生落入单个椭圆内的色点。相比之下,根据本发明的实施例的三个CMH灯(标记A、B和C,每个具有根据表格示例1的不包括TlI的剂量),每个以降低的功率产生的落入单个椭圆内的色点,即,展现6或更少的MPCD,并且从而视为可接受的并且不表示发射的光的颜色中的可察觉偏移。
再另一个通常使用的颜色指标是显色指数(CRI),CRI是灯相对于标准呈现个体颜色的能力的指示,并且从在相同色温与该标准(典型地,黑体)相比的灯的光谱分布的比较来得到。存在十四个特殊的显色指数(Ri,其中i=1-14),其限定当用于照亮标准色瓦时光源的显色性。一般的显色指数(Ra)是按0-100的标度表达的前八个特殊的显色指数(其对应于非饱和颜色)的平均数。除非另外指示,否则,显色性在本文中按“Ra”表达。常规的70W CMH灯(其具有与根据本文的灯的填充物可比较的填充物,但其包括TlI)的显色指数可在大约80-88的范围中。如较早指出的,避免以降低的操作功率发射的光中色移的之前的尝试已经包括降低TlI的量。然而,这些尝试产生展现远低于80的CRI的灯。相比之下,具有不含碘化铊的剂量并且包括如本文阐述的卤化物剂量成分的灯已经示出展现高达86的CRI。要理解在行业中任何大于大约80的CRI被认为是优秀的。
这些范围和参数中的全部(即,大约3000°K的一致CCT、高达大约6的MPCD和高达86的CRI)可同时由本灯设计来满足。意外地,可实现这一点而不负面影响灯效能和流明维持率。从而,例如,当以小于80%和甚至低至大约40%的降低的标称灯功率操作时,示范性灯可展现与提高的颜色质量(即白光发射)相关的CCT、CRI和色点,并且还维持根据已知的、可取的标准的流明效能和灯寿命。
在一个实施例中,提供包括放电容器和延伸进入该放电容器的电极的灯。该灯进一步包括密封在该容器内的可电离填充物。该可电离填充物不包含碘化铊。本文中已经认识到,通过在剂量中不包括卤化铊,并且通过另外包括根据下列的卤化物剂量成分,可以有利地实现与发射颜色有关的前面的参数。该有利的CMH灯的该可电离填充物包括惰性气体、Hg和卤化物成分,该卤化物成分包括碱金属卤化物、至少一个碱土金属卤化物和至少一个从由镧和铈构成的组选择的稀土卤化物。
参照图2,示出示范性HID灯10的剖视图。该灯包括放电容器或电弧管12,其限定内腔14,并且可封闭在护罩36中。该放电容器壁16可用例如氧化铝等陶瓷材料或例如石英玻璃等其他适合的透光材料形成。可电离填充物18被密封在该内腔14中。可用钨形成的电极20、22安置在该放电容器的相对端,以便当施加电流于这些电极时使填充物通电。该两个电极20和22典型地通过基底38、经由导线24、26(例如,从镇流器,其没有示出)馈送有交变电流。这些电极20、22的尖端28、30间隔距离d,该距离限定弧隙。当向灯10供电时(指示到灯的电流流动),在该两个电极之间形成电压差。该电压差引起横跨这些电极的尖端28、30之间的间隙的电弧。该电弧导致这些电极尖端28、30之间的区域中的等离子体放电。产生可见光,并且该可见光通过壁16传递出腔14。
如上文陈述的可电离填充物18包括惰性气体、游离汞(Hg)和不包括卤化铊、具体地碘化铊的卤化物成分。该卤化物成分包括稀土卤化物,并且可进一步包括碱金属卤化物和碱土金属卤化物中的一个或多个。在操作中,电极20、22在电极的尖端28、30之间产生电弧,其将填充物电离以在放电空间中产生等离子体。产生的光的发射特性主要取决于填充物材料的组分、电极之间的电压、腔的温度分布、腔中的压强和腔的几何结构。此外,当灯以小于它的标称灯功率或额定功率操作时,这些参数结合来显著影响从灯发射的光的颜色。通过从卤化物剂量去除碘化铊,积极地影响以低于标称灯功率的灯性能,从而产生能量节省而没有性能的损失,并且在某些实例中产生提高的灯性能,这是可能的。在填充物的下列说明中,成分的量指最初(即在灯的操作之前)密封在放电容器中的量(除非另外指出)。
缓冲气体可是惰性气体,例如氩、氙、氪或其的组合灯,并且可在填充物中以内腔14的从大约2-20微摩尔每立方厘米(μmol/cm3)存在。该缓冲气体还可起在灯操作的早期期间用于发光的启动气体的作用。在一个实施例中,适合于CMH灯,灯用Ar回填。在另一个实施例中,使用添加少量Kr85的Xe或Ar。该放射性Kr85提供协助启动灯的电离。尽管不排除更高的冷填充物压强,冷填充物压强可以是大约60-300Torr。在一个实施例中,使用至少大约240Torr的冷填充物压强。太高的压强可损害灯启动。太低的压强可以导致灯的寿命期间增加的流明折损。
在上文有时称为“游离Hg”的汞剂量可以电弧管体积的从大约2至35mg/cm3存在。调节汞重量来提供用于从选择的镇流器抽取功率的期望的电弧管操作电压。
如已经陈述的,根据本文的灯的卤化物剂量不包括卤化铊,即不包括铊作为卤化物剂量的成分。如上文指出的,已知不包括卤化铊作为剂量材料的部分。然而,不包括卤化铊的那些灯经历灯效能的降低,致使使用卤化铊是可取的。然而,现在意外地认识到可通过小心地选择剩下的剂量组分来从剂量去除卤化铊而不具有对光度量灯性质的有害影响。如此,现在确定具有下列剂量成分的CMH灯当以小于标称操作功率操作时展现无不可取的色移、无流明维持率中的降低和良好的发光效能。该剂量包括NaI2、CaI2或SrI2,以及CeI3或LaI3,并且不包括卤化铊。该剂量可可选地包括卤化Cs和/或卤化In。包括前面的剂量组成的CMH灯已经示出展现良好的效能、优秀的流明维持率和期望的调暗性而没有可察觉的色移。
卤化物成分中的卤化物每个可以从氯化物、溴化物、碘化物和其的组合中选择。在一个实施例中,卤化物都是碘化物。因为在填充物中具有碘化物成分比具有另外相似的氯化物或溴化物成分电弧管和/或电极的腐蚀更低,碘化物趋于提供更长的灯寿命。卤化物化合物将通常按化学计量关系存在。
卤化物成分的稀土卤化物可包括至少镧(La)和铈(Ce)的卤化物,并且可进一步包括镨(Pr)、铕(Eu)、钕(Nd)、钐(Sm)和其的组合的卤化物。填充物的稀土卤化物可以具有通式REX3,其中RE从La和Ce,并且可选地从Pr、Nd、Eu和Sm选择,并且X从Cl、Br和I以及其的组合选择,并且可以如本领域内技术人员已知的任何适合的浓度在填充物中存在。来自该组的示范性稀土卤化物是卤化镧和卤化铈。填充物一般将包含这些卤化物中的至少一个,并且可以填充物中的全部卤化物的至少1%的摩尔浓度存在。在一个实施例中,仅包括来自稀土卤化物的该有限组的稀土卤化物。特别地,填充物没有下列稀土元素的卤化物:镝、钬和铥。尽管已知使用指出的稀土卤化物,我们理解当灯以标称或小于标称灯功率操作时,这些稀土卤化物的使用可导致降低的流明维持率。然而,如果本剂量中不存在TlI,该劣势由当前灯剂量克服。
碱金属卤化物在存在的情况下可从锂(Li)、钠(Na)、钾(K)和铯(Cs)卤化物以及其的组合选择。在一个特定实施例中,碱金属卤化物包括卤化钠。填充物的碱金属卤化物可以具有通式AX,其中A从Li、Na、K和Cs选择,并且X如上文限定的和其的组合,并且可以如本领域内技术人员已知的适合的浓度在填充物中存在。在一个实施例中,碱金属卤化物包括卤化钠和卤化铯。
碱土金属卤化物在存在的情况下可从钙(Ca)、钡(Ba)和锶(Sr)卤化物以及其的组合选择。填充物的碱土金属卤化物可以具有通式MX2,其中M从Ca、Ba和Sr选择,并且X如上文限定的和其的组合。在一个特定实施例中,碱土金属卤化物包括卤化钙。在另一个实施例中,碱土金属卤化物包括卤化锶。碱土金属卤化物可以如本领域内技术人员已知的任何适合的浓度在填充物中存在。然而,碱土金属卤化物成分不包括MgX2。我们理解当灯以标称或小于标称灯功率操作时,MgX2的使用可导致降低的流明维持率或可抑制最初的灯流明效能。
在一个实施例中,填充物包括:
68-72mol%的碱金属卤化物,
10-25mol%的碱土金属卤化物,以及
2-6mol%的稀土卤化物,
其中卤化物成分选择为与前面的公开一致。
在另一个实施例中,填充物包括:
68-72mol%的碱金属卤化物,
10-25mol%的碱土金属卤化物,
2-6mol%的稀土卤化物,以及
至少1.0mol%的卤化铯,
其中卤化物成分选择为与前面的公开一致。
在再另一个实施例中,填充物包括:
68-72mol%的碱金属卤化物,
10-25mol%的碱土金属卤化物,
2-6mol%的稀土卤化物,以及
至少1.0mol%的卤化铟,
其中卤化物成分选择为与前面的公开一致。
可在本灯设计中同时满足不仅剂量成分而且颜色参数的前面的范围中的全部。意外地,可实现此而不负面影响灯可靠性或流明维持率。从而,例如,示范性灯可展现与提高的颜色质量(即白光发射)相关的CCT、CRI和色点,并且还维持根据已知的、可取的标准的或比该标准更好的流明输出和灯寿命。
下列表格1列举示范性卤化物灯剂量,其实现本文列举的性能参数中的全部,即降低的能量使用而没有远离白色的色移、良好的流明维持率和优秀的效能。还有比较例剂量组成。
表格1
Figure BSA00000579977800121
图3提供作为标称灯功率的%的函数的灯CCT的曲线图。所有灯在100%标称功率额定为70W。如可以看见的,所有灯展现示为0的以100%标称功率的灯CCT,其将对应于3000°K的灯温。对应于表格1,示例1、2和5并且根据本发明的至少一个实施例的灯1、2和5产生膝形图案,其示出后跟CCT中的极小上升的CCT中的微小下落。在大约43%标称功率处,根据本发明的所有三个灯在以100%标称功率的灯CCT的100°K内,即在大约3100°K。相比之下,对应于表格1的现有技术灯的比较例现有技术灯当标称灯功率降低到低于100%时示出CCT中的始终如一的上升,并且在50%标称功率示出1250°K到大约4250°K的CCT中的增加。CCT中的该巨大增加与灯发射颜色朝绿色的偏移相关,其对于展示和零售照明以及其他类型的商业照明是不可取的。
图4提供图示作为以千小时为单位的灯寿命的函数的%流明维持率的曲线图。灯的剂量组成在上文的表格1中示出。下文的表格2提供具有如在表格1中关于指出的示例列举的剂量组成的灯的性能数据,即来自表格1的示例1剂量对应于表格2中的示例1的性能数据。该数据表示从许多相同灯(如在表格2的列2中指出的)获取的平均值。
表格2
最初的流明维持率%
Figure BSA00000579977800131
参考在表格2中列举的数据和图4,示出如与没有一个在剂量中包括TlI并且在操作3000小时期间都展现超过91%并且高达95%的流明维持率的示例灯2、3和4相比,在剂量中包括TlI的比较例现有技术灯在灯的寿命期间具有较低的流明维持率,即在操作3000小时后,示为81%。
本发明已经参考优选实施例描述。显然,当其他人阅读并且理解前面的详细说明时,将想到修改和改动。规定本发明解释为包括所有这样的修改和改动。
标号列表
10      HID灯               12      放电容器/电弧管
14      内腔                16      放电容器壁
18      可电离填充物        20、22  电极
24、26  导线                28、30  尖端(电极的)
36      护罩                38      基底
d       距离

Claims (10)

1.一种灯(10),其包括:
放电容器(12);
操作上与所述放电容器关联的电极(20、22);以及
密封在所述容器内的可电离填充物(18),其中所述填充物不含铊的卤化物,但包括:
(a)惰性气体,
(b)汞,以及
(c)另外的卤化物成分,其包括:
(i)碱金属卤化物,
(ii)碱土金属卤化物,以及
(iii)从镧和铈构成的组,以及可选地镨、钕和钐及其组合选择的稀土卤化物中的至少一个。
2.如权利要求1所述的灯(10),其中所述卤化物成分进一步包括卤化铟或卤化铯中的一个。
3.如权利要求1所述的灯(10),其中所述灯发射白光。
4.如权利要求1所述的灯(10),其中所述卤化物成分是碘化物。
5.如权利要求1所述的灯(10),其中所述填充物(18)包括:
68-72mol%的卤化钠;
10-25mol%的卤化钙或卤化锶;以及
2-6mol%的卤化铈或卤化镧中的至少一个。
6.如权利要求1所述的灯(10),其中所述填充物(18)包括:
68-72mol%的卤化钠;
10-25mol%的卤化钙或卤化锶;
2-6mol%的卤化铈或卤化镧中的至少一个;以及
1-3%的卤化铯。
7.如权利要求1所述的灯(10),其中所述灯当以50%的标称灯功率操作时展现的CCT在所述灯当以100%标称灯功率操作时的CCT的+/-250°K内。
8.如权利要求1所述的灯(10),其中所述灯在以标称灯功率操作3000小时后展现至少大约85%的流明维持率。
9.一种形成灯(10)的方法,其包括:
提供放电容器(12);
将电离填充物(18)密封在所述容器内,其中所述填充物不含铊的卤化物,但包括:
(a)惰性气体,
(b)汞,以及
(c)另外的卤化物成分,其包括:
(i)碱金属卤化物,
(ii)碱土金属卤化物,以及
(iii)从镧和铈构成的组,以及可选地镨、钕和钐及其组合中选择的稀土卤化物中的至少一个;以及可选地卤化铟或卤化铯中的一个;以及
在所述放电容器内安置电极(20、22)以响应于施加于所述电极的电压使所述填充物通电,
其中所述灯当以小于它的标称灯功率的50%操作时展现小于6的MPCD。
10.如权利要求9所述的方法,其中当灯以小于它的标称灯功率的50%操作时所述灯CCT增加不超过250°K。
CN2011102835473A 2010-09-08 2011-09-08 无碘化铊的陶瓷金属卤化物灯 Pending CN102403185A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/877,637 US8482202B2 (en) 2010-09-08 2010-09-08 Thallium iodide-free ceramic metal halide lamp
US12/877637 2010-09-08

Publications (1)

Publication Number Publication Date
CN102403185A true CN102403185A (zh) 2012-04-04

Family

ID=44509003

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011102835473A Pending CN102403185A (zh) 2010-09-08 2011-09-08 无碘化铊的陶瓷金属卤化物灯

Country Status (4)

Country Link
US (1) US8482202B2 (zh)
EP (1) EP2428978A3 (zh)
JP (1) JP5802088B2 (zh)
CN (1) CN102403185A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107101725A (zh) * 2017-06-20 2017-08-29 中国科学技术大学 一种标准光源和相对辐射定标方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8552646B2 (en) * 2011-05-05 2013-10-08 General Electric Company Low T1I/low InI-based dose for dimming with minimal color shift and high performance
JP5874589B2 (ja) 2012-09-18 2016-03-02 岩崎電気株式会社 セラミックメタルハライドランプ

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5239232A (en) * 1990-04-24 1993-08-24 Patent-Treuhand-Gesellschaft Fur Elektrische Gluhlampen Mbh Light balance compensated mercury vapor and halogen high-pressure discharge lamp
EP1594155A2 (en) * 2004-03-23 2005-11-09 Osram Sylvania Inc. Thallium-free metal halide fill for discharge lamps and discharge lamp containing same
US20090146576A1 (en) * 2007-12-06 2009-06-11 Russell Timothy D Metal halide lamp including a source of available oxygen

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4801846A (en) 1986-12-19 1989-01-31 Gte Laboratories Incorporated Rare earth halide light source with enhanced red emission
US6717364B1 (en) * 2000-07-28 2004-04-06 Matsushita Research & Development Labs Inc Thallium free—metal halide lamp with magnesium halide filling for improved dimming properties
US6501220B1 (en) 2000-10-18 2002-12-31 Matushita Research And Development Laboraties Inc Thallium free—metal halide lamp with magnesium and cerium halide filling for improved dimming properties
US6979958B2 (en) 2002-01-31 2005-12-27 Matsushita Electric Industrial Co., Ltd. High efficacy metal halide lamp with praseodymium and sodium halides in a configured chamber
US6819050B1 (en) 2003-05-02 2004-11-16 Matsushita Electric Industrial Co., Ltd. Metal halide lamp with trace T1I filling for improved dimming properties
JP4295700B2 (ja) 2003-08-29 2009-07-15 パナソニック株式会社 メタルハライドランプの点灯方法及び照明装置
US20050194908A1 (en) * 2004-03-04 2005-09-08 General Electric Company Ceramic metal halide lamp with optimal shape
JP4402539B2 (ja) 2004-08-06 2010-01-20 パナソニック株式会社 メタルハライドランプおよびそれを用いた照明装置
US7256546B2 (en) 2004-11-22 2007-08-14 Osram Sylvania Inc. Metal halide lamp chemistries with magnesium and indium
US7414368B2 (en) * 2005-01-21 2008-08-19 General Electric Company Ceramic metal halide lamp with cerium-containing fill
US7268495B2 (en) * 2005-01-21 2007-09-11 General Electric Company Ceramic metal halide lamp
WO2008139486A1 (en) 2007-05-11 2008-11-20 Rajesh Chandrakant Soni Animal umbrella
US8653732B2 (en) * 2007-12-06 2014-02-18 General Electric Company Ceramic metal halide lamp with oxygen content selected for high lumen maintenance
US20100006165A1 (en) 2008-07-11 2010-01-14 Honeywell International Inc. Hydraulically actuated pneumatic regulator
US20110031880A1 (en) * 2009-08-10 2011-02-10 General Electric Company Street lighting lamp with long life, high efficiency, and high lumen maintenance
US20110031879A1 (en) * 2009-08-10 2011-02-10 General Electric Company Street lighting lamp with long life, high efficiency, and high lumen maintenance

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5239232A (en) * 1990-04-24 1993-08-24 Patent-Treuhand-Gesellschaft Fur Elektrische Gluhlampen Mbh Light balance compensated mercury vapor and halogen high-pressure discharge lamp
EP1594155A2 (en) * 2004-03-23 2005-11-09 Osram Sylvania Inc. Thallium-free metal halide fill for discharge lamps and discharge lamp containing same
US20090146576A1 (en) * 2007-12-06 2009-06-11 Russell Timothy D Metal halide lamp including a source of available oxygen

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107101725A (zh) * 2017-06-20 2017-08-29 中国科学技术大学 一种标准光源和相对辐射定标方法

Also Published As

Publication number Publication date
JP5802088B2 (ja) 2015-10-28
EP2428978A2 (en) 2012-03-14
EP2428978A3 (en) 2012-09-19
US8482202B2 (en) 2013-07-09
US20120056534A1 (en) 2012-03-08
JP2012059702A (ja) 2012-03-22

Similar Documents

Publication Publication Date Title
CN101889324A (zh) 包含有效氧源的金属卤化物灯
CN102576646B (zh) 具有长寿命、高效率和高流明维持率的街道照明灯
JP3921975B2 (ja) メタルハライドランプ
US20110031879A1 (en) Street lighting lamp with long life, high efficiency, and high lumen maintenance
WO2008060857A2 (en) Discharge lamp with high color temperature
CN1615536A (zh) 气体放电灯
CN102403185A (zh) 无碘化铊的陶瓷金属卤化物灯
CN103703538A (zh) 一种放电灯
JP4488157B2 (ja) 長寿命蛍光ランプ
JP2001185079A (ja) 動作パラメーターの変動に対する感度の低減した高圧水銀ランプ
CN102334175A (zh) 高强度气体放电灯
US8339044B2 (en) Mercury-free ceramic metal halide lamp with improved lumen run-up
JP2004537824A (ja) 水銀が減少したカラートーン蛍光灯
Preston et al. Metal halide lamps
JP4981025B2 (ja) 高輝度放電ランプ
JP5326979B2 (ja) メタルハライドランプ
JP2006134704A (ja) 高圧金属蒸気放電灯
GB2420220A (en) Ceramic metal halide lamps
US20130127336A1 (en) Influence of indium iodide on ceramic metal halide lamp performance
JP2007134086A (ja) 高圧放電ランプ
JP2003297290A (ja) 蛍光ランプ
JP2011171055A (ja) 透光性セラミックスバルブ、放電ランプおよび照明器具

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
AD01 Patent right deemed abandoned

Effective date of abandoning: 20160803

C20 Patent right or utility model deemed to be abandoned or is abandoned