[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN102331577B - Improved NCS (Nonlinear Chirp Scaling) imaging algorithm suitable for geosynchronous orbit (GEO) SAR (Synthetic Aperture Radar) - Google Patents

Improved NCS (Nonlinear Chirp Scaling) imaging algorithm suitable for geosynchronous orbit (GEO) SAR (Synthetic Aperture Radar) Download PDF

Info

Publication number
CN102331577B
CN102331577B CN 201110280669 CN201110280669A CN102331577B CN 102331577 B CN102331577 B CN 102331577B CN 201110280669 CN201110280669 CN 201110280669 CN 201110280669 A CN201110280669 A CN 201110280669A CN 102331577 B CN102331577 B CN 102331577B
Authority
CN
China
Prior art keywords
centerdot
rightarrow
lambda
exp
phi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN 201110280669
Other languages
Chinese (zh)
Other versions
CN102331577A (en
Inventor
龙腾
胡程
刘志鹏
朱宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Technology BIT
Original Assignee
Beijing Institute of Technology BIT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Technology BIT filed Critical Beijing Institute of Technology BIT
Priority to CN 201110280669 priority Critical patent/CN102331577B/en
Publication of CN102331577A publication Critical patent/CN102331577A/en
Application granted granted Critical
Publication of CN102331577B publication Critical patent/CN102331577B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

本发明涉及一种适用于地球同步轨道SAR的改进NCS成像算法,属于合成孔径雷达(SAR)成像技术领域。本发明对NCS成像算法的改进之处在于两个部分:一是建立弯曲轨迹信号模型取代原NCS成像算法中的等效直线模型,二是并在建立弯曲轨迹信号模型的基础上求出适用于NCS成像算法的二维解析频谱表达式。本发明相对于现有技术相比的优势在于:通过高阶泰勒展开的方法得到了一种新的适用于GEO SAR的弯曲轨迹模型,该轨迹模型可以解决GEOSAR近地点等效直线模型误差比较大,远地点等效直线模型完全不能应用等缺点;同时基于等效直线模型,得到了一个解析适用于NCS算法的二位频谱,利用此频谱,NCS算法的各个补偿函数都可以求得,实现了GEO SAR大场景成像的要求。

Figure 201110280669

The invention relates to an improved NCS imaging algorithm suitable for geosynchronous orbit SAR, belonging to the technical field of synthetic aperture radar (SAR) imaging. The improvement of the present invention to the NCS imaging algorithm lies in two parts: one is to establish a curved trajectory signal model to replace the equivalent straight line model in the original NCS imaging algorithm; 2D analytical spectral representation of the NCS imaging algorithm. Compared with the prior art, the present invention has the advantages that a new curved trajectory model suitable for GEO SAR is obtained through the method of high-order Taylor expansion, and the trajectory model can solve the problem that the error of the GEOSAR perigee equivalent straight line model is relatively large. The apogee equivalent straight line model cannot be applied at all; at the same time, based on the equivalent straight line model, a binary spectrum suitable for the NCS algorithm is obtained. Using this spectrum, each compensation function of the NCS algorithm can be obtained, and the GEO SAR is realized. Large scene imaging requirements.

Figure 201110280669

Description

A kind of improvement NCS imaging algorithm that is applicable to geostationary orbit SAR
Technical field
The present invention relates to a kind of improvement NCS imaging algorithm, particularly a kind of be applicable to geostationary orbit (GEO) SAR improvement NCS imaging algorithm, belong to synthetic-aperture radar (SAR) technical field of imaging.
Background technology
Present SAR satellite is low orbit satellite, and orbit altitude is no more than 1,000km, to the coverage cycle of particular locality being generally 3 to 5 days, also needs at least 1 day time when carrying out orbit maneuver; Therefore, low, solution of emergent event long problem retardation time of low rail SAR life period resolution.A kind of effective ways of head it off are geostationary orbit synthetic-aperture radar (GEO SAR) satellites, and this is the SAR satellite that operates on 36, the 000km height geostationary orbit; This geostationary orbit is not geostationary orbit, and it has certain angle of inclination, and its sub-satellite track is ' 8 ' font, can obtain thus the relative motion with terrain object, realizes the two-dimensional SAR imaging.
Present SAR imaging algorithm all is based on low rail (LEO) situation and sets up, defective is: LEO SAR is general, and the synthetic aperture time is shorter, the track of satellite flight can be similar to equivalent straight line model, but the synthetic aperture time generally reaches up to a hundred seconds in GEO SAR, thereby the equivalent straight line model that low rail SAR imaging algorithm relies on was because losing efficacy the aperture time of GEO SAR overlength.The NCS algorithm is a kind of outstanding large scene imaging algorithm, but it is based on equivalent straight line model, therefore is difficult to directly apply to GEO SAR.For above situation, we have proposed the requirement that a kind of improved NCS imaging algorithm goes to realize the imaging of GEO SAR large scene.
Summary of the invention
The objective of the invention is to have proposed a kind of improvement NCS imaging algorithm that is applicable to geostationary orbit SAR in order to realize the imaging of GEO SAR large scene.
The present invention is achieved by the following technical solutions.
A kind of improvement NCS imaging algorithm that is applicable to geostationary orbit SAR of the present invention, its improvements are two parts: the one, and set up the serpentine track signal model and replace equivalent straight line model in the former NCS imaging algorithm, the 2nd, and obtain the two-dimensional analysis spectrum expression formula that is applicable to the NCS imaging algorithm on the basis of setting up the serpentine track signal model, the detailed process of two parts is respectively:
1) traditional NCS algorithm is based on equivalent straight line model, but the problems such as the large even inefficacy of error ratio appear in equivalent straight line model in GEO SAR, therefore need to set up a kind of serpentine track signal model and go the true oblique distance between approximate satellite and the target historical, the process of setting up the serpentine track signal model is:
Definition satellite and the coordinate of target in each pulse-recurrence time (PRT) are respectively
Figure BDA0000092885010000021
With
Figure BDA0000092885010000022
True oblique distance history lists between satellite and the target is shown
R n = | | r → sn - r → gn | | - - - ( 1 )
Formula (1) is carried out obtaining the serpentine track model after the Taylor expansion
R n=R+k 1·t a+k 2·t a 2+k 3·t a 3+k 4·t a 4+… (2)
T wherein aFor the orientation to the time, R, k 1, k 2, k 3And k 4Be R nThe Taylor expansion coefficient on 0 to 4 rank, k wherein 1, k 2, k 3And k 4Expression is respectively:
k 1 = k 10 + k . 1 · ( R - R 0 ) - - - ( 3 )
k 2 = k 20 + k . 2 · ( R - R 0 ) - - - ( 4 )
k 3 = k 30 + k . 3 · ( R - R 0 ) - - - ( 5 )
k 4 = k 40 + k . 4 · ( R - R 0 ) - - - ( 6 )
In formula (3)~(6), k 10~k 40,
Figure BDA0000092885010000028
Expression be respectively:
k 10 = v → s 0 · ( r → s 0 - r → g 0 ) T / | | r → s 0 - r → g 0 | | - - - ( 7 )
k 20 = a → s 0 · ( r → s 0 - r → g 0 ) T + | | v → s 0 | | 2 2 · | | r → s 0 - r → g 0 | | - [ v → s 0 · ( r → s 0 - r → g 0 ) T ] 2 2 · | | r → s 0 - r → g 0 | | 3 - - - ( 8 )
k 30 = b → s 0 · ( r → s 0 - r → g 0 ) T + 3 · a → s 0 · v → s 0 T 6 · | | r → s 0 - r → g 0 | | + [ v → s 0 · ( r → s 0 - r → g 0 ) T ] 3 2 · | | r → s 0 - r → g 0 | | 5 (9)
- v → s 0 · ( r → s 0 - r → g 0 ) T · a → s 0 · ( r → s 0 - r → g 0 ) T 2 · | | r → s 0 - r → g 0 | | 3 - v → s 0 · ( r → s 0 - r → g 0 ) T · | | v → s 0 | | 2 2 · | | r → s 0 - r → g 0 | | 3
k 40 = d → s 0 · ( r → s 0 - r → g 0 ) T + 3 · b → s 0 · v → s 0 T 24 · | | r → s 0 - r → g 0 | | + | | a → s 0 | | 2 8 · | | r → s 0 - r → g 0 | | - k 2 2 + 2 · k 1 · k 3 2 · | | r → s 0 - r → g 0 | | - - - ( 10 )
k . 1 = v s 0 x r s 0 x - v → s 0 · ( r → s 0 - r → g 0 ) T R 0 2 - - - ( 11 )
k · 2 = a s 0 x · R 0 2 - r s 0 x · ( a → s 0 · ( r → s 0 - r → g 0 ) T + | | v → s 0 | | 2 ) 2 · R 0 2 · r s 0 x - v s 0 x · v → s 0 · ( r → s 0 - r → g 0 ) T R 0 2 · r s 0 x + 3 · v → s 0 · ( r → s 0 - r → g 0 ) T 2 · R 0 4 - - - ( 12 )
k · 3 = b s 0 x · R 0 2 - r s 0 x · [ b → s 0 · ( r → s 0 - r → g 0 ) T + 3 · a → s 0 · v → s 0 T ] 6 · R 0 2 · r s 0 x +
3 · v s 0 x · [ v → s 0 · ( r → s 0 - r → g 0 ) T ] 2 - 5 · r s 0 x · [ v → s 0 · ( r → s 0 - r → g 0 ) T ] 3 2 · R 0 6 · r s 0 x - v s 0 x · a → s 0 · ( r → s 0 - r → g 0 ) T + a s 0 x · v → s 0 · ( r → s 0 - r → g 0 ) T 2 · R 0 2 · r s 0 x - - - ( 13 )
+ 3 · v → s 0 · ( r → s 0 - r → g 0 ) T · a → s 0 · ( r → s 0 - r → g 0 ) T 2 · R 0 4 - v s 0 x · | | v → s 0 | | 2 2 · R 0 2 · r s 0 x + 3 · v → s 0 · ( r → s 0 - r → g 0 ) T · | | v → s 0 | | 2 2 · R 0 4
k . 4 = d s 0 x · R 0 2 - r s 0 x · [ d → s 0 · ( r → s 0 - r → g 0 ) T + 4 · b → s 0 · v → s 0 T ] 24 · R 0 2 · r s 0 x - | | a → s 0 | | 2 8 · R 0 2 (14)
+ k 20 · k · 2 + k 30 · k · 1 + k 10 · k · 3 r s 0 x + k 20 2 + 2 · k 10 · k 30 2 · R 0 2
In formula (7)~formula (14),
Figure BDA00000928850100000311
With
Figure BDA00000928850100000312
Represent satellite at aperture center position vector constantly,
Figure BDA00000928850100000313
With Represent respectively satellite aperture center constantly velocity, acceleration, acceleration vector and add acceleration vector, R 0Expression satellite and reference point target are at aperture center distance constantly, r S0x, a S0x, b S0x, v S0xAnd d S0xBe respectively
Figure BDA00000928850100000315
With
Figure BDA00000928850100000316
Distance under the scene coordinate system is to component;
2) based on serpentine track, the process of obtaining the two-dimensional analysis spectrum expression formula that is applicable to the NCS imaging algorithm is:
The processing of NCS algorithm is from two-dimensional frequency, and the two-dimensional analysis spectrum expression formula of therefore trying to achieve under the serpentine track is particularly important; The serpentine track that proposes is the high-order Taylor expansion, so after utilizing the progression inversion principle to try to achieve site in the phasing, the spectrum expression formula that obtains is
S ( f r , f a ) = u r ( f r K r ) · u a [ f a + 2 · k 1 c · ( f r + f c ) ] · exp ( - j · π · f r 2 K r )
exp { j · 2 · π · - 2 · ( f r + f c ) c · R + 1 4 · k 2 · ( c 2 · ( f r + f c ) ) · ( f a + 2 · k 1 c · ( f r + f c ) ) 2 + k 3 8 · k 2 3 · ( c 2 · ( f r + f c ) ) 2 · ( f a + 2 · k 1 c · ( f r + f c ) ) 3 + 9 · k 3 2 - 4 · k 2 · k 4 64 · k 2 5 · ( c 2 · ( f r + f c ) ) 3 · ( f a + 2 · k 1 c · ( f r + f c ) ) 4 } - - - ( 15 )
Wherein, f rAnd f aBe respectively the distance to the orientation to frequency, u r() and u a() be respectively the distance to the orientation to envelope, k rFor the distance to the frequency modulation rate, c is the light velocity, f cBe radar carrier frequency;
Formula (15) can not directly be used in the NCS algorithm, needs further to derive, and draws
1 f r + f c = 1 f c [ 1 - f r f c + ( f r f c ) 2 - ( f r f c ) 3 + · · · ]
( 1 f r + f c ) 2 = 1 f c 2 [ 1 - 2 · f r f c + 3 · ( f r f c ) 2 - 4 · ( f r f c ) 3 + · · · ] - - - ( 16 )
( 1 f r + f c ) 3 = 1 f c 3 [ 1 - 3 · f r f c + 6 · ( f r f c ) 2 - 10 · ( f r f c ) 3 + · · · ]
Utilize formula (16), through after deriving, draw GEO SAR 2-d spectrum and be:
S ( f r , f a ) = u r ( f r K r ) · u a [ f a + 2 k 1 c ( f r + f c ) ] · exp [ j · 2 · π · φ az ( f a , R ) ] · exp [ j · 2 · π · φ RP ( R ) ] (17)
· exp [ - j · 2 · π · b ( f a , f r ) ] · exp [ - j · 4 · π · R c · M ( f a ) · f r ] · exp [ - j · π · f r 2 K s ( f a , R ) ] · exp [ j · φ 3 ( f a , R ) · f r 3 ]
Be further described as follows to formula (17):
2.1 the ф on formula (17) equal sign right side Az(f a, R) be the orientation to modulating function, expression is
φ az ( f a , R ) = [ k 1 2 · k 2 + 3 · k 1 2 · k 3 8 · k 2 3 + k 1 3 · ( 9 · k 3 2 - 4 · k 2 · k 4 ) 16 · k 2 5 ] · f a +
[ λ 8 · k 2 + 3 · λ · k 1 · k 3 16 · k 2 3 + 3 · λ · k 1 2 · ( 9 · k 3 2 - 4 · k 2 · k 4 ) 64 · k 2 5 ] · f a 2 + - - - ( 18 )
[ λ 2 · k 3 32 · k 2 3 + λ · k 1 · ( 9 · k 3 2 - 4 · k 2 · k 4 ) 64 · k 2 5 ] · f a 3 + λ 3 · ( 9 · k 3 2 - 4 · k 2 · k 4 ) 512 · k 2 5 · f a 4
Because ф Az(f a, R) only relevant to frequency and target location with the orientation, with distance to frequency-independent, therefore can compensate at range-Dopler domain;
2.2 the ф on formula (17) equal sign right side RP(R) be excess phase after the accurate 2-d spectrum Taylor expansion, expression formula is
φ RP ( R ) = k 1 2 2 · λ · k 2 + k 1 3 · k 3 4 · λ · k 2 3 + k 1 4 · ( 9 · k 3 2 - 4 · k 2 · k 4 ) 32 · λ · k 2 5 - 2 · R λ - - - ( 19 )
This and orientation are to frequency with apart to frequency-independent, and be relevant to the position with the distance of target, can be compensated at range-Dopler domain;
2.3 the b (f on formula (17) equal sign right side a, f r) the reference point place migration phase place that obtains when launching for 2-d spectrum, its expression formula is
b ( f a , f r ) = - [ k 10 2 2 · k 20 · c + k 10 3 · k 30 4 · k 20 3 · c + k 10 · ( 9 · k 30 2 - 4 · k 20 · k 40 ) 32 · c · k 20 5 ] · f r +
[ λ 8 · k 20 · f c + 3 · λ · k 10 · k 30 16 · k 20 3 · f c + 3 · λ k 10 2 · ( 9 · k 30 2 - 4 · k 20 · k 40 ) 64 · f c · k 20 5 ] · f a 2 · f r + (20)
[ λ 2 · k 30 16 · k 20 3 · f c + λ 2 · k 10 · ( 9 · k 30 2 - 4 · k 20 · k 40 ) 32 · f c · k 20 5 ] · f a 3 · f r +
3 · λ 2 · ( 9 · k 30 2 - 4 · k 20 · k 40 ) 512 · f c · k 20 5 f a 4 · f r + ( 2 · R 0 c - B · 1 · R 0 ) · f r
Wherein
B · 1 = - 2 · k 10 · k 20 · k . 1 - k 10 2 · k . 2 2 · c · k 20 2 - ( 3 · k 10 2 · k 30 · k · 1 + k 10 3 · k · 3 ) · k 20 - 3 · k 10 3 · k 30 · k · 2 4 · c · k 20 4 - A 3 · k . 1 - k 10 · A · 3 32 · c +
{ - λ · k . 2 8 · f c · k 20 2 + 3 · λ · [ ( k 10 · k · 3 + k 30 · k . 1 ) · k 20 - 3 · k 10 · k 30 · k · 2 ] 16 · f c · k 20 4 + 3 · λ · ( 2 · k 10 · A 3 · k · 1 - k 10 2 · A · 3 ) 64 · f c } · f a 2 ( 21 )
+ [ λ 2 · ( k 20 · k · 3 - 3 · k 30 · k · 2 ) 16 · f c · k 20 4 + λ 2 · ( A 3 · k · 1 - k 10 · A · 3 ) 32 · f c ] · f a 3 + 3 · λ 2 · A . 3 512 · f c · f a 4 + 2 c
A 3 = 9 · k 30 2 - 4 · k 20 · k 40 k 20 5 - - - ( 22 )
A . 3 = [ 18 · k 30 · k . 3 - 4 · ( k 20 · k · 4 + k 40 · k · 2 ) ] k 20 - 5 · ( 9 · k 30 2 - 4 · k 20 · k 40 ) · k . 2 k 20 6 - - - ( 23 )
This phase place is the part of reference point place migration phase place, does not have this in traditional CS based on equivalent straight line model, NCS algorithm, and this is distinctive in based on the CS algorithm of serpentine track, NCS algorithm, must need compensation; And because this does not have space-variant, therefore can compensate at 2-d spectrum;
2.4 the 4th exponential term on formula (17) equal sign right side is
Figure BDA00000928850100000610
In,
Figure BDA00000928850100000611
Be range migration, M (f a) be the migration factor and
M ( f a ) = 1 B . 1 · c - - - ( 24 )
Wherein Expression formula shown in (21);
Can find that this is inconsistent to the position migration for different distances, mainly be to multiply by a Chirp signal at range-Dopler domain to adjust this space-variant in the CS algorithm, needs equally to adjust this space-variant in the NCS algorithm;
2.5 the 5th exponential term on formula (17) equal sign right side is
Figure BDA0000092885010000073
In
Figure BDA0000092885010000074
For distance to modulation item, k wherein s(f a, R) be new distance to frequency modulation factor, and
1 K s ( f a , R ) = - [ λ 4 · k 2 · f c 2 + 3 · λ · k 1 · k 3 8 · k 2 3 · f c 2 + 3 · λ · k 1 2 · ( 9 · k 3 2 - 4 · k 2 · k 4 ) 32 · k 2 5 · f c 2 ] · f a 2 - (25)
[ 3 · λ 2 · k 3 16 · k 2 3 · f c 2 + 3 · λ 2 · k 1 · ( 9 · k 3 2 - 4 · k 2 · k 4 ) 32 · k 2 5 · f c 2 ] · f a 3 - 3 · λ 3 · ( 9 · k 3 2 - 4 · k 2 · k 4 ) 128 · k 2 5 · f c 2 · f a 4 + 1 K r
k s(f a, R) have space-variant, in the CS algorithm, do not consider its space-variant, it is the part of space-variant modulation in the NCS algorithm, but it is difficult to directly use, and needs to be similar to for this reason:
K s(f a,R)=k s(f a,R 0)+Δk s(f a)·[τ(f a,R)-τ(f a,R 0)] (26)
Wherein
1 K s ( f a , R 0 ) = - [ λ 4 · k 20 · f c 2 + 3 · λ · k 10 · k 30 8 · k 20 3 · f c 2 + 3 · λ · k 10 2 · ( 9 · k 30 2 - 4 · k 20 · k 40 ) 32 · k 20 5 · f c 2 ] · f a 2 - (27)
[ 3 · λ 2 · k 30 16 · k 20 3 · f c 2 + 3 · λ 2 · k 10 · ( 9 · k 30 2 - 4 · k 20 · k 40 ) 32 · k 20 5 · f c 2 ] · f a 3 - 3 · λ 3 · ( 9 · k 30 2 - 4 · k 20 · k 40 ) 128 · k 20 5 · f c 2 · f a 4 + 1 K r
Δk s ( f a ) = K s 2 ( f a , R 0 ) · c · M ( f a ) 2 .
- λ · k · 2 · f a 2 4 · f c 2 · k 20 2 + 3 · λ · [ ( k 10 · k · 3 + k 30 · k · 1 ) · k 20 - 3 · k 10 · k 30 · k · 2 ] 8 · f c 2 · k 20 4 · f a 2 + 3 · λ · ( 2 · k 10 · A 3 · k . 1 - k 10 2 · A · 3 ) 32 · f c 2 · f a 2 + 3 · λ 2 · ( k 20 · k · 3 - 3 · k 30 · k · 2 ) 16 · f c 2 · k 20 4 · f a 3 + 3 · λ 2 · ( A 3 · k · 1 - k 10 · A · 3 ) 32 · f c 2 · f a 3 + 3 · λ 3 · A · 3 128 · f c 2 f a 4 - - - ( 28 )
τ ( f a , R ) = 2 · R c · M ( f a ) - - - ( 29 )
τ ( f a , R 0 ) = 2 · R 0 c · M ( f a ) - - - ( 30 )
According to formula (26)~(30), obtain the operations factor Y that in the NCS algorithm, uses m(f a), q 2And q 3, their expression formula is respectively (31)~(33), wherein Y m(f a) will except the impact of three phase places, be used on the other hand adjusting because residual three phase errors that the adjustment of follow-up frequency modulation rate space-variant shape is introduced on the one hand; q 2And q 3Be mainly used in adjusting the space-variant of range migration and the space-variant of frequency modulation rate.
Y m ( f a ) = Δk s ( f a ) · ( M ( f ref ) / M ( f a ) - 0.5 ) K s 3 ( f a , R 0 ) · ( M ( f ref ) / M ( f a ) - 1 ) - - - ( 31 )
q 2=K s(f a,R 0)·(M(f ref)/M(f a)-1) (32)
q 3 = Δk s ( f a ) · ( M ( f ref ) / M ( f a ) - 1 ) 2 - - - ( 33 )
2.6 the 6th exponential term on formula (17) equal sign right side In
Figure BDA0000092885010000088
For what obtain when the 2-d spectrum decoupling zero, relevant to the cube of frequency with distance, and
φ 3 ( f a , R ) =
2 · π · - λ · f a 2 8 · k 2 · f c 3 - 3 · λ · k 1 · k 3 16 · k 2 3 · f c 3 · f a 2 - 3 · λ · k 1 2 · ( 9 · k 3 2 - 4 · k 2 · k 4 ) 64 · k 2 5 · f c 3 · f a 2 - λ 2 · k 3 · f a 3 8 · k 2 3 · f c 3 - λ 2 · k 1 · ( 9 · k 3 2 - 4 · k 2 · k 4 ) 16 · k 2 5 · f c 3 · f a 3 - 5 · λ 3 · ( 9 · k 3 2 - 4 · k 2 · k 4 ) 256 · k 2 5 · f c 3 · f a 4 - - - ( 34 )
ф 3(f a, R) have space-variant, but it with the distance to variation can ignore, generally use ф 3(f a, R 0) replacement ф 3(f a, R), also i.e. k in (34) 1~k 4Use R 0The as a result k at place 10~k 40, therefore, ф 3(f a, R 0) expression formula be
φ 3 ( f a , R ) = φ 3 ( f a , R 0 ) =
2 · π · - λ · f a 2 8 · k 20 · f c 3 - 3 · λ · k 10 · k 30 16 · k 20 3 · f c 3 · f a 2 - 3 · λ · k 10 2 · ( 9 · k 30 2 - 4 · k 20 · k 40 ) 64 · k 20 5 · f c 3 · f a 2 - λ 2 · k 30 · f a 3 8 · k 20 3 · f c 3 - λ 2 · k 1 · ( 9 · k 30 2 - 4 · k 20 · k 40 ) 16 · k 20 5 · f c 3 · f a 3 - 5 · λ 3 · ( 9 · k 30 2 - 4 · k 20 · k 40 ) 256 · k 20 5 · f c 3 · f a 4 - - - ( 35 )
Beneficial effect
The present invention compares with respect to prior art, it is advantageous that: the method by the high-order Taylor expansion has obtained a kind of new serpentine track model that is applicable to GEO SAR, it is larger that this locus model can solve GEO SAR perigee equivalence straight line model error ratio, and apogee equivalence straight line model such as can not use fully at the shortcoming; Simultaneously based on equivalent straight line model, obtained two frequency spectrums that a parsing is applicable to the NCS algorithm, utilize this frequency spectrum, each penalty function of NCS algorithm can be tried to achieve, and has realized the requirement of GEO SAR large scene imaging.
Description of drawings
Fig. 1 is the NCS algorithmic technique scheme implementation process flow diagram after the present invention improves;
Fig. 2 is point target (30km ,-30km) the simulation results figure in the embodiment of the invention;
Fig. 3 is point target (30km ,-30km) the simulation results figure in the embodiment of the invention;
Fig. 4 is the simulation results figure of the point target (0km, 0km) in the embodiment of the invention;
Fig. 5 is the simulation results figure of the point target (30km, 30km) in the embodiment of the invention;
Fig. 6 is the simulation results figure of the point target (30km, 30km) in the embodiment of the invention;
Embodiment
Elaborate below in conjunction with the embodiment of accompanying drawing to the inventive method.
Embodiment
Radar with certain speed flight, is launched the chirp signal earthward on geostationary orbit, and accepts the echo from ground.The echo that obtains is carried out imaging processing, propose a kind of improved NCS algorithm of GEO SAR that is applicable to, its concrete steps comprise as shown in Figure 1:
1) target echo that receives of radar
Radar emission one carrier frequency is f cLinear FM signal.After the echo process demodulation that receives, can obtain
s ( t r , t a ) = u r ( t r - 2 · R n c ) · u a ( t a ) · exp [ j · π · K r · ( t r - 2 · R n c ) 2 ] · exp ( - j · 4 · π λ · R n ) - - - ( 36 )
U wherein r() and u a() be respectively the distance to the orientation to envelope, t rAnd t aBe respectively the distance to the orientation to the time, K rFor the distance to the frequency modulation rate, c is the light velocity, λ is wavelength, R nHistorical for the oblique distance of target, expression can represent with formula (2).
2) echo is carried out range migration preliminary correction and three phase places removals
The distance to the orientation behind FFT, can obtain the 2-d spectrum expression formula of SAR echo, namely
S ( f r , f a ) = u r ( f r K r ) · u a [ f a + 2 k 1 c ( f r + f c ) ] · exp [ j · 2 · π · φ az ( f a , R ) ] · exp [ j · 2 · π · φ RP ( R ) ] (37)
· exp [ - j · 2 · π · b ( f a , f r ) ] · exp [ - j · 4 · π · R c · M ( f a ) · f r ] exp [ - j · π · f r 2 K s ( f a , R ) ] · exp [ j · φ 3 ( f a , R ) · f r 3 ]
Need to do two work in two-dimensional frequency.The first, remove the migration phase place b (f at the reference point place that in 2-d spectrum is derived, obtains a, f r), to make things convenient for the derivation of subsequent algorithm, the expression formula of penalty function is (38).Need to prove that the range migration of removing is the part of reference point range migration here; The second, multiply by a nonlinear frequency modulation function, expression formula is (39), the impact that this function will be removed three phase places on the one hand is used for adjusting because residual three phase errors that the adjustment of follow-up frequency modulation rate space-variant shape is introduced on the other hand.
H 1=exp[j·2·π·B 10(f a,f r)] (38)
H 2 = exp [ j · 2 · π 3 · ( f a ) · f r 3 ] - - - ( 39 )
Wherein
Y ( f a ) = Δk s ( f a ) · ( α - 0.5 ) K s 3 ( f a , R 0 ) · ( α - 1 ) - 3 2 · π · φ 3 ( f a , R 0 ) - - - ( 40 )
In (40), the expression formula of α is
α = M ( f ref ) M ( f a ) - - - ( 41 )
f RefFor the orientation to reference frequency.
Echo expression formula after treatment is
S 1 ( f r , f a ) = u r ( f r K r ) · u a [ f a + 2 k 1 c ( f r + f c ) ] · exp [ j · 2 · π · φ az ( f a , R ) ] · exp [ j · 2 · π · φ RP ( R ) ] (42)
· exp [ - j · 4 · π · R c · M ( f a ) · f r ] · exp [ - j · π · f r 2 K s ( f a , R ) ] · exp [ j · 2 · π 3 · Y m ( f a ) · f r 3 ]
Wherein
Y m ( f a ) = Δk s ( f a ) · ( α - 0.5 ) K s 3 ( f a , R 0 ) · ( α - 1 ) - - - ( 43 )
The adjustment distance of space-variant of 3) echo data being carried out the space-variant of range migration and frequency modulation rate is to IFFT, and the expression formula that obtains the range-Dopler domain of echo is
S 1 ( t r , f a ) = u r { K s ( f a , R ) k r [ t r - 2 · R c · M ( f a ) ] } · u a ( f a ) · exp [ j · 2 · π · φ az ( f a , R ) ] ·
exp [ j · 2 · π · φ RP ( R ) ] · exp { j · π · K s ( f a , R ) [ t r - 2 · R c · M ( f a ) ] 2 } · - - - ( 44 )
exp { j · 2 · π 3 · Y m ( f a ) · K s ( f a , R ) [ t r - 2 · R c · M ( f a ) ] 3 }
Carrying out non-linear CS operation at range-Dopler domain, mainly is to adjust the space-variant of range migration and the space-variant of frequency modulation rate.Through after the operation in this step, the space-variant removal in the scene, the realization range migration can be unified to process in two-dimensional frequency.Non-linear CS handling function is
H 3 = exp { j · π · q 2 · [ t r - τ ( f a , R 0 ) ] 2 } · exp { j · 2 · π 3 · q 3 · [ t r - τ ( f a , R 0 ) ] 3 } - - - ( 45 )
Wherein
q 2=q 2=k s(f a,R 0)·(α-1) (46)
q 3 = q 3 = Δk s ( f a ) · ( α - 1 ) 2 - - - ( 47 )
4) echo is carried out distance to compression and range migration correction
(45) and after (44) multiply each other, carry out again distance to FFT.The echo data of this moment is in two-dimensional frequency, and this moment, the echo expression formula was
S 2 ( f r , f a ) = u r [ f r K s ( f a , R 0 ) · α ] · u a ( f a ) · exp [ j · 2 · π · φ az ( f a , R ) ] · exp [ j · 2 · φ RP ( R ) ] ·
exp [ - j · π · f r 2 α · K s ( f a , R 0 ) ] · exp { j · 2 · π 3 · [ Y m ( f a ) · K s 3 ( f a , R 0 ) + q 3 ] [ α · K s ( f a , R 0 ) ] 3 · f r 3 } · - - - ( 48 )
exp { - j · 4 · π · R 0 c · [ 1 M ( f a ) - 1 M ( f ref ) ] · f r } exp [ - j · 4 · π · R c · M ( f ref ) · f r ] · exp ( j · π · C 0 )
In (48), last exponential term is about C 0, it is to find the solution Y m(f a), q 2And q 3Under residual in the process, expression is
C 0 = K s ( f a , R ) · Δτ 2 · ( 1 α - 1 ) 2 + 2 3 · Y m ( f a ) · K s 3 ( f a , R ) · Δτ 3 · ( 1 α - 1 ) 3 (49)
+ q 2 · ( Δτ α ) 2 + 2 3 · q 3 · ( Δτ α ) 3
Wherein
Δτ=τ(f a,R)-τ(f a,R 0) (50)
C 0Not only relevant to frequency with the orientation, and be that therefore the compensation of last exponential term can only be carried out at range-Dopler domain in (48) along distance to changing.
Because through the non-linear CS operation of previous step, range migration correction can be unified to process at the orientation frequency domain, and will carry out distance to compression and secondary range compression etc. in two-dimensional frequency.Distance to compression function is
H 4 = exp [ j · π · f r 2 α · K s ( f a , R 0 ) ] - - - ( 51 )
The secondary range compression function is
H 5 = exp { - j · 2 · π 3 · [ Y m ( f a ) · K s 3 ( f a , R 0 ) + q 3 ] [ α · K s ( f a , R 0 ) ] 3 · f r 3 } - - - ( 52 )
The range migration correction function is
H 6 = exp { j · 4 · π · R 0 c · [ 1 M ( f a ) - 1 M ( f ref ) ] · f r } - - - ( 53 )
Apart from the echo expression formula behind compression, secondary range compression and range migration correction be
S 3 ( f r , f a ) = u r { f r K s ( f a , R 0 ) · α } · u a ( f a ) · exp [ j · 2 · π · φ az ( f a , R ) ] · (54)
exp [ j · 2 · π · φ RP ( R ) ] · exp [ - j · 4 · π · R c · M ( f ref ) · f r ] · exp ( j · π · C 0 )
5) echo is carried out the orientation to compression
Behind compression and range migration correction, the echo of this moment makes progress in distance, and line focus is good through distance, need to carry out be the orientation to compression, the orientation will be upgraded along different range gate to compression function.At first the echo data after two-dimensional frequency is through Range compress and migration correction processing is carried out distance to IFFT, obtain the echo expression formula of range-Dopler domain
S 3 ( t r , f a ) = sin c [ t r - 2 · R c · M ( f ref ) ] · u a ( f a ) · - - - ( 55 )
exp [ j · 2 · π · φ az ( f a , R ) ] · exp [ j · 2 · π · φ RP ( R ) ] · exp ( j · π · C 0 )
Carry out the orientation to compression, compression function is
H 7=exp[-j·2·π·ф az(f a,R)] (56)
And then carry out the removal of residual phase, expression formula is
H 8=exp[-j·2·π·ф RP(R)-j·π·C 0] (57)
6) final step be the orientation to IFFT, echo can be changed to the two-dimensional time territory, the SAR image that obtains focusing on.
The below carries out simulating, verifying.Here utilize following parameter to carry out simulating, verifying: distance is to bandwidth 18MHz, and sample frequency 20MHz, PRF are 200Hz, pulse width 20us, and the synthetic aperture time is 100s.The result who obtains such as Fig. 2~shown in Figure 6, wherein Fig. 2,3,5,6 is the simulation result of scene marginal point, Fig. 4 is the simulation result of scene center point.The two-dimentional secondary lobe that can find these 5 points is high-visible, does not have the generation of coupling phenomenon.
The above is preferred embodiment of the present invention, and the present invention should not be confined to the disclosed content of this embodiment and accompanying drawing.Everyly do not break away from the equivalence of finishing under the spirit disclosed in this invention or revise, all fall into the scope of protection of the invention.

Claims (1)

1. improvement NCS imaging algorithm that is applicable to geostationary orbit SAR, it is characterized in that its improvements are two parts: the one, set up the serpentine track signal model and replace equivalent straight line model in the former NCS imaging algorithm, the 2nd, and obtain the two-dimensional analysis spectrum expression formula that is applicable to the NCS imaging algorithm on the basis of setting up the serpentine track signal model; Detailed process is respectively:
1) target echo that receives of radar
Radar emission one carrier frequency is f cLinear FM signal; After the echo process demodulation that receives, can obtain
S ( t r , t a ) = u r ( t r - 2 · R n c ) · u a ( t a ) · exp [ j · π · K r · ( t r - 2 · R n c ) 2 ] · exp ( - j · 4 · π λ · R n ) - - - ( 1 )
U wherein r() and u a() be respectively the distance to the orientation to envelope, t rAnd t aBe respectively the distance to the orientation to the time, K rFor the distance to the frequency modulation rate, c is the light velocity, λ is wavelength, R nHistorical for the oblique distance of target, also be the serpentine track signal model, the process of specifically setting up the serpentine track signal model is:
Definition satellite and the coordinate of target in each pulse-recurrence time (PRT) are respectively With , the true oblique distance history lists between satellite and the target is shown
R n = | | r → sn - r → gn | | - - - ( 2 )
Formula (2) is carried out obtaining the serpentine track model after the Taylor expansion
R n = R + k 1 · t a + k 2 · t a 2 + k 3 · t a 3 + k 4 · t a 4 + · · · ( 3 )
T wherein aFor the orientation to the time, R, k 1, k 2, k 3And k 4Be R nThe Taylor expansion coefficient on 0 to 4 rank, k wherein 1, k 2, k 3And k 4Expression is respectively:
k 1 = k 10 + k · 1 · ( R - R 0 ) - - - ( 4 )
k 2 = k 20 + k · 2 · ( R - R 0 ) - - - ( 5 )
k 3 = k 30 + k · 3 · ( R - R 0 ) - - - ( 6 )
k 4 = k 40 + k · 4 · ( R - R 0 ) - - - ( 7 )
In formula (4) ~ (7), k 10~ K 40,
Figure FDA00002387348310
~
Figure FDA00002387348311
Expression be respectively:
k 10 = v → s 0 · ( r → s 0 - r → g 0 ) T / | | r → s 0 - r → g 0 | | - - - ( 8 )
k 20 = a → s 0 · ( r → s 0 - r → g 0 ) T + | | v → s 0 | | 2 2 · | | r → s 0 - r → g 0 | | - [ v → s 0 · ( r → s 0 - r → g 0 ) T ] 2 2 · | | r → s 0 - r → g 0 | | 3 - - - ( 9 )
k 30 = b → s 0 · ( r → s 0 - r → g 0 ) T + 3 · a → s 0 · v → s 0 T 6 · | | r → s 0 - r → g 0 | | + [ v → s 0 · ( r → s 0 - r → g 0 ) T ] 3 2 · | | r → s 0 - r → g 0 | | 5
- v → s 0 · ( r → s 0 - r → g 0 ) T · a → s 0 · ( r → s 0 - r → g 0 ) T 2 · | | r → s 0 - r → g 0 | | 3 - v → s 0 · ( r → s 0 - r → g 0 ) T · | | v → s 0 | | 2 2 · | | r → s 0 - r → g 0 | | 3 - - - ( 10 )
k 40 = d → s 0 · ( r → s 0 - r → g 0 ) T + 4 · b → s 0 · v → s 0 T 24 · | | r → s 0 - r → g 0 | | + | | a → s 0 | | 2 8 · | | r → s 0 - r → g 0 | | - k 2 2 + 2 · k 1 · k 3 2 · | | r → s 0 - r → g 0 | | - - - ( 11 )
k · 1 = v s 0 x r s 0 x - v → s 0 · ( r → s 0 - r → g 0 ) T R 0 2 - - - ( 12 )
k · 2 = a s 0 x · R 0 2 - r s 0 x · ( a → s 0 · ( r → s 0 - r → g 0 ) T + | | v → s 0 | | 2 ) 2 · R 0 2 · r s 0 x - v s 0 x · v → s 0 · ( v → s 0 - r → g 0 ) T R 0 2 · r s 0 x + 3 · v → s 0 · ( r → s 0 - r → g 0 ) T 2 · R 0 4 - - - ( 13 )
k · 3 = b s 0 x · R 0 2 - r s 0 x · [ b → s 0 · ( r → g 0 ) T + 3 · a → s 0 · v → s 0 T ] 6 · R 0 2 · r s 0 x +
3 · v s 0 x · [ v → s 0 · ( r → s 0 - r → g 0 ) T ] 2 - 5 · r s 0 x · [ v → s 0 · ( r → s 0 - r → g 0 ) T ] 3 2 · R 0 6 · r s 0 x
- v s 0 x · a → s 0 · ( r → s 0 - r → g 0 ) T + a s 0 x · v → s 0 · ( r → s 0 - r → g 0 ) T 2 · R 0 2 · r s 0 x
+ 3 · v → s 0 · ( r → s 0 - r → g 0 ) T · a → s 0 · ( r → s 0 - r → g 0 ) T 2 · R 0 4 - v s 0 x · | | v → s 0 | | 2 2 · R 0 2 · r s 0 x + 3 · v → s 0 · ( r → s 0 - r → g 0 ) T · | | v → s 0 | | 2 2 · R 0 4 - - - ( 14 )
k · 4 = d s 0 x · R 0 2 - r s 0 x · [ d → s 0 · ( r → s 0 - r → g 0 ) T + 4 · b → s 0 · v → s 0 T ] 24 · R 0 2 · r s 0 x - | | a → s 0 | | 2 8 · R 0 2
+ k 20 · k · 2 + k 30 · k · 1 + k 10 · k · 3 r s 0 x + k 20 2 + 2 · k 10 · k 30 2 · R 0 2 - - - ( 15 )
In formula (8) ~ formula (15),
Figure FDA00002387348325
With
Figure FDA00002387348326
Represent satellite at aperture center position vector constantly,
Figure FDA00002387348327
,
Figure FDA00002387348328
,
Figure FDA00002387348329
With
Figure FDA00002387348330
Represent respectively satellite aperture center constantly velocity, acceleration, acceleration vector and add acceleration vector, R 0Expression satellite and reference point target are at aperture center distance constantly, r S0x, a S0x, b S0x, v S0xAnd d S0xBe respectively
Figure FDA00002387348331
,
Figure FDA00002387348332
,
Figure FDA00002387348333
,
Figure FDA00002387348334
With Distance under the scene coordinate system is to component;
2) based on serpentine track, obtain the two-dimensional analysis spectrum expression formula that is applicable to the NCS imaging algorithm and be
S ( f r , f a ) = u r ( f r K r ) · u a [ f a + 2 k 1 c ( f r + f c ) ] ·
exp [ j · 2 · π · φ az ( f a , R ) ] · exp [ j · 2 · π · φ RP ( R ) ]
· exp [ - j · 2 · π · b ( f a , f r ) ] · exp [ - j · 4 · π · R c · M ( f a ) · f r ] ·
exp [ - j · π · f r 2 K s ( f a , R ) ] · exp [ j · φ 3 ( f a , R ) · f r 2 ] - - - ( 16 )
Be further described as follows to formula (16):
1. the φ on formula (16) equal sign right side Az(f a, R) be the orientation to modulating function, expression is
φ az ( f a , R ) = [ k 1 2 · k 2 + 3 · k 1 2 · k 3 8 · k 2 3 + k 1 3 · ( 9 · k 3 2 - 4 · k 2 · k 4 ) 16 · k 2 5 · f a +
[ λ 8 · k 2 + 3 · λ · k 1 · k 3 16 · k 2 3 + 3 · λ · k 1 2 · ( 9 · k 3 2 - 4 · k 2 · k 4 ) 64 · k 2 5 ] · f a 2 +
[ λ 2 · k 3 32 · k 2 3 + λ · k 1 · ( 9 · k 3 2 - 4 · k 2 · k 4 ) 64 · k 2 5 ] · f a 3 + λ 3 · ( 9 · k 3 2 - 4 · k 2 · k 4 ) 512 · k 2 5 · f a 4 - - - ( 17 )
2. the φ on formula (16) equal sign right side RP(R) be excess phase after the accurate 2-d spectrum Taylor expansion, expression formula is
φ RP ( R ) = k 1 2 2 · λ · k 2 + k 1 3 · k 3 4 · λ · k 2 3 + k 1 4 · ( 9 · k 3 2 - 4 · k 2 · k 4 ) 32 · λ · k 2 5 - 2 · R λ - - - ( 18 )
3. b (the f on formula (16) equal sign right side a, f r) the reference point place migration phase place that obtains when launching for 2-d spectrum, its expression formula is
b ( f a , f r ) = - [ k 10 2 2 · k 20 · c + k 10 3 · k 30 4 · k 20 3 · c + k 10 · ( 9 · k 30 2 - 4 · k 20 · k 40 ) 32 · c · k 20 5 · f r +
[ λ 8 · k 20 · f c + 3 · λ · k 10 · k 30 16 · k 20 3 · f c + 3 · λ · k 10 2 · ( 9 · k 30 2 - 4 · k 20 · k 40 ) 64 · f c · k 20 5 ] · f a 2 · f r +
[ λ 2 · k 30 16 · k 20 3 · f c + λ 2 · k 10 · ( 9 · k 30 2 - 4 · k 20 · k 40 ) 32 · f c · k 20 5 ] · f a 3 · f r +
3 · λ 2 · ( 9 · k 30 2 - 4 · k 20 · k 40 ) 512 · f c · k 20 5 f a 4 · f r + ( 2 · R 0 c - B · 1 · R 0 ) · f r - - - ( 19 )
Wherein
B · 1 = - 2 · k 10 · k 20 · k · 1 - k 10 2 · k · 2 2 · c · k 20 2 - ( 3 · k 10 2 · k 30 · k · 1 + k 10 3 · k · 3 ) · k 20 - 3 · k 10 3 · k 30 · k · 2 4 · c · k 20 4 - A 3 · k · 1 - k 10 · A · 3 32 · c +
- λ · k · 2 8 · f c · k 20 2 + 3 · λ · [ ( k 10 · k · 3 + k 30 · k · 1 ) · k 20 - 3 · k 10 · k 30 · k · 2 ] 16 · f c · k 20 4 + 3 · λ · ( 2 · k 10 · A 3 · k · 1 - k 10 2 · A · 3 ) 64 · f c · f a 2
+ [ λ 2 · ( k 20 · k · 3 - 3 · k 30 · k · 2 ) 16 · f c · k 20 4 + λ 2 · ( A 3 · k · 1 - k 10 · A · 3 ) 32 · f c · f a 3 + 3 · λ 2 · A · 3 512 · f c · f a 4 + 2 c - - - ( 20 )
A 3 = 9 · k 30 2 - 4 · k 20 · k 40 k 20 5 - - - ( 21 )
A · 3 = [ 18 · k 30 · k · 3 - 4 · ( k 20 · k · 4 + k 40 · k · 2 ) ] · k 20 - 5 · ( 9 · k 30 2 - 4 · k 20 · k 40 ) · k · 2 k 20 6 - - - ( 22 )
4. the 4th exponential term on formula (16) equal sign right side is
Figure FDA00002387348353
In,
Figure FDA00002387348354
Be range migration, M (f a) be the migration factor and
M ( f a ) = 2 B · 1 · c - - - ( 23 )
5. the 5th exponential term on formula (16) equal sign right side is
Figure FDA00002387348356
In
Figure FDA00002387348357
For distance to modulation item, K wherein s(f a, R) be new distance to frequency modulation factor, and
K s(f a,R)=K s(f a,R 0)+Δk s(f a)·[τ(f a,R)-τ(f a,R 0)] (24)
Wherein
1 K s ( f a , R 0 ) = - [ λ 4 · k 20 · f c 2 + 3 · λ · k 10 · k 30 8 · k 20 3 · f c 2 + 3 · λ · k 10 2 · ( 9 · k 30 2 - 4 · k 20 · k 40 ) 32 · k 20 5 · f c 2 ] · f a 2 -
[ 3 · λ 2 · k 30 16 · k 20 3 · f c 2 + 3 · λ 2 · k 10 · ( 9 · k 30 2 - 4 · k 20 · k 40 ) 32 · k 20 5 · f c 2 ] · f a 3
- 3 · λ 3 · ( 9 · k 30 2 - 4 · k 20 · k 40 ) 128 · k 20 5 · f c 2 · f a 4 + 1 K r - - - ( 25 )
Δ k s ( f a ) = K s 2 ( f a , R 0 ) · c · M ( f a ) 2 ·
- λ · k · 2 · f a 2 4 · f c 2 · k 20 2 + 3 · λ · [ ( k 10 · k · 3 + k 30 · k · 1 ) · k 20 - 3 · k 10 · k 30 · k · 2 8 · f c 2 · k 20 4 · f a 2 + 3 · λ · ( 2 · k 10 · A 3 · k · 1 - k 10 2 · A · 3 ) 32 · f c 2 · f a 2 + 3 · λ 2 · ( k 20 · k · 3 - 3 · k 30 · k · 2 ) 16 · f c 2 · k 20 4 · f a 3 + 3 · λ 2 · ( A 3 · k · 1 - k 10 · A · 3 ) 32 · f c 2 · f a 3 + 3 · λ 3 · A · 3 128 · f c 2 f a 4 - - - ( 26 )
τ ( f a , R ) = 2 · R c · M ( f a ) - - - ( 27 )
τ ( f a , R 0 ) = 2 · R 0 c · M ( f a ) - - - ( 28 )
According to formula (24) ~ (28), obtain the operations factor Y that in the NCS algorithm, uses m(f a), q 2And q 3, its expression formula is respectively (29) ~ (31), wherein Y m(f a) be used for eliminating the impact of three phase places and be used for adjusting residual three phase errors of introducing owing to the adjustment of follow-up frequency modulation rate space-variant shape, q 2And q 3Be used for adjusting the space-variant of range migration and the space-variant of frequency modulation rate;
Y m ( f a ) = Δ k s ( f a ) · ( M ( f ref ) / M ( f a ) - 0.5 ) K s 3 ( f a , R 0 ) · ( M ( f ref ) / M ( f a ) - 1 ) - - - ( 29 )
q 2=K s(f a,R 0)·(M(f ref)/M(f a)-1) (30)
q 3 = Δ k s ( f a ) · ( M ( f ref ) / M ( f a ) - 1 ) 2 - - - ( 31 )
6. the 6th exponential term on formula (16) equal sign right side is In
Figure FDA00002387348368
For what obtain when the 2-d spectrum decoupling zero, relevant to the cube of frequency with distance, adopt reference point R here 0The value at place, namely
φ 3 ( f a , R ) = φ 3 ( f a , R 0 ) =
2 · π · - λ · f a 2 8 · k 20 · f c 2 - 3 · λ · k 10 · k 30 16 · k 20 3 · f c 3 · f a 2 - 3 · λ · k 10 2 · ( 9 · k 30 2 - 4 · k 20 · k 40 ) 64 · k 20 5 · f c 3 · f a 2 - λ 2 · k 30 · f a 3 8 · k 20 3 · f c 3 - λ 2 · k 1 · ( 9 · k 30 2 - 4 · k 20 · k 40 ) 16 · k 20 5 · f c 3 · f a 3 - 5 · λ 3 · ( 9 · k 30 2 - 4 · k 20 · k 40 ) 256 · k 20 5 · f c 3 · f a 4 - - - ( 32 )
3) echo is carried out range migration preliminary correction and three phase places removals
Need to do two work in two-dimensional frequency; The first, remove the migration phase place b (f at the reference point place that in 2-d spectrum is derived, obtains a, f r), to make things convenient for the derivation of subsequent algorithm, the expression formula of penalty function is (33); Need to prove that the range migration of removing is the part of reference point range migration here; The second, multiply by a nonlinear frequency modulation function, expression formula is (34), the impact that this function will be removed three phase places on the one hand is used for adjusting because residual three phase errors that the adjustment of follow-up frequency modulation rate space-variant shape is introduced on the other hand;
H 1=exp[j·2·π·B 10(f a,f r)](33)
H 2 = exp [ j · · 2 · π 3 · Y ( f a ) · f r 3 ] - - - ( 34 )
Wherein
Y ( f a ) = Δ k s ( f a ) · ( α - 0.5 ) K s 3 ( f a , R 0 ) · ( α - 1 ) - 3 2 · π · φ 3 ( f a , R 0 ) - - - ( 35 )
In (35), the expression formula of α is
α = M ( f ref ) M ( f a ) - - - ( 36 )
f RefFor the orientation to reference frequency;
Echo expression formula after treatment is
S 1 ( f r , f a ) = u r ( f r K r ) · u a [ f a + 2 k 1 c ( f r + f c ) ] · exp [ j · 2 · π · φ az ( f a , R ) ] · exp [ j · 2 · π · φ RP ( R ) ]
· exp [ - j · 4 · π · R c · M ( f a ) · f r ] · exp [ - j · π · f r 2 K s ( f a , R ) ] · exp [ j · 2 · π 3 · Y m ( f a ) · f r 3 ] - - - ( 37 )
Y m ( f a ) = Δ k s ( f a ) · ( α - 0.5 ) K s 3 ( f a , R 0 ) · ( α - 1 ) - - - ( 38 )
4) echo data is carried out the adjustment of the space-variant of the space-variant of range migration and frequency modulation rate
Distance is to IFFT, and the expression formula that obtains the range-Dopler domain of echo is
Carrying out non-linear CS operation at range-Dopler domain, mainly is to adjust the space-variant of range migration and the space-variant of frequency modulation rate; Through after the operation in this step, the space-variant removal in the scene, the realization range migration can be unified to process in two-dimensional frequency; Non-linear CS handling function is
H 3 = exp { j · π · q 2 · [ t r - τ ( f a , R 0 ) ] 2 } · exp { j · 2 · π 3 · q 3 · [ t r - τ ( f a , R 0 ) ] 3 } - - - ( 40 )
Wherein
q 2=q 2=K s(f a,R 0)·(α-1)(41)
q 3 = q 3 = Δ k s ( f a ) · ( α - 1 ) 2 - - - ( 42 )
5) echo is carried out distance to compression and range migration correction
(40) and after (39) multiply each other, carry out again distance to FFT; The echo data of this moment is in two-dimensional frequency, and this moment, the echo expression formula was
S 2 ( f r , f a ) = u r [ f r K s ( f a , R 0 ) · α ] · u a ( f a ) · exp [ j · 2 · π · φ az ( f a , R ) ] · exp [ j · 2 · π · φ RP ( R ) ] ·
exp [ - j · π · f r 2 α · K s ( f a , R 0 ) ] · exp { j · 2 · π 3 · [ Y m ( f a ) · K s 3 ( f a , R 0 ) + q 3 ] [ α · K s ( f a , R 0 ) ] 3 · f r 3 } ·
exp { - j · 4 · π · R 0 c · [ 1 M ( f a ) - 1 M ( f ref ) ] · f r } exp [ - j · 4 · π · R c · M ( f ref ) · f r ] · exp ( j · π · C 0 ) - - - ( 43 )
In (43), last exponential term is about C 0, it is to find the solution Y m(f a), q 2And q 3Under residual in the process, expression is
C 0 = K s ( f a , R ) · Δ · τ 2 · ( 1 α - 1 ) 2 + 2 3 · Y m ( f a ) · K s 3 ( f a , R ) · Δ τ 3 · ( 1 α - 1 ) 3
+ q 2 · ( Δτ α ) 2 + 2 3 · q 3 · ( Δτ α ) 3 - - - ( 44 )
Wherein
Δτ=τ(f a,R)-τ(f a,R 0)(45)
C 0Not only relevant to frequency with the orientation, and be that therefore the compensation of last exponential term can only be carried out at range-Dopler domain in (43) along distance to changing;
Because through the non-linear CS operation of previous step, range migration correction can be unified to process at the orientation frequency domain, and will carry out distance to compression and secondary range compression etc. in two-dimensional frequency; Distance to compression function is
H 4 = exp [ j · π · f r 2 α · K s ( f a , R 0 ) ] - - - ( 46 )
The secondary range compression function is
H 5 = exp { - j · 2 · π 3 · [ Y m ( f a ) · K s 3 ( f a , R 0 ) + q 3 [ α · K s ( f a , R 0 ) ] 3 · f r 3 } - - - ( 47 )
The range migration correction function is
H 6 = exp { j · 4 · π · R 0 c · [ 1 M ( f a ) - 1 M ( f ref ) ] · f r } - - - ( 48 )
Apart from the echo expression formula behind compression, secondary range compression and range migration correction be
S 3 ( f r , f a ) = u r { f r K s ( f a , R 0 ) · α } · u a ( f a ) · exp [ j · 2 · π · φ az ( f a , R ) ] ·
exp [ j · 2 · π · φ RP ( R ) ] · exp [ - j · 4 · π · R c · M ( f ref ) · f r ] · exp ( j · π · C 0 ) - - - ( 49 )
6) echo is carried out the orientation to compression
Behind compression and range migration correction, the echo of this moment makes progress in distance, and line focus is good through distance, need to carry out be the orientation to compression, the orientation will be upgraded along different range gate to compression function; At first the echo data after two-dimensional frequency is through Range compress and migration correction processing is carried out distance to IFFT, obtain the echo expression formula of range-Dopler domain
S 3 ( t r , f a ) = sin c [ t r - 2 · R c · M ( f ref ) ] · u a ( f a ) ·
exp [ j · 2 · π · φ az ( f a , R ) ] · exp [ j · 2 · π · φ RP ( R ) ] · exp ( j · π · C 0 ) - - - ( 50 )
Carry out the orientation to compression, compression function is
H 7=exp[-j·2·π·φ az(f a,R)](51)
And then carry out the removal of residual phase, expression formula is
H 8=exp[-j·2·π·φ RP(R)-j·π·C 0](52)
7) final step be the orientation to IFFT, echo can be changed to the two-dimensional time territory, the SAR image that obtains focusing on.
CN 201110280669 2011-09-21 2011-09-21 Improved NCS (Nonlinear Chirp Scaling) imaging algorithm suitable for geosynchronous orbit (GEO) SAR (Synthetic Aperture Radar) Expired - Fee Related CN102331577B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201110280669 CN102331577B (en) 2011-09-21 2011-09-21 Improved NCS (Nonlinear Chirp Scaling) imaging algorithm suitable for geosynchronous orbit (GEO) SAR (Synthetic Aperture Radar)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201110280669 CN102331577B (en) 2011-09-21 2011-09-21 Improved NCS (Nonlinear Chirp Scaling) imaging algorithm suitable for geosynchronous orbit (GEO) SAR (Synthetic Aperture Radar)

Publications (2)

Publication Number Publication Date
CN102331577A CN102331577A (en) 2012-01-25
CN102331577B true CN102331577B (en) 2013-05-01

Family

ID=45483415

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201110280669 Expired - Fee Related CN102331577B (en) 2011-09-21 2011-09-21 Improved NCS (Nonlinear Chirp Scaling) imaging algorithm suitable for geosynchronous orbit (GEO) SAR (Synthetic Aperture Radar)

Country Status (1)

Country Link
CN (1) CN102331577B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110596701A (en) * 2019-07-01 2019-12-20 杭州电子科技大学 Frequency-domain FENLCS imaging method for dual-static SAR in non-level flight based on quadratic ellipse model

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103364782B (en) * 2013-07-04 2015-05-06 北京理工大学 Geosynchronous orbit synthetic aperture radar velocity spatial variability compensating method
CN103677741A (en) * 2013-12-30 2014-03-26 南京大学 Imaging method based on NCS algorithm and mixing precision floating point coprocessor
CN104749575B (en) * 2015-04-01 2017-03-29 北京理工大学 A kind of improved geostationary orbit SAR frequency domain imaging methods
CN105182338B (en) * 2015-09-10 2017-07-11 北京理工大学 A kind of GEO SAR interference system data capture methods
CN105717508B (en) * 2016-01-29 2019-02-19 西安电子科技大学 An Airborne Radar Forward-Looking Imaging Method Based on Azimuth Modulation of Transmitting Waveform
CN106443670B (en) * 2016-08-29 2018-10-19 西北工业大学 A kind of non-at the uniform velocity big strabismus CS imaging methods
CN107102330A (en) * 2017-04-24 2017-08-29 清华大学 A kind of WNLCS imaging methods towards airborne geo Reference Strip SAR
CN109901162B (en) * 2019-03-06 2020-08-11 北京理工大学 Long-baseline imaging STAP method suitable for distributed geosynchronous orbit SAR
CN110133646B (en) * 2019-04-19 2021-01-12 电子科技大学 NLCS imaging-based multi-channel two-pulse clutter cancellation method for bistatic forward-looking SAR
CN113866767B (en) * 2021-11-29 2022-03-01 中南大学 A self-focusing method for wide-beam SAR based on blind NCS

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
Focusing of Medium-Earth-Orbit SAR With Advanced Nonlinear Chirp Scaling Algorithm;Lijia Huang等;《IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING》;20110131;第49卷(第1期);500-508 *
Lijia Huang等.Focusing of Medium-Earth-Orbit SAR With Advanced Nonlinear Chirp Scaling Algorithm.《IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING》.2011,第49卷(第1期),500-508.
SAR成像中几个问题的研究;程玉平;《中国博士学位论文全文数据库(信息科技辑)》;20020131(第1期);I136-96 *
一种曲线轨迹下的大场景前斜视成像算法;刘高高 等;《电子与信息学报》;20110331;第33 卷(第3期);628-633 *
刘高高 等.一种曲线轨迹下的大场景前斜视成像算法.《电子与信息学报》.2011,第33 卷(第3期),628-633.
程玉平.SAR成像中几个问题的研究.《中国博士学位论文全文数据库(信息科技辑)》.2002,(第1期),I136-96.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110596701A (en) * 2019-07-01 2019-12-20 杭州电子科技大学 Frequency-domain FENLCS imaging method for dual-static SAR in non-level flight based on quadratic ellipse model

Also Published As

Publication number Publication date
CN102331577A (en) 2012-01-25

Similar Documents

Publication Publication Date Title
CN102331577B (en) Improved NCS (Nonlinear Chirp Scaling) imaging algorithm suitable for geosynchronous orbit (GEO) SAR (Synthetic Aperture Radar)
CN102169174B (en) Method for focusing geo-synchronization orbit synthetic aperture radar in high precision
CN102226841B (en) Synchronous orbit SAR imaging method based on high-order polynomial range equation
CN102230964B (en) Geo-synchronous orbit synthetic aperture radar (GEO SAR) frequency modulation changeable standard imaging method under curve track model
Zeng et al. A modified nonlinear chirp scaling algorithm for spaceborne/stationary bistatic SAR based on series reversion
CN103364782B (en) Geosynchronous orbit synthetic aperture radar velocity spatial variability compensating method
CN102288961B (en) Imaging method for synthetic aperture radar nonlinear frequency modulation label change
CN103197291B (en) Satellite-borne synthetic aperture radar (SAR) echo signal simulation method based on non-stop walking model
CN105259552A (en) Synthetic aperture radar imaging method and device based on non-linear frequency-modulated signals
CN103869314B (en) Round trip flight moves and becomes bistatic forward sight synthetic aperture radar image-forming method
CN106908787A (en) A kind of preceding visual angle super-resolution imaging method of real beam scanning radar
CN101430380A (en) Large slanting view angle machine-carried SAR beam bunching mode imaging method based on non-uniform sampling
CN102749621B (en) Bistatic synthetic aperture radar (BSAR) frequency domain imaging method
CN102819020B (en) Synthetic aperture radar imaging method for azimuth-direction nonlinear chirp scaling of diving model
CN113589285B (en) SAR real-time imaging method for aircraft
CN102176016A (en) Large squint sliding spotlight SAR (synthetic aperture radar) imaging processing method
CN106249237A (en) Big Squint SAR frequency domain imaging method under a kind of curvilinear path
CN104330779B (en) Airborne synthetic aperture radar kinematic error compensation method
CN107942340A (en) A kind of Terahertz SAR vibration compensation imaging methods
CN103576150B (en) Based on the squint SAR formation method of hypersonic aircraft dive section
CN107918124A (en) Airborne big strabismus High Resolution SAR imaging method with the correction of orientation space-variant
CN103675760B (en) A kind of spaceborne geostationary orbit synthetic-aperture radar attitude guidance method
CN102778681A (en) Method for imaging stationary transmitter bistatic foresight synthetic aperture radar (ST-BFSAR)
CN106291548B (en) Ka CW with frequency modulation SAR motion compensation process based on inertial navigation information and echo data
CN107607948A (en) The motion compensation of medium earth orbit satellite SAR a kind of and imaging method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130501

Termination date: 20150921

EXPY Termination of patent right or utility model