CN102291392A - 一种基于Bagging算法的复合式入侵检测方法 - Google Patents
一种基于Bagging算法的复合式入侵检测方法 Download PDFInfo
- Publication number
- CN102291392A CN102291392A CN2011102060145A CN201110206014A CN102291392A CN 102291392 A CN102291392 A CN 102291392A CN 2011102060145 A CN2011102060145 A CN 2011102060145A CN 201110206014 A CN201110206014 A CN 201110206014A CN 102291392 A CN102291392 A CN 102291392A
- Authority
- CN
- China
- Prior art keywords
- intrusion detection
- algorithm
- sample
- data
- vector
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 112
- 238000004422 calculation algorithm Methods 0.000 title claims abstract description 88
- 238000012549 training Methods 0.000 claims abstract description 34
- 238000000034 method Methods 0.000 claims abstract description 27
- 238000005516 engineering process Methods 0.000 claims abstract description 23
- 230000006870 function Effects 0.000 claims description 12
- 239000011159 matrix material Substances 0.000 claims description 11
- 238000000605 extraction Methods 0.000 claims description 9
- 238000004458 analytical method Methods 0.000 claims description 8
- 230000009466 transformation Effects 0.000 claims description 6
- 238000010606 normalization Methods 0.000 claims description 3
- 238000012545 processing Methods 0.000 claims description 3
- 239000002131 composite material Substances 0.000 abstract description 24
- 150000001875 compounds Chemical class 0.000 abstract description 6
- 230000007547 defect Effects 0.000 abstract description 4
- 238000000513 principal component analysis Methods 0.000 description 10
- 230000008569 process Effects 0.000 description 9
- 238000012544 monitoring process Methods 0.000 description 7
- 230000009977 dual effect Effects 0.000 description 6
- 238000012706 support-vector machine Methods 0.000 description 6
- 230000002159 abnormal effect Effects 0.000 description 5
- 230000006399 behavior Effects 0.000 description 5
- 238000013473 artificial intelligence Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 238000007781 pre-processing Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 238000007635 classification algorithm Methods 0.000 description 2
- 238000013145 classification model Methods 0.000 description 2
- 238000013480 data collection Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000003909 pattern recognition Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000005856 abnormality Effects 0.000 description 1
- 230000004931 aggregating effect Effects 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
Images
Landscapes
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Alarm Systems (AREA)
Abstract
Description
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110206014.5A CN102291392B (zh) | 2011-07-22 | 2011-07-22 | 一种基于Bagging算法的复合式入侵检测方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110206014.5A CN102291392B (zh) | 2011-07-22 | 2011-07-22 | 一种基于Bagging算法的复合式入侵检测方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102291392A true CN102291392A (zh) | 2011-12-21 |
CN102291392B CN102291392B (zh) | 2015-03-25 |
Family
ID=45337501
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201110206014.5A Active CN102291392B (zh) | 2011-07-22 | 2011-07-22 | 一种基于Bagging算法的复合式入侵检测方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102291392B (zh) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103077347A (zh) * | 2012-12-21 | 2013-05-01 | 中国电力科学研究院 | 一种基于改进核心向量机数据融合的复合式入侵检测方法 |
CN103716204A (zh) * | 2013-12-20 | 2014-04-09 | 中国科学院信息工程研究所 | 一种基于维纳过程的异常入侵检测集成学习方法及装置 |
CN105589037A (zh) * | 2016-03-16 | 2016-05-18 | 合肥工业大学 | 基于集成学习的电力电子开关器件网络故障诊断方法 |
US9613113B2 (en) | 2014-03-31 | 2017-04-04 | International Business Machines Corporation | Parallel bootstrap aggregating in a data warehouse appliance |
CN106559416A (zh) * | 2016-10-26 | 2017-04-05 | 华中科技大学 | 一种基于支撑向量机的无线传感网入侵检测方法 |
CN106789149A (zh) * | 2016-11-18 | 2017-05-31 | 北京工业大学 | 采用改进型自组织特征神经网络聚类算法的入侵检测方法 |
CN107049239A (zh) * | 2016-12-28 | 2017-08-18 | 苏州国科康成医疗科技有限公司 | 基于可穿戴设备的癫痫脑电特征提取方法 |
CN108228714A (zh) * | 2017-12-01 | 2018-06-29 | 兰雨晴 | 云端管理系统及其云端管理方法 |
CN109784044A (zh) * | 2017-11-10 | 2019-05-21 | 北京安码科技有限公司 | 一种基于增量学习的改进SVM的Android恶意软件识别方法 |
CN109861988A (zh) * | 2019-01-07 | 2019-06-07 | 浙江大学 | 一种基于集成学习的工业控制系统入侵检测方法 |
CN110059775A (zh) * | 2019-05-22 | 2019-07-26 | 湃方科技(北京)有限责任公司 | 旋转型机械设备异常检测方法及装置 |
CN110247910A (zh) * | 2019-06-13 | 2019-09-17 | 深信服科技股份有限公司 | 一种异常流量的检测方法、系统及相关组件 |
TWI677804B (zh) * | 2017-11-29 | 2019-11-21 | 財團法人資訊工業策進會 | 計算機裝置及辨識其軟體容器行為是否異常的方法 |
CN111683048A (zh) * | 2020-05-06 | 2020-09-18 | 浙江大学 | 一种基于多周期模型stacking的入侵检测系统 |
CN114157514A (zh) * | 2022-02-07 | 2022-03-08 | 北京金睛云华科技有限公司 | 一种多路ids集成检测方法和装置 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050228783A1 (en) * | 2004-04-12 | 2005-10-13 | Shanahan James G | Method and apparatus for adjusting the model threshold of a support vector machine for text classification and filtering |
CN101562539A (zh) * | 2009-05-18 | 2009-10-21 | 重庆大学 | 自适应网络入侵检测系统 |
CN100562539C (zh) * | 2001-04-20 | 2009-11-25 | 电气化学工业株式会社 | 胶乳组合物 |
CN101594361A (zh) * | 2009-06-02 | 2009-12-02 | 浙江大学 | 基于支持向量机简化算法的网络入侵检测系统 |
-
2011
- 2011-07-22 CN CN201110206014.5A patent/CN102291392B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100562539C (zh) * | 2001-04-20 | 2009-11-25 | 电气化学工业株式会社 | 胶乳组合物 |
US20050228783A1 (en) * | 2004-04-12 | 2005-10-13 | Shanahan James G | Method and apparatus for adjusting the model threshold of a support vector machine for text classification and filtering |
CN101562539A (zh) * | 2009-05-18 | 2009-10-21 | 重庆大学 | 自适应网络入侵检测系统 |
CN101594361A (zh) * | 2009-06-02 | 2009-12-02 | 浙江大学 | 基于支持向量机简化算法的网络入侵检测系统 |
Non-Patent Citations (3)
Title |
---|
张红梅等: "基于SVM的多类分类集成", 《华东理工大学学报(自然科学版)》 * |
朱守业: "基于BP神经网络和Bagging算法的入侵检测", 《计算机工程与应用》 * |
童舜海: "改进的SVM在入侵检测中的应用", 《计算机工程与应用》 * |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103077347B (zh) * | 2012-12-21 | 2015-11-04 | 中国电力科学研究院 | 一种基于改进核心向量机数据融合的复合式入侵检测方法 |
CN103077347A (zh) * | 2012-12-21 | 2013-05-01 | 中国电力科学研究院 | 一种基于改进核心向量机数据融合的复合式入侵检测方法 |
CN103716204B (zh) * | 2013-12-20 | 2017-02-08 | 中国科学院信息工程研究所 | 一种基于维纳过程的异常入侵检测集成学习方法及装置 |
CN103716204A (zh) * | 2013-12-20 | 2014-04-09 | 中国科学院信息工程研究所 | 一种基于维纳过程的异常入侵检测集成学习方法及装置 |
US10248710B2 (en) | 2014-03-31 | 2019-04-02 | International Business Machines Corporation | Parallel bootstrap aggregating in a data warehouse appliance |
US9613113B2 (en) | 2014-03-31 | 2017-04-04 | International Business Machines Corporation | Parallel bootstrap aggregating in a data warehouse appliance |
US11120050B2 (en) | 2014-03-31 | 2021-09-14 | International Business Machines Corporation | Parallel bootstrap aggregating in a data warehouse appliance |
US10372729B2 (en) | 2014-03-31 | 2019-08-06 | International Business Machines Corporation | Parallel bootstrap aggregating in a data warehouse appliance |
CN105589037A (zh) * | 2016-03-16 | 2016-05-18 | 合肥工业大学 | 基于集成学习的电力电子开关器件网络故障诊断方法 |
CN106559416A (zh) * | 2016-10-26 | 2017-04-05 | 华中科技大学 | 一种基于支撑向量机的无线传感网入侵检测方法 |
CN106789149A (zh) * | 2016-11-18 | 2017-05-31 | 北京工业大学 | 采用改进型自组织特征神经网络聚类算法的入侵检测方法 |
CN106789149B (zh) * | 2016-11-18 | 2020-08-14 | 北京工业大学 | 采用改进型自组织特征神经网络聚类算法的入侵检测方法 |
CN107049239A (zh) * | 2016-12-28 | 2017-08-18 | 苏州国科康成医疗科技有限公司 | 基于可穿戴设备的癫痫脑电特征提取方法 |
CN109784044A (zh) * | 2017-11-10 | 2019-05-21 | 北京安码科技有限公司 | 一种基于增量学习的改进SVM的Android恶意软件识别方法 |
TWI677804B (zh) * | 2017-11-29 | 2019-11-21 | 財團法人資訊工業策進會 | 計算機裝置及辨識其軟體容器行為是否異常的方法 |
CN108228714A (zh) * | 2017-12-01 | 2018-06-29 | 兰雨晴 | 云端管理系统及其云端管理方法 |
CN109861988A (zh) * | 2019-01-07 | 2019-06-07 | 浙江大学 | 一种基于集成学习的工业控制系统入侵检测方法 |
CN110059775A (zh) * | 2019-05-22 | 2019-07-26 | 湃方科技(北京)有限责任公司 | 旋转型机械设备异常检测方法及装置 |
CN110247910A (zh) * | 2019-06-13 | 2019-09-17 | 深信服科技股份有限公司 | 一种异常流量的检测方法、系统及相关组件 |
CN110247910B (zh) * | 2019-06-13 | 2022-08-09 | 深信服科技股份有限公司 | 一种异常流量的检测方法、系统及相关组件 |
CN111683048A (zh) * | 2020-05-06 | 2020-09-18 | 浙江大学 | 一种基于多周期模型stacking的入侵检测系统 |
CN114157514A (zh) * | 2022-02-07 | 2022-03-08 | 北京金睛云华科技有限公司 | 一种多路ids集成检测方法和装置 |
CN114157514B (zh) * | 2022-02-07 | 2022-05-06 | 北京金睛云华科技有限公司 | 一种多路ids集成检测方法和装置 |
Also Published As
Publication number | Publication date |
---|---|
CN102291392B (zh) | 2015-03-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102291392B (zh) | 一种基于Bagging算法的复合式入侵检测方法 | |
Wang et al. | Detection of power grid disturbances and cyber-attacks based on machine learning | |
CN103077347B (zh) | 一种基于改进核心向量机数据融合的复合式入侵检测方法 | |
George et al. | Anomaly detection based on machine learning: dimensionality reduction using PCA and classification using SVM | |
CN104601565B (zh) | 一种智能优化规则的网络入侵检测分类方法 | |
CN103023927B (zh) | 一种稀疏表达下的基于非负矩阵分解的入侵检测方法及系统 | |
CN102263790A (zh) | 一种基于集成学习的入侵检测方法 | |
Rani et al. | Design of an intrusion detection model for IoT-enabled smart home | |
Shen et al. | A bayesian classification intrusion detection method based on the fusion of PCA and LDA | |
Sirisha et al. | Intrusion detection models using supervised and unsupervised algorithms-a comparative estimation | |
CN112115965A (zh) | 一种基于svm的被动操作系统识别方法、存储介质及设备 | |
Nuo | A novel selection method of network intrusion optimal route detection based on naive Bayesian | |
Uzun et al. | A novel method for intrusion detection in computer networks by identifying multivariate outliers and ReliefF feature selection | |
CN112463848A (zh) | 检测用户异常行为的检测方法、系统、装置和存储介质 | |
Yuan et al. | CSCIM_FS: Cosine similarity coefficient and information measurement criterion-based feature selection method for high-dimensional data | |
CN110097120B (zh) | 网络流量数据分类方法、设备及计算机存储介质 | |
CN114095268A (zh) | 用于网络入侵检测的方法、终端及存储介质 | |
Murugesan et al. | Mitigating missing rate and early cyberattack discrimination using optimal statistical approach with machine learning techniques in a smart grid | |
Zheng et al. | Network intrusion detection model based on Chi-square test and stacking approach | |
Othman et al. | Impact of dimensionality reduction on the accuracy of data classification | |
Arivardhini et al. | A Hybrid Classifier Approach for Network Intrusion Detection | |
Wang et al. | Intrusion detection model of internet of things based on deep learning | |
Jingyi et al. | ELM network intrusion detection model based on SLPP feature extraction | |
Zhang et al. | Detection of android malicious family based on manifest information | |
Liu et al. | [Retracted] An Accurate Method of Determining Attribute Weights in Distance‐Based Classification Algorithms |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
ASS | Succession or assignment of patent right |
Owner name: STATE ELECTRIC NET CROP. Effective date: 20130520 |
|
C41 | Transfer of patent application or patent right or utility model | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20130520 Address after: 100192 Beijing city Haidian District Qinghe small Camp Road No. 15 Applicant after: China Electric Power Research Institute Applicant after: State Grid Corporation of China Address before: 100192 Beijing city Haidian District Qinghe small Camp Road No. 15 Applicant before: China Electric Power Research Institute |
|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C41 | Transfer of patent application or patent right or utility model | ||
TR01 | Transfer of patent right |
Effective date of registration: 20160426 Address after: 100192 Beijing city Haidian District Qinghe small Camp Road No. 15 Patentee after: China Electric Power Research Institute Patentee after: State Grid Smart Grid Institute Patentee after: State Grid Corporation of China Address before: 100192 Beijing city Haidian District Qinghe small Camp Road No. 15 Patentee before: China Electric Power Research Institute Patentee before: State Grid Corporation of China |
|
C56 | Change in the name or address of the patentee | ||
CP01 | Change in the name or title of a patent holder |
Address after: 100192 Beijing city Haidian District Qinghe small Camp Road No. 15 Patentee after: China Electric Power Research Institute Patentee after: GLOBAL ENERGY INTERCONNECTION RESEARCH INSTITUTE Patentee after: State Grid Corporation of China Address before: 100192 Beijing city Haidian District Qinghe small Camp Road No. 15 Patentee before: China Electric Power Research Institute Patentee before: State Grid Smart Grid Institute Patentee before: State Grid Corporation of China |