CN102299348A - Porous electrode structure of redox flow battery and preparation method thereof - Google Patents
Porous electrode structure of redox flow battery and preparation method thereof Download PDFInfo
- Publication number
- CN102299348A CN102299348A CN2010102101121A CN201010210112A CN102299348A CN 102299348 A CN102299348 A CN 102299348A CN 2010102101121 A CN2010102101121 A CN 2010102101121A CN 201010210112 A CN201010210112 A CN 201010210112A CN 102299348 A CN102299348 A CN 102299348A
- Authority
- CN
- China
- Prior art keywords
- electrode
- porous
- density
- porous electrode
- battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 9
- 239000011148 porous material Substances 0.000 claims abstract description 29
- 239000012530 fluid Substances 0.000 claims abstract description 13
- 239000003792 electrolyte Substances 0.000 claims description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 7
- 229910002804 graphite Inorganic materials 0.000 claims description 3
- 239000010439 graphite Substances 0.000 claims description 3
- 229910052799 carbon Inorganic materials 0.000 claims description 2
- 239000004033 plastic Substances 0.000 claims 4
- 229920003023 plastic Polymers 0.000 claims 4
- 239000002131 composite material Substances 0.000 claims 2
- 239000011231 conductive filler Substances 0.000 claims 2
- -1 polyethylene Polymers 0.000 claims 2
- 239000004698 Polyethylene Substances 0.000 claims 1
- 239000004743 Polypropylene Substances 0.000 claims 1
- 239000007772 electrode material Substances 0.000 claims 1
- 239000000835 fiber Substances 0.000 claims 1
- 229920000573 polyethylene Polymers 0.000 claims 1
- 229920001155 polypropylene Polymers 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 abstract description 9
- 238000009826 distribution Methods 0.000 abstract description 6
- 239000007788 liquid Substances 0.000 abstract description 5
- 238000013461 design Methods 0.000 abstract description 3
- 230000006835 compression Effects 0.000 abstract description 2
- 238000007906 compression Methods 0.000 abstract description 2
- 229910052720 vanadium Inorganic materials 0.000 description 6
- 238000000034 method Methods 0.000 description 4
- WYTGDNHDOZPMIW-RCBQFDQVSA-N alstonine Natural products C1=CC2=C3C=CC=CC3=NC2=C2N1C[C@H]1[C@H](C)OC=C(C(=O)OC)[C@H]1C2 WYTGDNHDOZPMIW-RCBQFDQVSA-N 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
- Inert Electrodes (AREA)
Abstract
本发明涉及一种液流电池的多孔电极结构及其制备方法,所述多孔电极内部设置有密度大于和/或小于多孔电极平均密度的条形、三角形、梯形或异形的区域。将多空电极设计成具有凸起或者凹陷的表面结构。经压缩后电极局部的压缩率会有不同,压缩率较大的部分由于相对密度大孔隙小流体阻力大使液体相对不容易流过,而压缩率较小的部分由于相对密度小孔隙大流体阻力小使液体相对容易通过。该结构设计优化了电池内流体分配,从而提高电池能量转换效率,延长电池使用寿命。The invention relates to a porous electrode structure of a liquid flow battery and a preparation method thereof. The porous electrode is provided with strip-shaped, triangular, trapezoidal or special-shaped regions with a density greater than and/or less than the average density of the porous electrode. The porous electrode is designed to have a convex or concave surface structure. After compression, the local compressibility of the electrode will be different. The part with higher compressibility is relatively difficult to flow through due to the large relative density of pores and small fluid resistance, while the part with small compressibility is due to the small relative density of large pores and small fluid resistance. Allows liquids to pass through relatively easily. The structural design optimizes the fluid distribution in the battery, thereby improving the energy conversion efficiency of the battery and prolonging the service life of the battery.
Description
技术领域 technical field
本发明涉及氧化还原液流电池,具体地说是一种液流电池的多孔电极结构及其制备方法。The invention relates to a redox flow battery, in particular to a porous electrode structure of a flow battery and a preparation method thereof.
背景技术 Background technique
随着国民经济的高速发展,能源、资源、环境之间的矛盾显得日益突出,国家提出发展太阳能、风能发电为主的可再生清洁能源,建设可持续发展的经济增长模式。但是太阳能、风能随着昼夜变化其发电量产生显著变化,难于保持稳定的电能输出,需要和一定规模的电能储存装置相配合,构成完整的供电系统,保证持续稳定的电能供应。氧化还原液流电池系统具有电能储存和高效转化功能,且电池容量可以随着储液罐体积的增加而提高,使用寿命长、操作和维护费用低等优点,因此在很多领域都有着很好的发展前景。With the rapid development of the national economy, the contradictions among energy, resources, and the environment have become increasingly prominent. The country proposes to develop renewable and clean energy based on solar and wind power generation, and build a sustainable economic growth model. However, solar energy and wind energy produce significant changes in power generation with day and night changes, and it is difficult to maintain a stable power output. It needs to cooperate with a certain scale of power storage devices to form a complete power supply system to ensure continuous and stable power supply. The redox flow battery system has the functions of electric energy storage and high-efficiency conversion, and the battery capacity can be increased with the increase of the volume of the liquid storage tank. It has the advantages of long service life, low operation and maintenance costs, etc., so it has good advantages in many fields. Prospects.
氧化还原液流电池的电解液在电池内部流动时,容易出现分配不均匀,易形成无电解液流过的死角,使该部分极化严重影响电池转化效率,甚至会影响到电池使用寿命。When the electrolyte of a redox flow battery flows inside the battery, it is prone to uneven distribution, and it is easy to form a dead angle where no electrolyte flows. The polarization of this part seriously affects the conversion efficiency of the battery, and even affects the service life of the battery.
发明内容 Contents of the invention
本发明涉及一种可以改善电池充放电性能的氧化还原液流电池的多孔电极结构及其制备方法;此设计制备简单,成本低廉。The invention relates to a porous electrode structure of a redox flow battery capable of improving the charging and discharging performance of the battery and a preparation method thereof; the design and preparation are simple and the cost is low.
为实现上述目的,本发明采用的技术方案:In order to achieve the above object, the technical scheme adopted in the present invention:
一种液流电池的多孔电极结构,所述多孔电极内部设置有密度大于和/或小于多孔电极平均密度的条形、三角形、梯形或异形的区域;于多孔电极内部形成平行流场、蛇形流场、交指状流场或异形流场。A porous electrode structure of a liquid flow battery, wherein the porous electrode is provided with a strip-shaped, triangular, trapezoidal or special-shaped area with a density greater than and/or less than the average density of the porous electrode; a parallel flow field, serpentine, etc. are formed inside the porous electrode Flow field, interdigitated flow field or profiled flow field.
密度大于和/或小于多孔电极平均密度区域与多孔电极平均密度的密度差的绝对值为电极平均密度的5%-55%。The absolute value of the density difference between the region with a density greater and/or less than the average density of the porous electrode and the average density of the porous electrode is 5%-55% of the average density of the electrode.
所述电极结构的制备:于多孔材料表面切割出条形、三角形、梯形或异形的凹槽,使多孔材料表面形成凸起与凹陷相间的表面结构;Preparation of the electrode structure: cutting strip-shaped, triangular, trapezoidal or irregular grooves on the surface of the porous material, so that the surface of the porous material forms a surface structure with alternating protrusions and depressions;
液流电池装配时,多孔材料压缩后由于压缩率的不同,电极各区域的孔隙大小不一,形成电解液流场,通过改变流体的阻力使之对电解液进行分配。When the flow battery is assembled, due to the difference in compressibility after the porous material is compressed, the size of the pores in each area of the electrode is different, forming an electrolyte flow field, which distributes the electrolyte by changing the resistance of the fluid.
多孔材料的厚度压缩率范围在40%-90%之间,各区域间的厚度压缩率的差在5%-55%;所述多孔材料为石墨毡或碳毡。The thickness compressibility range of the porous material is between 40% and 90%, and the difference of the thickness compressibility among various regions is between 5% and 55%. The porous material is graphite felt or carbon felt.
经压缩后电极局部的压缩率会有不同,压缩率较大的部分由于相对密度大孔隙小流体阻力大使液体相对不容易流过,而压缩率较小的部分由于相对密度小孔隙大流体阻力小使液体相对容易通过。通过改变电极局部压缩率从而改变电极局部对流体的阻力使电极具有分配流体的功能优化电池转换效率。After compression, the local compressibility of the electrode will be different. The part with higher compressibility is relatively difficult to flow through due to the large relative density of pores and small fluid resistance, while the part with small compressibility is due to the small relative density of large pores and small fluid resistance. Allows liquids to pass through relatively easily. By changing the local compressibility of the electrode to change the local resistance of the electrode to the fluid, the electrode has the function of distributing the fluid to optimize the conversion efficiency of the battery.
本发明的优点在于:The advantages of the present invention are:
a)电解液在电池内部流动较为顺畅,能够优化流体分配提高电池转换效率。a) The electrolyte flows smoothly inside the battery, which can optimize fluid distribution and improve battery conversion efficiency.
b)实施简单,成本低廉。b) Simple implementation and low cost.
c)该结构设计优化了电池内流体分配,从而提高电池能量转换效率,延长电池使用寿命。c) The structure design optimizes the fluid distribution in the battery, thereby improving the energy conversion efficiency of the battery and prolonging the service life of the battery.
附图说明 Description of drawings
图1为实施例1在具有条形凸起的多孔材料表面结构示意图;Fig. 1 is a schematic diagram of the surface structure of a porous material with strip-shaped protrusions in Example 1;
图2为实施例2在具有蛇形凹陷的多孔材料表面结构示意图;2 is a schematic diagram of the surface structure of a porous material with serpentine depressions in Example 2;
图3为实施例3在具有异形凸起的多孔材料表面结构示意图。Fig. 3 is a schematic diagram of the surface structure of the porous material with irregular protrusions in Example 3.
具体实施方式 Detailed ways
实施例1Example 1
对多孔材料表面进行切割,如图1所示,使多孔材料表面形成条形凸起;Cutting the surface of the porous material, as shown in Figure 1, makes the surface of the porous material form a strip-shaped protrusion;
多孔材料长10cm,宽8cm,主体厚度1cm。多孔材料上并行4排凸起的流体分配条。流体分配条的长8cm,宽0.8cm,高0.5cm。分配条条间距0.96cm。将多孔电极与极板,隔膜,电解液等组装成全钒液流电池并在组装过程中将多孔电极厚度压缩至9mm。40mA/cm2条件下测试电池能量转换效率为80%比电极表面未经处理的全钒液流电池相比电池效率增长了1%。The porous material is 10 cm long, 8 cm wide, and the main body is 1 cm thick. 4 parallel rows of raised fluid distribution strips on the porous material. The length of the fluid distribution strip is 8 cm, the width is 0.8 cm, and the height is 0.5 cm. Dispense bar spacing 0.96cm. The porous electrode, plate, separator, electrolyte, etc. are assembled into an all-vanadium redox flow battery, and the thickness of the porous electrode is compressed to 9mm during the assembly process. Under the condition of 40mA/cm 2 , the energy conversion efficiency of the test battery is 80%, which is 1% higher than that of the all-vanadium redox flow battery with untreated electrode surface.
实施例2Example 2
多孔材料长10cm,宽8cm,主体厚度1cm。对多孔材料表面进行切割,如图2所示,使多孔材料表面形成蛇形的凹陷。将多孔电极与极板,隔膜,电解液等组装成全钒液流电池并在组装过程中将多孔电极厚度压缩至9mm。40mA/cm2条件下测试电池能量转换效率为79.6%比电极表面未经处理的的全钒液流电池相比电池效率增长了0.05%。The porous material is 10 cm long, 8 cm wide, and the main body is 1 cm thick. The surface of the porous material is cut, as shown in FIG. 2 , so that a serpentine depression is formed on the surface of the porous material. The porous electrode, plate, separator, electrolyte, etc. are assembled into an all-vanadium redox flow battery, and the thickness of the porous electrode is compressed to 9mm during the assembly process. Under the condition of 40mA/cm 2 , the energy conversion efficiency of the test battery is 79.6%, which is 0.05% higher than that of the all-vanadium redox flow battery with untreated electrode surface.
实施例3Example 3
多孔材料长10cm,宽8cm,主体厚度1cm。对多孔材料表面进行切割,如图3所示,使多孔材料表面形成异形凸起。将多孔电极与极板,隔膜,电解液等组装成全钒液流电池并在组装过程中将多孔电极厚度压缩至9mm。40mA/cm2条件下测试电池能量转换效率为79.7%比电极表面未经处理的全钒液流电池相比电池效率增长了0.06%。The porous material is 10 cm long, 8 cm wide, and the main body is 1 cm thick. Cut the surface of the porous material, as shown in Figure 3, so that the surface of the porous material forms a special-shaped protrusion. The porous electrode, plate, separator, electrolyte, etc. are assembled into an all-vanadium redox flow battery, and the thickness of the porous electrode is compressed to 9mm during the assembly process. Under the condition of 40mA/cm 2 , the energy conversion efficiency of the test battery is 79.7%, which is 0.06% higher than that of the all-vanadium redox flow battery with untreated electrode surface.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010102101121A CN102299348A (en) | 2010-06-25 | 2010-06-25 | Porous electrode structure of redox flow battery and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010102101121A CN102299348A (en) | 2010-06-25 | 2010-06-25 | Porous electrode structure of redox flow battery and preparation method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102299348A true CN102299348A (en) | 2011-12-28 |
Family
ID=45359616
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2010102101121A Pending CN102299348A (en) | 2010-06-25 | 2010-06-25 | Porous electrode structure of redox flow battery and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102299348A (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102332589A (en) * | 2011-07-29 | 2012-01-25 | 珠海锂源动力科技有限公司 | Electrode used on redox flow battery |
CN102709571A (en) * | 2012-06-29 | 2012-10-03 | 中国东方电气集团有限公司 | Porous electrode, and flow battery, battery stack, and battery system containing porous electrodes |
CN104518227A (en) * | 2013-09-29 | 2015-04-15 | 中国科学院大连化学物理研究所 | Current collector for flow cells |
CN105762369A (en) * | 2014-12-16 | 2016-07-13 | 中国科学院大连化学物理研究所 | All-vanadium flow battery porous carbon fiber felt electrode material and preparation and application thereof |
CN108155389A (en) * | 2017-11-29 | 2018-06-12 | 辽宁科技大学 | It is a kind of from the flow channel type flow battery preparation method of graphite felt electrode material |
CN110867594A (en) * | 2018-08-27 | 2020-03-06 | 大连融科储能装备有限公司 | Flow field structure of flow battery |
CN111224144A (en) * | 2018-11-26 | 2020-06-02 | 中国科学院大连化学物理研究所 | Flow battery pile structure and application thereof |
CN112042027A (en) * | 2018-02-28 | 2020-12-04 | 西门子股份公司 | Redox flow battery having at least one cell and electrode element, and method for producing a guide structure for an electrode element of a redox flow battery |
CN112086653A (en) * | 2019-06-14 | 2020-12-15 | 江苏泛宇能源有限公司 | Graphite felt structure for flow battery and flow battery using same |
CN112086654A (en) * | 2019-06-14 | 2020-12-15 | 江苏泛宇能源有限公司 | Graphite felt for flow battery and flow battery using same |
CN112201803A (en) * | 2020-09-30 | 2021-01-08 | 香港科技大学 | Convection enhanced snake-shaped flow channel for flow battery |
CN114551911A (en) * | 2020-11-25 | 2022-05-27 | 中国科学院大连化学物理研究所 | Preparation and application of a negative electrode structure for zinc-based flow batteries |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6475661B1 (en) * | 1998-01-28 | 2002-11-05 | Squirrel Holdings Ltd | Redox flow battery system and cell stack |
CN101325252A (en) * | 2007-06-15 | 2008-12-17 | 清华大学 | A bipolar plate for a flow battery |
CN101719556A (en) * | 2009-11-24 | 2010-06-02 | 攀枝花新钢钒股份有限公司 | Pile structure of redox flow battery |
-
2010
- 2010-06-25 CN CN2010102101121A patent/CN102299348A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6475661B1 (en) * | 1998-01-28 | 2002-11-05 | Squirrel Holdings Ltd | Redox flow battery system and cell stack |
CN101325252A (en) * | 2007-06-15 | 2008-12-17 | 清华大学 | A bipolar plate for a flow battery |
CN101719556A (en) * | 2009-11-24 | 2010-06-02 | 攀枝花新钢钒股份有限公司 | Pile structure of redox flow battery |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102332589B (en) * | 2011-07-29 | 2014-05-28 | 珠海锂源新能源科技有限公司 | Electrode used on redox flow battery |
CN102332589A (en) * | 2011-07-29 | 2012-01-25 | 珠海锂源动力科技有限公司 | Electrode used on redox flow battery |
CN102709571A (en) * | 2012-06-29 | 2012-10-03 | 中国东方电气集团有限公司 | Porous electrode, and flow battery, battery stack, and battery system containing porous electrodes |
CN104518227A (en) * | 2013-09-29 | 2015-04-15 | 中国科学院大连化学物理研究所 | Current collector for flow cells |
CN105762369A (en) * | 2014-12-16 | 2016-07-13 | 中国科学院大连化学物理研究所 | All-vanadium flow battery porous carbon fiber felt electrode material and preparation and application thereof |
CN108155389A (en) * | 2017-11-29 | 2018-06-12 | 辽宁科技大学 | It is a kind of from the flow channel type flow battery preparation method of graphite felt electrode material |
CN108155389B (en) * | 2017-11-29 | 2020-05-12 | 辽宁科技大学 | Preparation method of graphite felt electrode material for self-flow-channel flow battery |
CN112042027B (en) * | 2018-02-28 | 2024-07-30 | 利萃斯缔有限公司 | Redox flow battery with at least one cell and electrode element and method for producing a guiding structure for an electrode element of a redox flow battery |
CN112042027A (en) * | 2018-02-28 | 2020-12-04 | 西门子股份公司 | Redox flow battery having at least one cell and electrode element, and method for producing a guide structure for an electrode element of a redox flow battery |
CN110867594A (en) * | 2018-08-27 | 2020-03-06 | 大连融科储能装备有限公司 | Flow field structure of flow battery |
CN111224144A (en) * | 2018-11-26 | 2020-06-02 | 中国科学院大连化学物理研究所 | Flow battery pile structure and application thereof |
CN111224144B (en) * | 2018-11-26 | 2024-04-16 | 中国科学院大连化学物理研究所 | Flow battery pile structure and application thereof |
CN112086654A (en) * | 2019-06-14 | 2020-12-15 | 江苏泛宇能源有限公司 | Graphite felt for flow battery and flow battery using same |
CN112086654B (en) * | 2019-06-14 | 2022-04-12 | 江苏泛宇能源有限公司 | Graphite felt for flow battery and flow battery using same |
CN112086653A (en) * | 2019-06-14 | 2020-12-15 | 江苏泛宇能源有限公司 | Graphite felt structure for flow battery and flow battery using same |
CN112201803A (en) * | 2020-09-30 | 2021-01-08 | 香港科技大学 | Convection enhanced snake-shaped flow channel for flow battery |
CN114551911A (en) * | 2020-11-25 | 2022-05-27 | 中国科学院大连化学物理研究所 | Preparation and application of a negative electrode structure for zinc-based flow batteries |
CN114551911B (en) * | 2020-11-25 | 2023-09-19 | 中国科学院大连化学物理研究所 | Preparation and application of a zinc-based liquid flow battery negative electrode structure |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102299348A (en) | Porous electrode structure of redox flow battery and preparation method thereof | |
Zhang et al. | Energy storage system: Current studies on batteries and power condition system | |
CN107579264B (en) | A reversible fuel cell cathode flow field structure and reversible fuel cell | |
CN104795583A (en) | Novel lithium ion flow battery | |
CN109037725B (en) | A flow battery and electrode structure and method for improving electrolyte distribution uniformity | |
CN102867978B (en) | Flow energy storage battery structure | |
KR101359704B1 (en) | Complex body of electrode and bipolar plate for redox flow battery, preparation method of the same, and redox flow battery | |
AU2022200525B2 (en) | Electrode structure of flow battery, flow battery stack, and sealing structure for flow battery stack | |
KR101341088B1 (en) | Laminated electrolyte membrane and produce method, and Redox flow battery including electrolyte membrane | |
CN105529486A (en) | Preparation method for flexible winding vanadium battery | |
KR101580405B1 (en) | Unified Bipolar plate with flow frame for redox flow battery | |
KR101163996B1 (en) | a redox flow secondary cell having metal foam electrodes | |
CN103887539B (en) | A kind of Zn-Ni liquid battery structure and Zn-Ni liquid battery system | |
CN103682386A (en) | Battery structure for flow energy storage batteries and all-vanadium flow energy storage battery | |
CN106532069A (en) | Composite electrode for flow batteries and preparation method thereof | |
Zhi et al. | Potential improvement to a citric wastewater treatment plant using bio-hydrogen and a hybrid energy system | |
CN105322197A (en) | High specific surface area bipolar plate for flow battery and preparation method thereof | |
CN108565470A (en) | A kind of preparation method of flow battery graphite felt | |
CN219303710U (en) | Split bipolar plate structure of flow battery and electric pile | |
CN201638876U (en) | Locking device of fluid-flow cell stack | |
KR101631909B1 (en) | Composite material bipolar plate for redox flow battery | |
CN204333115U (en) | A lead-acid battery grid | |
CN106887612A (en) | A kind of bipolar plates of serpentine flow path and its application in all-vanadium flow battery | |
CN202094214U (en) | Lead-acid battery electrode plate gird | |
CN201355575Y (en) | Winding type supercapacitor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
ASS | Succession or assignment of patent right |
Owner name: DALIAN RONGKE POWER CO., LTD. Free format text: FORMER OWNER: DALIAN INSTITUTE OF CHEMICAL PHYSICS, CHINESE ACADEMY OF SCIENCES Effective date: 20120629 Free format text: FORMER OWNER: DALIAN RONGKE POWER CO., LTD. Effective date: 20120629 |
|
C41 | Transfer of patent application or patent right or utility model | ||
COR | Change of bibliographic data |
Free format text: CORRECT: ADDRESS; FROM: 116023 DALIAN, LIAONING PROVINCE TO: 116025 DALIAN, LIAONING PROVINCE |
|
TA01 | Transfer of patent application right |
Effective date of registration: 20120629 Address after: 116025 No. 22, XinDa street, Dalian hi tech Industrial Park, Liaoning Applicant after: Dalian Rongke Power Co., Ltd. Address before: 116023 Zhongshan Road, Liaoning, No. 457, Applicant before: Dalian Institute of Chemical Physics, Chinese Academy of Sciences Co-applicant before: Dalian Rongke Power Co., Ltd. |
|
C12 | Rejection of a patent application after its publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20111228 |