CN102298640B - Method for preprocessing map display data - Google Patents
Method for preprocessing map display data Download PDFInfo
- Publication number
- CN102298640B CN102298640B CN 201110270946 CN201110270946A CN102298640B CN 102298640 B CN102298640 B CN 102298640B CN 201110270946 CN201110270946 CN 201110270946 CN 201110270946 A CN201110270946 A CN 201110270946A CN 102298640 B CN102298640 B CN 102298640B
- Authority
- CN
- China
- Prior art keywords
- grid
- underlying
- threshold
- road section
- level
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 42
- 238000007781 pre-processing Methods 0.000 title claims abstract description 19
- 230000008569 process Effects 0.000 claims description 5
- 230000001154 acute effect Effects 0.000 claims description 3
- 230000009466 transformation Effects 0.000 claims 2
- 230000000007 visual effect Effects 0.000 abstract 1
- 238000007906 compression Methods 0.000 description 7
- 230000006835 compression Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 230000026058 directional locomotion Effects 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
Images
Landscapes
- Instructional Devices (AREA)
- Processing Or Creating Images (AREA)
Abstract
本发明涉及一种地图显示数据预处理方法,其特征在于:它包括三部分:1)建立多分辨率二级网格索引存储结构,并基于此索引存储结构实现预估读取策略;2)为每个网格的显示对象密度进行单独控制,从而挑选合理的显示对象;3)结合人眼分辨率,对各个网格内的显示对象进行简化处理。本发明在地图定向移动显示中可以得到更高的加载效率,保证在各个比例尺、各个区域内的显示内容密度都较为合理,且在保证人眼视觉效果的前提下对显示对象进行简化处理,减小了显示数据量。本发明可以广泛地应用于各种车载导航系统中,实现地图显示数据的高效率加载。
The invention relates to a method for preprocessing map display data, which is characterized in that it includes three parts: 1) establishing a multi-resolution secondary grid index storage structure, and realizing an estimated reading strategy based on the index storage structure; 2) The display object density of each grid is individually controlled, so as to select a reasonable display object; 3) Combining with the resolution of human eyes, the display objects in each grid are simplified. The present invention can obtain higher loading efficiency in map directional mobile display, ensure that the display content density in each scale and each area is more reasonable, and simplify the display object under the premise of ensuring the human visual effect, reducing the to display the amount of data. The invention can be widely applied in various vehicle navigation systems, and realizes high-efficiency loading of map display data.
Description
技术领域technical field
本发明涉及一种数据预处理方法,特别是关于一种在车载导航系统中的地图显示数据预处理方法。The invention relates to a data preprocessing method, in particular to a map display data preprocessing method in a car navigation system.
背景技术Background technique
车载自主导航系统的主要功能之一就是实时显示电子地图,提供相关的导航信息。目前,随着地理信息系统的不断发展,显示电子地图所需的数据量也在不断膨胀。而车载自主导航系统大多建立在以嵌入式设备为主的硬件平台上,其处理器的计算能力和文件读写速度受到很大限制,如果不对这些图像数据进行预先的组织和处理,有可能会出现显示内容不合理的现象,如出现过少、堆积或重叠等现象,有时甚至会难以实现电子地图的实时显示。为解决这个问题,通常会对电子地图中需要显示的图像数据进行预处理。现有的处理方法主要有:1、建立多级网格索引或树状结构,结合缓存机制,来实现数据的快速定位和加载,其缺点是:缓存机制更适用于地图随机移动的情况,对导航中常用的定向移动显示适应性差;2、利用显示对象的行政等级,为其指定显示等级,在每个比例尺下显示特定等级的对象,以此来选取各个比例尺的显示内容,其缺点是:在同一比例尺的不同区域,其显示疏密度可能会相差很大,有时可能过密,有时可能过稀,给用户提供的信息量太少;3、对显示对象的几何属性(通常为曲线)进行适当的压缩、简化,达到简化显示内容的目的,其缺点是:没有充分利用到显示对象在各个方向上的相近关系,压缩率不高,且压缩时使用的误差参数没有与人眼的分辨能力相结合,可能会出现过压缩现象(显示效果变差)或者欠压缩现象(压缩率降低)。One of the main functions of the vehicle autonomous navigation system is to display the electronic map in real time and provide relevant navigation information. At present, with the continuous development of geographic information systems, the amount of data required to display electronic maps is also expanding. Most of the vehicle-mounted autonomous navigation systems are built on the hardware platform based on embedded devices, and the computing power of the processor and the speed of file reading and writing are greatly limited. If these image data are not pre-organized and processed, there may be Unreasonable display content occurs, such as too few, stacked or overlapping phenomena, and sometimes it is even difficult to realize the real-time display of the electronic map. To solve this problem, the image data to be displayed in the electronic map is usually preprocessed. The existing processing methods mainly include: 1. Establish a multi-level grid index or tree structure, combined with a cache mechanism, to realize fast positioning and loading of data. The disadvantage is that the cache mechanism is more suitable for the situation where the map moves randomly. The directional movement display commonly used in navigation has poor adaptability; 2. Use the administrative level of the display object to specify the display level for it, and display objects of a specific level under each scale to select the display content of each scale. The disadvantages are: In different areas of the same scale, the display density may vary greatly, sometimes it may be too dense, sometimes it may be too thin, and the amount of information provided to the user is too small; 3. The geometric properties (usually curves) of the displayed object Appropriate compression and simplification achieve the purpose of simplifying the display content. The disadvantages are: the similarity of the display objects in all directions is not fully utilized, the compression rate is not high, and the error parameters used in compression are not as resolvable as human eyes. Combined, there may be overcompression (degraded display) or undercompression (lower compression ratio).
发明内容Contents of the invention
针对上述问题,本发明的目的是提供一种在车载导航系统中的地图显示数据预处理方法,该方法能够1、建立合理的地图网格化组织和索引方式,并考虑到导航中常用的定向移动显示需求,结合预估加载策略实现数据的快速定位和加载,在定向移动显示中可以得到更佳的加载效率;2、控制地图网格分幅尺寸,对每个网格的显示对象密度进行单独控制,确保在各个比例尺、各个区域内的显示内容密度都较为合理,为用户提供合理的地理信息;3、结合人眼分辨率,对各个网格内的显示对象进行简化处理,避免出现过压缩或者欠压缩的现象。At the problems referred to above, the object of the present invention is to provide a method for preprocessing map display data in a vehicle navigation system, which can 1, establish a reasonable map grid organization and indexing method, and take into account the commonly used orientation in navigation Mobile display needs, combined with the estimated loading strategy to achieve fast positioning and loading of data, better loading efficiency can be obtained in directional mobile display; 2. Control the grid grid size of the map, and adjust the display object density of each grid Independent control to ensure that the density of displayed content in each scale and area is relatively reasonable, and provide users with reasonable geographic information; 3. Combined with the resolution of the human eye, the display objects in each grid are simplified to avoid excessive Compression or undercompression.
为实现上述目的,本发明采取以下技术方案:一种地图显示数据预处理方法,它包括三部分:建立网格索引存储结构、为各个网格挑选显示对象和精简显示对象;In order to achieve the above object, the present invention adopts the following technical solutions: a method for preprocessing map display data, which includes three parts: establishing a grid index storage structure, selecting display objects for each grid, and simplifying display objects;
1)建立网格索引存储结构,包括以下步骤:1) Establish a grid index storage structure, including the following steps:
①将每一级比例尺下的地图均划分为两层网格:底层网格和顶层网格,所述底层网格的大小等于屏幕的大小,每一顶层网格包括若干个底层网格;① Divide the map under each level of scale into two layers of grids: the bottom grid and the top grid, the size of the bottom grid is equal to the size of the screen, and each top grid includes several bottom grids;
②对由步骤①划分获得的顶层网格建立网格索引;② Establish a grid index for the top-level grid obtained by
③对于当前屏幕的四个顶点,分别根据由步骤②建立的网格索引确定所在的顶层网格,在顶层网格中进一步确定其所在的底层网格;③For the four vertices of the current screen, determine the top-level grid where they are located according to the grid index established in
④在缓存中存放若干个底层网格所包含的数据,同时为每一个底层网格设置一个放弃指数,放弃指数为变量,大小为其底层网格的中心点与屏幕中心点间的距离,且空的缓存单元也设置一放弃指数,其大小设置为一个比其它所有底层网格的放弃指数都大的正值;④ Store the data contained in several underlying grids in the cache, and set a abandonment index for each underlying grid at the same time. The abandonment index is a variable whose size is the distance between the center point of the underlying grid and the center point of the screen, and Empty cache cells also have a abandonment index set to a positive value greater than the abandonment index of all other underlying grids;
⑤屏幕每刷新一次,系统更新并记录当前缓存中所有底层网格的放弃指数:⑤ Every time the screen is refreshed, the system updates and records the abandonment index of all underlying grids in the current cache:
如果系统发出向缓存中加载一个以上的底层网格的指令,执行步骤⑥;If the system issues an instruction to load more than one underlying grid into the cache, perform step ⑥;
如果系统未发出向缓存中加载底层网格的指令,执行步骤⑦;If the system does not issue an instruction to load the underlying grid into the cache, perform step ⑦;
⑥i)加载一个底层网格,搜索一遍缓存:⑥i) Load an underlying grid and search the cache again:
如果缓存中已经存有所要加载的底层网格,则直接提取该底层网格数据;If the underlying grid to be loaded already exists in the cache, directly extract the underlying grid data;
如果缓存中未存放有所要加载的底层网格,则从文件中读取该底层网格数据,将其放入缓存中,替换当前缓存中放弃指数最大的底层网格;If the underlying grid to be loaded is not stored in the cache, read the underlying grid data from the file, put it into the cache, and replace the underlying grid with the largest abandonment index in the current cache;
ii)返回步骤i),加载另一个底层网格,直至所有需要加载的底层网格加载完毕;ii) return to step i), and load another underlying grid until all the underlying grids that need to be loaded are loaded;
⑦i)对当前缓存中的每一个底层网格都搜索一遍它的邻接底层网格,即搜索与该底层网格具有一条重合边的相邻网格,并记录相应的放弃指数;⑦i) each bottom grid in the current cache is searched for its adjacent bottom grid, that is, searching for an adjacent grid with a coincident edge with the bottom grid, and recording the corresponding abandonment index;
ii)在由步骤i)获得的邻接底层网格中选取放弃指数最小的底层网格,将其数据加载放入缓存,替换步骤⑤中所标记的放弃指数最大的底层网格;ii) Select the bottom grid with the smallest abandonment index from the adjacent bottom-level grids obtained in step i), load its data into the cache, and replace the bottom-level grid with the largest abandonment index marked in step 5;
2)为各个网格挑选显示对象,包括以下步骤:2) Select display objects for each grid, including the following steps:
①为所有的底层网格设定一曲线密度合理范围;①Set a reasonable range of curve density for all underlying grids;
②对显示对象标注显示等级;② Mark the display level of the display object;
③对一个底层网格,从显示等级中的最高级别开始,由高到低逐级向该底层网格中填充显示对象:③ For an underlying grid, start from the highest level in the display hierarchy, and fill the underlying grid with display objects step by step from high to low:
如果完成一个级别的填充后,该底层网格的曲线密度刚好进入由步骤①给定的曲线密度合理范围,则停止对该底层网格的填充,返回步骤③,对另一个底层网格进行填充,直至所有底层网格填充完毕;If after completing one level of filling, the curve density of the underlying grid just enters the reasonable range of curve density given by
如果完成一个级别的填充后,该底层网格的曲线密度大于由步骤①给定的曲线密度合理范围的最大值,则放弃这个级别的填充,并保留上一级的填充结果作为最终结果,返回步骤③,对另一个底层网格进行填充,直至所有底层网格填充完毕;If after completing a level of filling, the curve density of the underlying grid is greater than the maximum value of the reasonable range of the curve density given by
如果完成一个级别的填充后,该底层网格的曲线密度仍然小于由步骤①给定的曲线密度合理范围的最小值,则继续对这个底层网格进行低一级别的填充;If after one level of filling is completed, the curve density of the underlying grid is still less than the minimum value of the reasonable range of curve density given in
3)为各个网格精简显示对象,包括以下步骤:3) Refine display objects for each grid, including the following steps:
①采用方向优先法拼接底层网格内首尾相连的路段,即当两个路段首尾相连,且在连接处所构成的锐角小于给定的角度阈值时,拼接这两个路段;① Use the direction priority method to splice the end-to-end road sections in the underlying grid, that is, when the two road sections are connected end-to-end, and the acute angle formed at the connection is less than a given angle threshold, the two road sections are spliced;
②采用节点不变法简化由步骤①获得的显示结果中的原始折线,削减路段的冗余形值点,具体步骤如下:② Use the node invariance method to simplify the original polyline in the display result obtained in
i)从原始折线中找出所有拼接处的节点,记录节点位置;i) find out the nodes at all splicing places from the original polyline, and record the node positions;
ii)对原始折线进行Douglas-Peucker抽稀简化,凡是折线中弦高小于给定弦高阈值的子段都被简化为直线段;ii) Douglas-Peucker thinning simplification is performed on the original polyline, and all sub-sections in the polyline whose chord height is less than a given chord height threshold are simplified to straight line segments;
iii)依据步骤i)记录的节点位置,将所有节点插入到相应的位置;iii) inserting all nodes into corresponding positions according to the node positions recorded in step i);
③采用动态阈值法合并法向距离相近的路段:③ Use the dynamic threshold method to merge road sections with similar normal distances:
指定合并前路段集合为F={Fi},合并后路段集合为G={Gk},合并后路段集合的初始状态为空集,合并前路段集合F中待合并的路段为Fi,Pi为Fi上的一个形状点,新分支路段为U,合并后路段集合G中和Pi最近的点为Li;如果Pi和Li两点的距离小于当前动态距离阈值的值,两点的切线角度之差小于当前动态角度阈值的值,两点能够合并。合并过程如下:Designate the road section set before merging as F={F i }, the road section set after merging as G={G k }, the initial state of the road section set after merging is an empty set, and the road section to be merged in the road section set F before merging is F i , P i is a shape point on F i , the new branch road section is U, and the point closest to P i in the merged road section set G is L i ; if the distance between P i and L i is less than the value of the current dynamic distance threshold , the difference between the tangent angles of the two points is less than the value of the current dynamic angle threshold, and the two points can be merged. The merge process is as follows:
i)从合并前路段集合F中找出一待合并的路段Fi;i) Find a road section F i to be merged from the road section set F before merging;
ii)从待合并的路段Fi中找出一个形状点Pi;ii) Find a shape point P i from the road section F i to be merged;
iii)在合并后路段集合G中找出和形状点Pi距离最近的点Li:iii) Find the point L i closest to the shape point P i in the merged road section set G:
如果Pi和Li合并成功,则在新分支路段U尾部添加点Pi,并把该路段U加入合并后路段集合G中,然后再清空新分支路段U;If P i and L i are merged successfully, add point P i at the end of the new branch road section U, and add this road section U to the merged road section set G, and then clear the new branch road section U;
如果Pi和Li合并失败,则只在新分支路段U尾部添加点Pi;If the combination of P i and L i fails, only add point P i at the end of the new branch road section U;
iv)返回步骤ii),从待合并的路段Fi中找出另一个形状点Pi+1,直至处理完待合并的路段Fi上的所有形状点;iv) Return to step ii), find another shape point P i+1 from the road section F i to be merged, until all shape points on the road section F i to be merged are processed;
v)返回步骤i),从合并前路段集合F中找出另一个待合并的路段Fi+1,直至处理完待合并的路段集合F中所有路段,结束。v) Return to step i), find another road segment F i+1 to be merged from the road segment set F before merging, until all road segments in the road segment set F to be merged are processed, and end.
上述部分2)的步骤①中,所述曲线密度合理范围是指在一个底层网格内,曲线数量在[50,150]区间内。In
上述部分2)的步骤②中,根据所述显示对象的行政等级对其标注显示等级。In
上述部分3)的步骤①中,所述角度阈值为30°。In
上述部分3)的步骤②中,根据人类视觉在中等亮度,中等对比度的条件下的极限分辨率1.5’,换算出人眼在屏幕上的分辨极限距离,利用比例尺变换将当前屏幕分辩极限距离转为相应的地理尺度距离,作为所述弦高阈值。In the
上述部分3)的步骤③中,所述动态距离阈值和所述动态角度阈值的设置方法是:In step ③ of the above-mentioned part 3), the setting method of the dynamic distance threshold and the dynamic angle threshold is:
当上一点合并成功时,用于当前判断的动态距离阈值和动态角度阈值的值分别取基准距离阈值和基准角度阈值的110%;When the previous point is merged successfully, the values of the dynamic distance threshold and the dynamic angle threshold used for the current judgment are respectively 110% of the reference distance threshold and the reference angle threshold;
当上一点合并失败时,用于当前判断的动态距离阈值和动态角度阈值的值分别取基准距离阈值和基准角度阈值的90%。When the combination at the previous point fails, the values of the dynamic distance threshold and the dynamic angle threshold used for the current judgment are respectively 90% of the reference distance threshold and the reference angle threshold.
上述基准角度阈值为30°。The aforementioned reference angle threshold is 30°.
本发明由于采取以上技术方案,其具有以下优点:1、由于本发明所构造的二级网格索引存储结构定位快速、简单,其缓存策略充分考虑到导航过程中经常出现的定向移动工况,在没有加载任务的时机恰当的加载了预估放弃指数最小的网格,因而在定向移动中减少了一次应需求加载底层网格的情况,从而降低了数据加载的峰值时间消耗。2、由于本发明为各个比例尺的各个网格单独控制显示对象密度,因而能够确保在各个比例尺、各个区域内的显示内容密度都较为合理,避免了局部过密或过疏的问题发生,从而为用户提供合理的地理信息显示。3、由于本发明结合人眼分辨率确定显示对象的简化参数,对各个网格内的显示对象进行简化处理,因而避免了过压缩或者欠压缩的现象发生,减小了显示引擎的处理负担。本发明可以广泛地应用于各种车载导航系统中,实现地图显示数据的高效率加载。The present invention has the following advantages due to the adoption of the above technical solutions: 1. Because the positioning of the secondary grid index storage structure constructed by the present invention is fast and simple, its cache strategy fully takes into account the directional movement conditions that often occur in the navigation process, When there is no loading task, the grid with the smallest estimated abandonment index is properly loaded, thus reducing the need to load the underlying grid once during directional movement, thereby reducing the peak time consumption of data loading. 2. Since the present invention controls the display object density independently for each grid of each scale, it can ensure that the display content density in each scale and each area is relatively reasonable, avoiding the occurrence of local over-density or over-sparse problems, thereby providing Users provide reasonable geographic information display. 3. Since the present invention determines the simplification parameters of the display objects in combination with the resolution of the human eye, and simplifies the display objects in each grid, the occurrence of over-compression or under-compression is avoided, and the processing burden of the display engine is reduced. The invention can be widely applied in various vehicle navigation systems, and realizes high-efficiency loading of map display data.
附图说明Description of drawings
图1是本发明工作流程图Fig. 1 is a work flow chart of the present invention
图2是本发明数据存储结构示意图Fig. 2 is a schematic diagram of the data storage structure of the present invention
图3是本发明顶层网格的索引和排序示意图Fig. 3 is a schematic diagram of indexing and sorting of the top-level grid of the present invention
图4是本发明缓存加载示意图Fig. 4 is a schematic diagram of cache loading in the present invention
图5是本发明节点不变简化示意图Fig. 5 is a simplified schematic diagram of nodes invariant in the present invention
图6是本发明曲线合并示意图Fig. 6 is a schematic diagram of curve merging in the present invention
具体实施方式Detailed ways
下面结合附图和实施例对本发明进行详细的描述。The present invention will be described in detail below in conjunction with the accompanying drawings and embodiments.
如图1、图2所示,本发明对每一级比例尺地图数据的预处理,都包括以下步骤:As shown in Fig. 1 and Fig. 2, the present invention all comprises the following steps to the preprocessing of each level of scale map data:
1)建立网格索引存储结构;1) Establish grid index storage structure;
2)为各个网格挑选显示对象;2) Select display objects for each grid;
3)为各个网格精简显示对象。3) Thin display objects for each grid.
当完成以上三个步骤后,即可按照步骤1)中建立的网格索引存储结构将各个网格的数据存储为文件,进而能够建立多分辨率的地图显示数据库。After the above three steps are completed, the data of each grid can be stored as a file according to the grid index storage structure established in step 1), and then a multi-resolution map display database can be established.
上述步骤的具体实现方法说明如下:The specific implementation method of the above steps is described as follows:
1)建立网格索引存储结构是对地图划分网格,建立二级网格索引存储结构,并结合预估加载策略,实现数据的快速定位和快速加载,其包括以下步骤:1) Establishing a grid index storage structure is to divide the map into grids, establish a secondary grid index storage structure, and combine the estimated loading strategy to realize fast positioning and fast loading of data, which includes the following steps:
①将每一级比例尺下的地图均划分为两层网格:底层网格和顶层网格,其中,每个底层网格大小与屏幕的大小相等,每一顶层网格包括四个底层网格,也可以包括六个,个数不限于此。① Divide the map at each level of scale into two layers of grids: the bottom grid and the top grid, where the size of each bottom grid is equal to the size of the screen, and each top grid includes four bottom grids , can also include six, the number is not limited to this.
②如图3所示,对由步骤①划分获得的顶层网格,按照已有的技术方案建立网格索引:即对所有的顶层网格按照其经纬度从小到大的顺序依次指定一个网格编号,从而建立起网格编号与经纬度区间一一对应的关系,由此,通过给定地理坐标点的经纬度值,就可以快速定位到其所在的顶层网格,以避免冗余数据的读取。其中,如果给定的地理坐标点恰好处于两个顶层网格的公共边上,则将该点沿着其与屏幕中心点的连线方向向屏幕中心移动一个单位距离e,得到一个新点,将此点所在的顶层网格作为给定地理坐标点所在的顶层网格。②As shown in Figure 3, for the top-level grid obtained by
③对于当前屏幕的四个顶点,分别通过各自的地理坐标经纬度值,根据步骤②建立的网格索引确定所在的顶层网格,并在顶层网格中进一步确定其所在的底层网格;当前屏幕的四个顶点所在的四个底层网格就包含了当前屏幕显示需要的显示数据。③For the four vertices of the current screen, determine the top-level grid where they are located according to the grid index established in
④建立网格缓存:即在缓存中存放若干个底层网格所包含的数据,同时为每一个底层网格设置一个放弃指数,该放弃指数是变量,大小为该底层网格的中心点与屏幕中心点间的距离。其中,放弃指数最大的底层网格数据将最先被缓存管理系统清除出缓存。且为空的缓存单元也设置一放弃指数,其大小设置为一个比其它所有底层网格的放弃指数都大的正值,如100000。④Establish a grid cache: store the data contained in several underlying grids in the cache, and set a abandonment index for each underlying grid at the same time. The abandonment index is a variable whose size is the center point of the underlying grid and the screen The distance between the center points. Among them, the underlying grid data with the largest abandonment index will be cleared out of the cache by the cache management system first. And the cache unit that is empty also sets a abandonment index, and its size is set to a positive value greater than the abandonment index of all other underlying grids, such as 100000.
⑤如图4所示,屏幕每刷新一次,系统更新并记录当前缓存中所有底层网格的放弃指数:⑤As shown in Figure 4, every time the screen is refreshed, the system updates and records the abandonment index of all underlying grids in the current cache:
如果系统发出向缓存中加载一个以上的底层网格的指令,执行步骤⑥;If the system issues an instruction to load more than one underlying grid into the cache, perform step ⑥;
如果系统未发出向缓存中加载底层网格的指令,执行步骤⑦。If the system does not issue an instruction to load the underlying grid into the cache, go to step ⑦.
⑥i)加载一个底层网格,搜索一遍缓存:⑥i) Load an underlying grid and search the cache again:
如果缓存中已经存有所要加载的底层网格,则直接提取该底层网格数据;If the underlying grid to be loaded already exists in the cache, directly extract the underlying grid data;
如果缓存中未存放有所要加载的底层网格,则从文件中读取该底层网格数据,将其放入缓存中,替换当前缓存中放弃指数最大的底层网格。If there is no underlying grid to be loaded in the cache, read the underlying grid data from the file, put it into the cache, and replace the underlying grid with the largest abandonment index in the current cache.
ii)返回步骤i),加载另一个底层网格,直至所有需要加载的底层网格加载完毕。ii) Return to step i), and load another underlying grid until all the underlying grids that need to be loaded are loaded.
⑦i)对当前缓存中的每一个底层网格都搜索一遍它的邻接底层网格,即搜索与该底层网格具有一条重合边的相邻网格,并记录相应的放弃指数。⑦i) For each underlying grid in the current cache, search its adjacent underlying grid, that is, search for an adjacent grid that has a coincident edge with the underlying grid, and record the corresponding abandonment index.
ii)在由步骤i)获得的邻接底层网格中选取放弃指数最小的底层网格,将其数据加载放入缓存,替换步骤⑤中标记的放弃指数最大的底层网格。ii) Select the underlying grid with the smallest abandonment index from the adjacent underlying grids obtained in step i), load its data into the cache, and replace the underlying grid with the largest abandonment index marked in step ⑤.
2)为各个网格挑选显示对象是在给定的曲线密度合理范围内,为各个比例尺下的底层网格挑选显示路段对象,其包括以下步骤:2) Selecting display objects for each grid is to select and display road section objects for the underlying grids under each scale within a reasonable range of given curve density, which includes the following steps:
①为所有的底层网格设定一个曲线密度合理范围;①Set a reasonable range of curve density for all underlying grids;
曲线密度的合理范围是指在一个底层网格内,曲线数量在[50,150]区间内,这个区间通常由实践经验确定。The reasonable range of curve density means that in an underlying grid, the number of curves is in the interval [50, 150], and this interval is usually determined by practical experience.
②根据显示对象的行政等级,对其标注显示等级,例如,国道为最高级别路段显示对象,也可以根据显示对象的其它性质进行分级,不限于此。② According to the administrative level of the display object, mark the display level. For example, the national highway is the highest level road section display object, and it can also be classified according to other properties of the display object, not limited to this.
③对一个底层网格,从显示等级中最高级别开始,由高到低逐级向该底层网格中填充显示对象:③ For an underlying grid, start from the highest level in the display hierarchy, and fill the underlying grid with display objects step by step from high to low:
如果完成一个级别的填充后,该底层网格的曲线密度刚好进入由步骤①给定的曲线密度合理范围,则停止对该底层网格的填充,返回步骤③,对另一个底层网格进行填充,直至所有底层网格填充完毕;If after completing one level of filling, the curve density of the underlying grid just enters the reasonable range of curve density given by
如果完成一个级别的填充后,该底层网格的曲线密度大于由步骤①给定的曲线密度合理范围的最大值,则放弃这个级别的填充,并保留上一级的填充结果作为最终结果,返回步骤③,对另一个底层网格进行填充,直至所有底层网格填充完毕;If after completing a level of filling, the curve density of the underlying grid is greater than the maximum value of the reasonable range of the curve density given by
如果完成一个级别的填充后,该底层网格的曲线密度仍然小于由步骤①给定的曲线密度合理范围的最小值,则继续对这个底层网格进行低一级别的填充。If after one level of filling is completed, the curve density of the underlying grid is still less than the minimum value of the reasonable range of the curve density given by
3)为各个网格精简显示对象是结合人眼分辨率确定显示对象的简化参数,对各个底层网格内的显示对象进行简化处理,以达到减少路段数量,压缩数据量目的,其包括以下步骤:3) Simplifying the display objects for each grid is to determine the simplified parameters of the display objects in combination with the resolution of the human eye, and simplify the display objects in each underlying grid to achieve the purpose of reducing the number of road sections and compressing the amount of data, which includes the following steps :
①采用方向优先法拼接底层网格内首尾相连的路段,以减少显示路段的数量:① Use the direction priority method to splice the end-to-end road sections in the underlying grid to reduce the number of displayed road sections:
规定当两个路段首尾相连,且在连接处所构成的锐角小于给定的角度阈值时,拼接这两个路段。该角度阈值可以设定为30°,其依据是:当角度阈值设置过大时,会使拼接得到的曲线形状过于复杂,不利于绘制;当角度阈值设置过小时,会降低使用上述拼接法减少路段数量的有益效果;实验表明:将角度阈值设为30°可以在两者之间取得较好的平衡效果。It is stipulated that when two road sections are connected end to end, and the acute angle formed at the connection is smaller than a given angle threshold, the two road sections are spliced. The angle threshold can be set to 30°, based on the following: when the angle threshold is set too large, the shape of the spliced curve will be too complex, which is not conducive to drawing; when the angle threshold is set too small, it will reduce The beneficial effect of the number of road segments; experiments show that: setting the angle threshold to 30° can achieve a better balance between the two.
指定原始路段集合为E={Ei},待拓展路段集合为D={Dk},待拓展路段集合的初始状态为空集,i和k为元素下标。Specify the original set of road sections as E={E i }, the set of road sections to be expanded as D={D k }, the initial state of the set of road sections to be expanded is an empty set, and i and k are element subscripts.
进行一轮松弛拼接:首先从原始路段集合E中提取出一条路段Ei,如果待拓展路段集合D中存在可以和Ei拼接的路段Dk,则将Ei和Dk拼接后放至D中,否则,直接把Ei放入D中,然后再从原始路段集合E中提取另一条路段Ei+1继续进行拼接,直到E中所有路段都被取光。Perform a round of loose splicing: first extract a road segment E i from the original road segment set E, if there is a road segment D k that can be spliced with E i in the road segment set D to be expanded, then put E i and D k into D Otherwise, directly put E i into D, and then extract another road segment E i+1 from the original road segment set E to continue splicing until all the road segments in E are taken out.
在执行完一轮松弛拼接后,将获得的待拓展路段集合D作为下一轮松弛拼接的原始路段集合E,开始下一轮松弛拼接,直至没有能够拼接的路段为止。After one round of relaxed splicing is performed, the obtained road segment set D to be expanded is used as the original road segment set E for the next round of relaxed splicing, and the next round of relaxed splicing is started until there is no road segment that can be spliced.
②采用节点不变法简化由步骤①获得的显示结果中的原始折线,以削减路段的冗余形值点,降低不必要的分辨率。其中需要注意的是,如果原始折线拼接处的节点被简化算法删减,则拼接处可能产生和其他路段不连续的现象,影响美观,因此需要在简化完毕后将节点置回。如图5所示,其具体步骤如下:② Use the node invariant method to simplify the original polyline in the display result obtained in
i)从原始折线中找出所有拼接处的节点,记录节点位置。i) Find all spliced nodes from the original polyline, and record the node positions.
ii)对原始折线进行Douglas-Peucker抽稀简化,在此过程中,设置一弦高阈值,凡是折线中弦高小于给定弦高阈值的子段都被简化为直线段;该弦高阈值的设置方法如下:人类视觉在中等亮度,中等对比度的条件下,极限分辨率是1.5’,由此,换算出人眼在屏幕上的分辨极限距离,利用比例尺变换将当前屏幕分辩极限距离转为相应的地理尺度距离,即可作为弦高阈值。ii) Perform Douglas-Peucker thinning and simplification on the original polyline. In this process, a chord height threshold is set, and all sub-sections in the polyline whose chord height is less than the given chord height threshold are simplified to straight line segments; the setting of the chord height threshold The method is as follows: under the conditions of medium brightness and medium contrast, the limit resolution of human vision is 1.5', from this, the resolution limit distance of the human eye on the screen is converted, and the current screen resolution limit distance is converted into the corresponding The geographical scale distance can be used as the chord height threshold.
iii)依据步骤i)记录的节点位置,将所有节点插回到相应的位置。iii) According to the node positions recorded in step i), insert all the nodes back to the corresponding positions.
③如图6所示,采用动态阈值法合并法向距离相近的路段,以进一步降低路段数量:③ As shown in Figure 6, the dynamic threshold method is used to merge road sections with similar normal distances to further reduce the number of road sections:
指定合并前路段集合为F={Fi},合并后路段集合为G={Gk},合并后路段集合的初始状态为空集,合并前路段集合F中待合并的路段为Fi,Pi为Fi上的一个形状点,新分支路段为U,合并后路段集合G中和Pi最近的点为Li;如果Pi和Li两点的距离小于当前动态距离阈值的值,两点的切线角度之差小于当前动态角度阈值的值,两点能够合并。合并的具体过程如下:Designate the road section set before merging as F={F i }, the road section set after merging as G={G k }, the initial state of the road section set after merging is an empty set, and the road section to be merged in the road section set F before merging is F i , P i is a shape point on F i , the new branch road section is U, and the point closest to P i in the merged road section set G is L i ; if the distance between P i and L i is less than the value of the current dynamic distance threshold , the difference between the tangent angles of the two points is less than the value of the current dynamic angle threshold, and the two points can be merged. The specific process of merging is as follows:
i)从合并前路段集合F中找出一待合并的路段Fi;i) Find a road section F i to be merged from the road section set F before merging;
ii)从待合并的路段Fi中找出一个形状点Pi;ii) Find a shape point P i from the road section F i to be merged;
iii)在合并后路段集合G中找出和形状点Pi距离最近的点Li:iii) Find the point L i closest to the shape point P i in the merged road section set G:
如果Pi和Li合并成功,则在新分支路段U尾部添加点Pi,并把该路段U加入合并后路段集合G中,然后再清空新分支路段U;If P i and L i are merged successfully, add point P i at the end of the new branch road section U, and add this road section U to the merged road section set G, and then clear the new branch road section U;
如果Pi和Li合并失败,则只在新分支路段U尾部添加点Pi;If the combination of P i and L i fails, only add point P i at the end of the new branch road section U;
iv)返回步骤ii),从待合并的路段Fi中找出另一个形状点Pi+1,直至处理完待合并的路段Fi上的所有形状点;iv) Return to step ii), find another shape point P i+1 from the road section F i to be merged, until all shape points on the road section F i to be merged are processed;
v)返回步骤i),从合并前路段集合F中找出另一个待合并的路段Fi+1,直至处理完待合并的路段集合F中所有路段,结束。v) Return to step i), find another road segment F i+1 to be merged from the road segment set F before merging, until all road segments in the road segment set F to be merged are processed, and end.
其中,动态距离阈值和动态角度阈值的设置方法如下:Among them, the setting method of dynamic distance threshold and dynamic angle threshold is as follows:
当上一点合并成功时,用于当前判断的距离阈值和角度阈值分别取基准距离阈值和基准角度阈值的110%;When the previous point is merged successfully, the distance threshold and angle threshold used for the current judgment are respectively 110% of the reference distance threshold and the reference angle threshold;
当上一点合并失败时,用于当前判断的距离阈值和角度阈值分别取基准距离阈值和基准角度阈值的90%。When the combination at the previous point fails, the distance threshold and the angle threshold used for the current judgment take 90% of the reference distance threshold and the reference angle threshold respectively.
基准距离阈值的确定方法和步骤②中的弦高阈值确定方法相同;基准角度阈值根据实验经验可以设置为30°。The determination method of the reference distance threshold is the same as that of the chord height threshold in
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201110270946 CN102298640B (en) | 2011-09-14 | 2011-09-14 | Method for preprocessing map display data |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201110270946 CN102298640B (en) | 2011-09-14 | 2011-09-14 | Method for preprocessing map display data |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102298640A CN102298640A (en) | 2011-12-28 |
CN102298640B true CN102298640B (en) | 2013-07-10 |
Family
ID=45359054
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201110270946 Active CN102298640B (en) | 2011-09-14 | 2011-09-14 | Method for preprocessing map display data |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102298640B (en) |
Families Citing this family (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9317527B2 (en) * | 2012-09-26 | 2016-04-19 | Alcatel Lucent | Method and apparatus for region sampling and estimation in location based networks |
CN104077311B (en) | 2013-03-28 | 2017-11-14 | 国际商业机器公司 | Vehicle location indexing means and device |
CN104077326B (en) * | 2013-03-29 | 2019-02-19 | 高德软件有限公司 | A kind of processing method and processing device of road data |
CN105260366A (en) * | 2014-06-10 | 2016-01-20 | 中兴通讯股份有限公司 | Method and system for determining offset distance |
CN104142156A (en) * | 2014-08-26 | 2014-11-12 | 天津市普迅电力信息技术有限公司 | Path navigation method |
CN106153064B (en) * | 2015-04-17 | 2020-04-14 | 高德信息技术有限公司 | Display method and device for intersection |
CN106294407B (en) * | 2015-05-22 | 2019-08-13 | 高德软件有限公司 | A kind of coincidence section determines method and apparatus |
CN105512312A (en) * | 2015-12-11 | 2016-04-20 | 中国航空工业集团公司西安航空计算技术研究所 | Accelerating method for two-dimensional map library |
CN105574194B (en) * | 2015-12-28 | 2018-12-04 | 江苏鸿信系统集成有限公司 | A kind of coordinate points processing method and processing device for electronic map interface |
WO2017117703A1 (en) * | 2016-01-04 | 2017-07-13 | 薛俊华 | Navigation advertisement pushing system based on geographical location |
CN106067072B (en) * | 2016-05-30 | 2020-01-14 | 清华大学 | An adaptive and fast path acquisition method based on a logical road network model |
CN107545012B (en) * | 2016-06-29 | 2020-03-13 | 高德软件有限公司 | Road endpoint angle determination method and device |
CN106649653A (en) * | 2016-12-12 | 2017-05-10 | 中国航空工业集团公司西安航空计算技术研究所 | Preprocessing method for onboard vector map data |
CN108573652B (en) * | 2017-03-09 | 2022-10-14 | 腾讯科技(深圳)有限公司 | Road area display method and device |
CN107358649B (en) * | 2017-06-07 | 2020-11-10 | 腾讯科技(深圳)有限公司 | Processing method and device of terrain file |
CN107766516A (en) * | 2017-10-24 | 2018-03-06 | 浙江工业大学 | A kind of geographical map retained based on border deforms method for visualizing |
CN108540534A (en) * | 2018-03-16 | 2018-09-14 | 青岛海信移动通信技术股份有限公司 | A kind of determination method and device in the full frame region of terminal |
CN110019633B (en) * | 2018-07-20 | 2021-08-10 | 深圳大学 | Line density statistical method and system based on ArcGIS secondary development |
CN110887499B (en) * | 2018-09-11 | 2021-11-02 | 阿里巴巴(中国)有限公司 | Method and terminal for processing road data and interest point data in map |
CN110442575B (en) * | 2019-07-01 | 2023-07-18 | 中山大学 | An index generation method and retrieval method for scientific big data |
CN111627204B (en) * | 2020-03-10 | 2021-08-17 | 蘑菇车联信息科技有限公司 | Path determining method and device, electronic equipment and storage medium |
CN111737392B (en) * | 2020-06-22 | 2024-04-02 | 北京百度网讯科技有限公司 | Method, device, equipment and storage medium for merging building data |
CN112131331B (en) * | 2020-09-24 | 2022-06-03 | 腾讯科技(深圳)有限公司 | Map data processing method, map data processing device, computer equipment and storage medium |
CN112579719B (en) * | 2020-12-18 | 2022-09-06 | 国网福建省电力有限公司经济技术研究院 | High-voltage line multi-loop display method based on power map and storage medium |
CN114048610B (en) * | 2021-11-15 | 2022-08-09 | 中科三清科技有限公司 | Data output method and device |
CN119046601A (en) * | 2024-10-30 | 2024-11-29 | 深圳大学 | Method and system for generating linear density based on length aggregation grid structure |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101630366A (en) * | 2009-07-31 | 2010-01-20 | 中国科学院地理科学与资源研究所 | Method for extracting dynamic inundated area of large numbers of block topographic data, device and system thereof |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8370111B2 (en) * | 2008-03-31 | 2013-02-05 | The Boeing Company | System and method for forming optimized perimeter surveillance |
-
2011
- 2011-09-14 CN CN 201110270946 patent/CN102298640B/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101630366A (en) * | 2009-07-31 | 2010-01-20 | 中国科学院地理科学与资源研究所 | Method for extracting dynamic inundated area of large numbers of block topographic data, device and system thereof |
Non-Patent Citations (2)
Title |
---|
基于分区索引方法的地图快速显示的设计与实现;王轩等;《测绘通报》;20021031;第56-57,61页 * |
王轩等.基于分区索引方法的地图快速显示的设计与实现.《测绘通报》.2002,第56-57,61页. |
Also Published As
Publication number | Publication date |
---|---|
CN102298640A (en) | 2011-12-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102298640B (en) | Method for preprocessing map display data | |
CN103412962A (en) | Storage method and reading method for mass tile data | |
CN102567492B (en) | Method for sea-land vector map data integration and fusion | |
CN104252489B (en) | A method of position character description information is quickly obtained according to longitude and latitude data | |
CN102117500B (en) | Three-dimensional modeling method and system | |
CN113010793A (en) | Method, device, equipment, storage medium and program product for map data processing | |
CN108241712A (en) | A kind of map data processing method and device | |
CN102538754B (en) | Method and equipment for calculating road gradient information | |
CN113240594B (en) | High-quality point cloud completion method based on multiple hierarchies | |
CN101783023B (en) | Method for exchanging AutoCAD (computer-aided design) graphic block with point map symbol based on path | |
CN102521566B (en) | Low-power consumption real-time road automatic identification device for ground autonomous equipment | |
CN110134755A (en) | Map updating method, device, equipment, server and medium | |
CN105956165B (en) | A kind of big file storage organization method of the tile type of three-dimensional modeling data | |
CN115346012A (en) | Intersection surface generation method, apparatus, device, storage medium and program product | |
CN109101743A (en) | A kind of construction method of high-precision road net model | |
CN101561286B (en) | Trans-regional map data loading and displaying method | |
CN110286384B (en) | High-precision map generation system and method based on multi-line laser point cloud polarization representation | |
CN116805355B (en) | A multi-view stereo reconstruction method that resists scene occlusion | |
CN103198111A (en) | Road network matching method facing lightweight terminal | |
CN103793935B (en) | A kind of urban dynamic scene generation method based on BRLO Tree mixing tree constructions | |
CN117115482A (en) | Image local feature matching method based on multi-model fusion multi-thread reasoning | |
CN103426201B (en) | Browsing method based on three-dimensional digital city system magnanimity model data | |
CN114543788B (en) | Multi-layer global perception map construction method and system universal to structural unstructured environment | |
CN104156475A (en) | Geographic information reading method and device | |
CN102117288A (en) | Method and device used for searching modeling data in three-dimensional modeling |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |