CN102252747A - Micro sound pressure sensor with bionic cricket cilia structure and manufacturing method thereof - Google Patents
Micro sound pressure sensor with bionic cricket cilia structure and manufacturing method thereof Download PDFInfo
- Publication number
- CN102252747A CN102252747A CN 201110154934 CN201110154934A CN102252747A CN 102252747 A CN102252747 A CN 102252747A CN 201110154934 CN201110154934 CN 201110154934 CN 201110154934 A CN201110154934 A CN 201110154934A CN 102252747 A CN102252747 A CN 102252747A
- Authority
- CN
- China
- Prior art keywords
- cricket
- silicon wafer
- cilia
- photoresist
- sensitive diaphragm
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 210000004081 cilia Anatomy 0.000 title claims abstract description 37
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 9
- 239000011664 nicotinic acid Substances 0.000 title 1
- 238000001514 detection method Methods 0.000 claims abstract description 23
- 239000011521 glass Substances 0.000 claims abstract description 15
- 239000000758 substrate Substances 0.000 claims abstract description 14
- 238000000034 method Methods 0.000 claims abstract description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 34
- 229910052710 silicon Inorganic materials 0.000 claims description 34
- 239000010703 silicon Substances 0.000 claims description 34
- 229920002120 photoresistant polymer Polymers 0.000 claims description 26
- 238000000206 photolithography Methods 0.000 claims description 12
- 238000005530 etching Methods 0.000 claims description 9
- 229910052751 metal Inorganic materials 0.000 claims description 9
- 239000002184 metal Substances 0.000 claims description 9
- 239000012528 membrane Substances 0.000 claims description 8
- 239000011248 coating agent Substances 0.000 claims description 7
- 238000000576 coating method Methods 0.000 claims description 7
- 239000003990 capacitor Substances 0.000 claims description 3
- 238000006073 displacement reaction Methods 0.000 claims description 3
- 238000004140 cleaning Methods 0.000 claims description 2
- 238000004544 sputter deposition Methods 0.000 claims 1
- 230000005284 excitation Effects 0.000 abstract description 6
- 230000035945 sensitivity Effects 0.000 abstract description 6
- 229920001486 SU-8 photoresist Polymers 0.000 abstract description 3
- 230000001886 ciliary effect Effects 0.000 abstract description 2
- 238000012544 monitoring process Methods 0.000 abstract description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid Substances OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Measuring Fluid Pressure (AREA)
Abstract
本发明公开了一种微型仿蟋蟀纤毛结构声压传感器及其制造方法,属于微机电系统(MEMS)领域。该传感器的蟋蟀纤毛结构1位于敏感膜片2上方,敏感膜片2通过支撑梁3连在环形固定结构4上;敏感膜片2与玻璃基底6上的两个检测电极5形成平板式电容结构。当有外来声音激励作用时,仿蟋蟀纤毛结构1发生弯曲变形,带动敏感膜片2上下位移,使得敏感膜片2与两个检测电极5之间的电容产生变化,以此来检测外来声音激励的声压大小。本发明提出的纤毛结构1具有强度高、深宽比大的优点,克服了现有方法SU-8光刻胶构成的纤毛刚度不足、声传感器灵敏度不足的缺点。该传感器可用于海洋、低空和地面运动目标的监测领域。
The invention discloses a sound pressure sensor with a micro-imitation cricket cilium structure and a manufacturing method thereof, belonging to the field of micro-electromechanical systems (MEMS). The cricket cilia structure 1 of the sensor is located above the sensitive diaphragm 2, and the sensitive diaphragm 2 is connected to the ring-shaped fixed structure 4 through the support beam 3; the sensitive diaphragm 2 and the two detection electrodes 5 on the glass substrate 6 form a flat capacitive structure . When there is external sound excitation, the cricket-like cilia structure 1 is bent and deformed, which drives the sensitive diaphragm 2 to move up and down, so that the capacitance between the sensitive diaphragm 2 and the two detection electrodes 5 changes, so as to detect the external sound excitation sound pressure. The ciliary structure 1 proposed by the present invention has the advantages of high strength and large aspect ratio, and overcomes the disadvantages of insufficient rigidity of cilia and insufficient sensitivity of acoustic sensors formed by SU-8 photoresist in the existing method. The sensor can be used in the monitoring fields of ocean, low-altitude and ground moving targets.
Description
所属领域Field
本发明属于微机电系统(MEMS)领域,尤其涉及一种微型仿蟋蟀纤毛结构声压传感器。The invention belongs to the field of micro-electromechanical systems (MEMS), in particular to a sound pressure sensor with a miniature cricket-like cilia structure.
背景技术 Background technique
声学探测定位技术在海洋、低空和地面运动目标的监测领域有着重要的应用。声压传感器是被动声探测装置中水声信号接收的关键器件,传统机械加工制造的声压传感器体积大,工作频率高,灵敏度低。为了提高目标的探测能力,必须降低声压传感器的工作频率,拓展工作带宽,提高接收灵敏度并减小体积与重量,MEMS技术的发展为声压传感器灵敏度性能的提高和微型化提供了重要的技术手段,增加了单位面积内声压传感器阵列的个数,减小了阵列内声压传感器之间的间距,提高了声压传感器对低频信号的指向性。Acoustic detection and positioning technology has important applications in the monitoring fields of ocean, low-altitude and ground moving targets. The sound pressure sensor is the key device for underwater acoustic signal reception in the passive acoustic detection device. The sound pressure sensor manufactured by traditional machining is large in size, high in operating frequency and low in sensitivity. In order to improve the detection ability of the target, it is necessary to reduce the operating frequency of the sound pressure sensor, expand the working bandwidth, improve the receiving sensitivity and reduce the volume and weight. The development of MEMS technology provides an important technology for the improvement of the sensitivity and miniaturization of the sound pressure sensor. The method increases the number of sound pressure sensor arrays per unit area, reduces the distance between the sound pressure sensors in the array, and improves the directivity of the sound pressure sensors to low-frequency signals.
荷兰特文特大学Krijnen等人研制的仿蟋蟀尾须纤毛结构的声压传感器(MEMS based hairflow-sensors as model systems for acoustic perception studies),采用电容式的检测原理,在敏感膜片上通过两次旋涂SU-8光刻胶、曝光显影后,形成仿蟋蟀纤毛结构,由于其仿蟋蟀纤毛结构采用SU-8光刻胶制作,刚度比较低,致使声压传感器灵敏度不高。The acoustic pressure sensor (MEMS based hairflow-sensors as model systems for acoustic perception studies) developed by Krijnen and others at the University of Twente in the Netherlands, adopts the capacitive detection principle and passes through the sensitive diaphragm twice After spin-coating SU-8 photoresist, exposure and development, a cricket-like cilia structure is formed. Because the cricket-like cilia structure is made of SU-8 photoresist, the stiffness is relatively low, resulting in low sensitivity of the sound pressure sensor.
发明内容 Contents of the invention
为了克服现有仿蟋蟀尾须纤毛结构的声压传感器中纤毛结构的刚度低,灵敏度不高的缺点,同时也为了减小传感器器件的体积,本发明提出了一种新的微型仿蟋蟀纤毛结构声压传感器及其制作方法。In order to overcome the shortcomings of low rigidity and low sensitivity of the cilia structure in the existing sound pressure sensor imitating the cilium structure of the cricket tail, and also to reduce the volume of the sensor device, the present invention proposes a new miniature cricket-like cilia structure Sound pressure sensor and its manufacturing method.
本发明的技术方案是,一种微型仿蟋蟀纤毛结构声压传感器,包括仿蟋蟀纤毛结构1、敏感膜片2、支撑梁3、环形固定结构4、两个检测电极5以及玻璃基底6。仿蟋蟀纤毛结构1位于敏感膜片2的上方并与之连为一体,敏感膜片2通过两个支撑梁3连在环形固定结构4上,且敏感膜片2与环形固定结构4之间存在间隙9;固定结构4与溅射有两个检测电极5的玻璃基底6阳极键合,使敏感膜片2与两个检测电极5之间通过一定间隙形成平板式电容结构,检测敏感膜片2的振动位移。两个检测电极5的金属引线从固定结构4上的导线孔7引出,与外界电源相连。The technical solution of the present invention is a miniature cricket-imitation cilia structure sound pressure sensor, which includes a cricket-
当有外来声音激励作用时,位于敏感膜片2上的仿蟋蟀纤毛结构1发生弯曲变形,带动敏感膜片2产生上下位移,使得敏感膜片2与两个检测电极5之间的电容产生变化,以此来检测外来声音激励的声压大小。When there is external sound excitation, the cricket-
所述微型仿蟋蟀纤毛结构声压传感器的制作方法,包括如下步骤:The manufacturing method of the described miniature imitation cricket cilia structure sound pressure sensor comprises the following steps:
步骤1:选用标准清洗双面抛光硅片,在硅片背面涂覆光刻胶8,光刻,显影,将掩模版上的环形固定结构4转移到硅片背面。Step 1: Select a standard cleaned double-sided polished silicon wafer, apply a
步骤2:高密度等离子体(ICP)刻蚀一定深度硅片背面,形成环形固定结构4、平板电容极板间间距、以及导线孔7,去除光刻胶8。Step 2: Etching the back of the silicon wafer to a certain depth by high-density plasma (ICP) to form a ring-shaped
步骤3:在硅片背面再次涂覆光刻胶8,光刻,显影,将掩模版上的敏感膜片2转移到硅片背面。Step 3: Coating
步骤4:ICP刻蚀硅片背面,形成敏感膜片2下表面,以及敏感膜片2和固定结构4之间的间隙9,并去除光刻胶8。Step 4: ICP etching the back of the silicon wafer to form the lower surface of the
步骤5:在玻璃基底6正面溅射金属,涂光刻胶8,光刻显影,刻蚀金属形成两个检测电极5。Step 5: Sputter metal on the front surface of the
步骤6:将步骤4的硅片背面和步骤5的玻璃基底6正面进行阳极键合。Step 6: Perform anodic bonding of the back side of the silicon wafer in
步骤7:硅片正面上涂覆光刻胶8,光刻,显影,将掩模版上的仿蟋蟀纤毛结构1图形转移到硅片正面。Step 7: Coating
步骤8:ICP刻蚀硅片正面,形成仿蟋蟀纤毛结构1和敏感膜片2上表面,去除光刻胶8,完成微型仿蟋蟀纤毛结构声压传感器的制作。Step 8: ICP etching the front side of the silicon wafer to form the cricket-
附图说明 Description of drawings
图1是本发明提出的微型仿蟋蟀纤毛结构声压传感器三维结构示意图Fig. 1 is the three-dimensional structure schematic diagram of the sound pressure sensor of the miniature imitation cricket cilia structure that the present invention proposes
图2是本发明提出的微型仿蟋蟀纤毛结构声压传感器工艺流程示意图Fig. 2 is the technological process schematic diagram of the miniature imitation cricket cilia structure acoustic pressure sensor that the present invention proposes
图中:1-仿蟋蟀纤毛结构,2-敏感膜片,3-支撑梁,4-环形固定结构,5-两个检测电极,6-玻璃基底,7-导线孔,8-光刻胶,9-间隙In the figure: 1-imitation cricket cilia structure, 2-sensitive diaphragm, 3-support beam, 4-annular fixed structure, 5-two detection electrodes, 6-glass substrate, 7-wire hole, 8-photoresist, 9-gap
具体实施方法Specific implementation method
参阅图1,本实施例中的微型仿蟋蟀纤毛结构声压传感器,包括仿蟋蟀纤毛结构1、敏感膜片2、支撑梁3、固定结构4、两个检测电极5以及玻璃基底6;仿蟋蟀纤毛结构1位于敏感膜片2的上方并与之连为一体,仿蟋蟀纤毛结构1的直径为500nm,长度为10μm;敏感膜片2通过两个支撑梁3连在环形固定结构4上,且敏感膜片2与环形固定结构4之间存在20μm间隙9;环形固定结构4与溅射有两个检测电极5的玻璃基底6阳极键合,使敏感膜片2与两个检测电极5之间通过一定间隙形成平板式电容结构,检测敏感膜片2的振动位移。两个检测电极5的金属引线从固定结构4上的导线孔7引出,与外界电源相连。Referring to Fig. 1, the miniature cricket imitation cricket cilia structure sound pressure sensor in the present embodiment comprises imitation
当有外来声音激励作用时,位于敏感膜片上的仿蟋蟀纤毛结构会发生弯曲变形,带动敏感膜片产生上下位移,使得敏感膜片与玻璃电极之间的电容产生变化,以此来检测外来声音激励的声压大小。When there is external sound excitation, the cricket-like cilia structure on the sensitive diaphragm will bend and deform, driving the sensitive diaphragm to move up and down, causing the capacitance between the sensitive diaphragm and the glass electrode to change, so as to detect the external sound. The sound pressure of the sound excitation.
所述微型仿蟋蟀纤毛结构声压传感器的制作方法,包括如下步骤:The manufacturing method of the described miniature imitation cricket cilia structure sound pressure sensor comprises the following steps:
步骤1:选用<100>晶向,厚度200μm双面抛光硅片。在温度为120℃,体积比为4∶1的98%浓硫酸和30%过氧化氢溶液中沸煮30分钟,然后分别放在碱性过氧化氢溶液(体积比为1∶1∶5的28%氨水、30%过氧化氢和水,75℃)和酸性过氧化氢溶液(体积比为1∶1∶5的36%盐酸、30%过氧化氢和水,75℃)中浸泡10分钟,最后用去离子水将硅片冲洗干净并烘干,完成硅片标准清洗。涂覆光刻胶8,光刻,显影,将掩模版上的环形固定结构4转移到硅片下表面,如图2(a)所示。Step 1: Choose <100> crystal orientation, double-sided polished silicon wafer with a thickness of 200 μm. At a temperature of 120°C, boil in 98% concentrated sulfuric acid and 30% hydrogen peroxide solution with a volume ratio of 4:1 for 30 minutes, and then place them in alkaline hydrogen peroxide solution (with a volume ratio of 1:1:5) Soak in 28% ammonia water, 30% hydrogen peroxide and water, 75°C) and acidic hydrogen peroxide solution (36% hydrochloric acid, 30% hydrogen peroxide and water, 75°C with a volume ratio of 1:1:5, 75°C) for 10 minutes , and finally rinse the silicon wafer with deionized water and dry it to complete the standard cleaning of the silicon wafer. Coating
步骤2:以光刻胶8为掩膜,高密度等离子体(ICP)刻蚀硅片背面,刻蚀深度为5μm,形成环形固定结构4,以及导线孔7,此时平板电容上下极板间间距即为5μm,最后去除光刻胶8,如图2(b)。Step 2: Using the
步骤3:在硅片背面再次涂覆光刻胶8,光刻,显影,将掩模版上的敏感膜片2转移到硅片背面,如图2(c)。Step 3: Apply
步骤4:以光刻胶8为掩膜,ICP刻蚀硅片背面,刻蚀深度为3μm,形成敏感膜片2和固定结构4之间的间隙9,以及敏感膜片2下表面,此时敏感膜片2的厚度即为3μm,最后去除光刻胶8,如图2(d)。Step 4: Using the
步骤5:在玻璃基底6上表面溅射300nm金属铝,涂光刻胶8,光刻,显影,以光刻胶8为掩膜,刻蚀金属铝形成两个检测电极5,如图2(e)。Step 5: Sputter 300nm metal aluminum on the upper surface of the
步骤6:将步骤4的硅片背面和步骤5的玻璃基底6正面进行阳极键合,如图2(f)。Step 6: Perform anodic bonding of the back side of the silicon wafer in
步骤7:硅片正面上涂覆光刻胶8,光刻,显影,将掩模版上的仿蟋蟀纤毛结构1图形转移到硅片正面,如图2(g)。Step 7: Coating
步骤8:以光刻胶8为掩膜,ICP刻蚀硅片正面,刻蚀深度为195μm,形成仿蟋蟀纤毛结构1和敏感膜片2上表面,纤毛结构1长度为195μm,敏感膜片2厚度为5μm,最后去除光刻胶8,完成微型仿蟋蟀纤毛结构声压传感器的制作,如图2(h)。Step 8: Using the
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201110154934 CN102252747A (en) | 2011-06-09 | 2011-06-09 | Micro sound pressure sensor with bionic cricket cilia structure and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201110154934 CN102252747A (en) | 2011-06-09 | 2011-06-09 | Micro sound pressure sensor with bionic cricket cilia structure and manufacturing method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102252747A true CN102252747A (en) | 2011-11-23 |
Family
ID=44980151
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201110154934 Pending CN102252747A (en) | 2011-06-09 | 2011-06-09 | Micro sound pressure sensor with bionic cricket cilia structure and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102252747A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102620814A (en) * | 2012-03-30 | 2012-08-01 | 中北大学 | Orange-peel encapsulating structure for bionic vector hydrophone of micro-electro-mechanical system |
CN104764521A (en) * | 2015-03-20 | 2015-07-08 | 西北工业大学 | High-sensitivity micro-vibration detecting method |
CN108069385A (en) * | 2017-11-30 | 2018-05-25 | 中国电子科技集团公司第三研究所 | A kind of particle plane vibration speed measurement sensitive structure and preparation method |
CN109060108A (en) * | 2018-07-02 | 2018-12-21 | 中国电子科技集团公司第三研究所 | A kind of low frequency sound field particle vibration velocity sensitive structure and preparation method |
CN111595381A (en) * | 2020-05-29 | 2020-08-28 | 上海交通大学 | A bionic ciliary capacitive microsensor with back leads and a preparation method thereof |
CN111609887A (en) * | 2020-05-29 | 2020-09-01 | 上海交通大学 | A kind of flexible polymer closed membrane biomimetic cilia microsensor and preparation method thereof |
CN111762751A (en) * | 2020-07-06 | 2020-10-13 | 瑞声声学科技(深圳)有限公司 | MEMS conductive member and preparation method of conductive coating |
CN112978670A (en) * | 2021-02-19 | 2021-06-18 | 上海交通大学 | Torsion type bionic cilium flow velocity sensor device |
CN113029321A (en) * | 2021-02-26 | 2021-06-25 | 中国兵器工业集团第二一四研究所苏州研发中心 | Capacitive MEMS vector acoustic wave sensor capable of inhibiting vibration interference and processing method thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1696639A (en) * | 2005-04-20 | 2005-11-16 | 中国科学院上海微系统与信息技术研究所 | A micro-enrichment chip for biological samples and its manufacturing method |
US20080072683A1 (en) * | 2006-06-02 | 2008-03-27 | The Board Of Trustees Of The University Of Illinois | Micromachined artificial haircell |
-
2011
- 2011-06-09 CN CN 201110154934 patent/CN102252747A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1696639A (en) * | 2005-04-20 | 2005-11-16 | 中国科学院上海微系统与信息技术研究所 | A micro-enrichment chip for biological samples and its manufacturing method |
US20080072683A1 (en) * | 2006-06-02 | 2008-03-27 | The Board Of Trustees Of The University Of Illinois | Micromachined artificial haircell |
Non-Patent Citations (2)
Title |
---|
《IEEE SENSORS 2007 CONFERENCE》 20071231 Remco J.Wiegerink et al. Biomimetic Flow-Sensor Arrays Based on the Filiform Hairs on the Cerci of Crickets 1073-1076 1-2 , * |
《IEEE》 20091231 C.M. Bruinink et al. Advancements in Technology and Design of Biomimetic Flow-Sensor Arrays 152-155 1-2 , * |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102620814A (en) * | 2012-03-30 | 2012-08-01 | 中北大学 | Orange-peel encapsulating structure for bionic vector hydrophone of micro-electro-mechanical system |
CN102620814B (en) * | 2012-03-30 | 2013-10-30 | 中北大学 | Orange-peel encapsulating structure for bionic vector hydrophone of micro-electro-mechanical system |
CN104764521A (en) * | 2015-03-20 | 2015-07-08 | 西北工业大学 | High-sensitivity micro-vibration detecting method |
CN104764521B (en) * | 2015-03-20 | 2017-12-05 | 西北工业大学 | A kind of high sensitivity micro-vibration detection method |
CN108069385A (en) * | 2017-11-30 | 2018-05-25 | 中国电子科技集团公司第三研究所 | A kind of particle plane vibration speed measurement sensitive structure and preparation method |
CN108069385B (en) * | 2017-11-30 | 2019-08-23 | 中国电子科技集团公司第三研究所 | A kind of particle plane vibration speed measurement sensitive structure and preparation method |
CN109060108A (en) * | 2018-07-02 | 2018-12-21 | 中国电子科技集团公司第三研究所 | A kind of low frequency sound field particle vibration velocity sensitive structure and preparation method |
CN109060108B (en) * | 2018-07-02 | 2020-11-06 | 中国电子科技集团公司第三研究所 | Low-frequency sound field particle vibration velocity sensitive structure and preparation method thereof |
CN111609887A (en) * | 2020-05-29 | 2020-09-01 | 上海交通大学 | A kind of flexible polymer closed membrane biomimetic cilia microsensor and preparation method thereof |
CN111595381A (en) * | 2020-05-29 | 2020-08-28 | 上海交通大学 | A bionic ciliary capacitive microsensor with back leads and a preparation method thereof |
CN111762751A (en) * | 2020-07-06 | 2020-10-13 | 瑞声声学科技(深圳)有限公司 | MEMS conductive member and preparation method of conductive coating |
WO2022006957A1 (en) * | 2020-07-06 | 2022-01-13 | 瑞声声学科技(深圳)有限公司 | Mems conductive member and preparation method for conductive coatings |
CN112978670A (en) * | 2021-02-19 | 2021-06-18 | 上海交通大学 | Torsion type bionic cilium flow velocity sensor device |
CN112978670B (en) * | 2021-02-19 | 2023-12-26 | 上海交通大学 | Torsion bionic cilia flow velocity sensor device |
CN113029321A (en) * | 2021-02-26 | 2021-06-25 | 中国兵器工业集团第二一四研究所苏州研发中心 | Capacitive MEMS vector acoustic wave sensor capable of inhibiting vibration interference and processing method thereof |
CN113029321B (en) * | 2021-02-26 | 2023-08-04 | 中国兵器工业集团第二一四研究所苏州研发中心 | Capacitive MEMS vector acoustic wave sensor capable of inhibiting vibration interference and processing method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102252747A (en) | Micro sound pressure sensor with bionic cricket cilia structure and manufacturing method thereof | |
CN103234567B (en) | MEMS (micro-electromechanical systems) capacitive ultrasonic sensor on basis of anodic bonding technology | |
CN105413997B (en) | Flexibility capacitance type micromachined ultrasonic transducer and preparation method thereof | |
CN104121984B (en) | A kind of high-sensitivity resonance formula MEMS vector hydrophone structure | |
CN101835079B (en) | Capacitance type minitype silicon microphone and preparation method thereof | |
CN101352710B (en) | Thin film piezoelectric ultrasonic transducer | |
CN205199868U (en) | Flexibility capacitanc microfabrication ultrasonic transducer | |
CN113125865B (en) | Vibrating capacitive miniature electric field sensor and its preparation method, electric field sensor | |
CN101844130A (en) | Array silicon micro-ultrasonic transducer and manufacturing method thereof | |
CN101472212B (en) | Post-CMOS capacitance silicon-based micro-microphone and preparation method thereof | |
CN101267689A (en) | Microphone chip of capacitance type miniature microphone | |
CN105716705B (en) | Multiple stress concentration formula MEMS bionic hydrophones | |
CN105578368A (en) | Electret capacitive ultrasonic sensor and preparation method thereof | |
CN105540528A (en) | MEMS (Micro-Electromechanical System) capacitive ultrasonic sensor and manufacturing method thereof | |
WO2014044016A1 (en) | Accelerometer and manufacturing process thereof | |
CN104655261A (en) | Capacitive ultrasonic sensor and manufacturing method thereof | |
WO2018040259A1 (en) | Sensitive membrane and mems microphone | |
CN105486399A (en) | Micro-capacitance ultrasonic transducer for distance measurement and imaging, and preparation method thereof | |
CN109596208B (en) | MEMS piezoelectric vector hydrophone with U-shaped groove cantilever beam structure and preparation method thereof | |
CN107511317B (en) | Piezoelectric ultrasonic transducer and preparation method thereof | |
CN105606201B (en) | Combined type MEMS bionic hydrophones | |
CN102175305B (en) | A Monolithic Integrated 3D Vector Vibration Sensor | |
CN106862045A (en) | Receive and dispatch microelectromechanical ultrasound energy converter planar battle array probe of performance balance and preparation method thereof | |
CN102508203A (en) | Novel MEMS (microelectromechanical systems) bionic acoustic vector sensor and manufacturing method thereof | |
CN201079775Y (en) | Silicon micro-piezoelectricity ultrasonic transducer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20111123 |