CN102250128B - Organometallic compound sensing material and preparation and application thereof - Google Patents
Organometallic compound sensing material and preparation and application thereof Download PDFInfo
- Publication number
- CN102250128B CN102250128B CN 201010176603 CN201010176603A CN102250128B CN 102250128 B CN102250128 B CN 102250128B CN 201010176603 CN201010176603 CN 201010176603 CN 201010176603 A CN201010176603 A CN 201010176603A CN 102250128 B CN102250128 B CN 102250128B
- Authority
- CN
- China
- Prior art keywords
- metal
- organic compound
- solvent
- carbon dioxide
- sensing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 150000002902 organometallic compounds Chemical class 0.000 title claims abstract description 30
- 239000011540 sensing material Substances 0.000 title claims abstract description 12
- 238000002360 preparation method Methods 0.000 title claims abstract description 10
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims abstract description 42
- 239000002904 solvent Substances 0.000 claims abstract description 29
- 239000001569 carbon dioxide Substances 0.000 claims abstract description 21
- 229910002092 carbon dioxide Inorganic materials 0.000 claims abstract description 21
- 239000013078 crystal Substances 0.000 claims abstract description 13
- 239000000463 material Substances 0.000 claims abstract description 11
- 150000001875 compounds Chemical class 0.000 claims abstract description 9
- ABMFBCRYHDZLRD-UHFFFAOYSA-N naphthalene-1,4-dicarboxylic acid Chemical compound C1=CC=C2C(C(=O)O)=CC=C(C(O)=O)C2=C1 ABMFBCRYHDZLRD-UHFFFAOYSA-N 0.000 claims abstract description 7
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims abstract description 5
- 239000012621 metal-organic framework Substances 0.000 claims abstract description 5
- 229910052744 lithium Inorganic materials 0.000 claims abstract description 4
- 239000011800 void material Substances 0.000 claims abstract description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 15
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-dimethylformamide Substances CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 15
- 238000001514 detection method Methods 0.000 claims description 10
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 claims description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 10
- 229910052751 metal Inorganic materials 0.000 claims description 9
- 239000002184 metal Substances 0.000 claims description 9
- 238000001179 sorption measurement Methods 0.000 claims description 7
- 238000006243 chemical reaction Methods 0.000 claims description 6
- 239000003960 organic solvent Substances 0.000 claims description 4
- 230000035484 reaction time Effects 0.000 claims description 4
- 238000004729 solvothermal method Methods 0.000 claims description 4
- 229910006715 Li—O Inorganic materials 0.000 claims description 2
- 239000002253 acid Substances 0.000 claims description 2
- 150000001768 cations Chemical class 0.000 claims description 2
- 238000001035 drying Methods 0.000 claims description 2
- 150000005837 radical ions Chemical class 0.000 claims description 2
- 230000004044 response Effects 0.000 abstract description 12
- 230000035945 sensitivity Effects 0.000 abstract description 4
- 230000008929 regeneration Effects 0.000 abstract description 3
- 238000011069 regeneration method Methods 0.000 abstract description 3
- 229910003002 lithium salt Inorganic materials 0.000 abstract description 2
- 159000000002 lithium salts Chemical class 0.000 abstract description 2
- 238000003380 quartz crystal microbalance Methods 0.000 description 16
- 235000012431 wafers Nutrition 0.000 description 10
- 230000008859 change Effects 0.000 description 8
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 238000003786 synthesis reaction Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- 239000013256 coordination polymer Substances 0.000 description 3
- 229920001795 coordination polymer Polymers 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 239000003446 ligand Substances 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 3
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 2
- PHFQLYPOURZARY-UHFFFAOYSA-N chromium trinitrate Chemical compound [Cr+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O PHFQLYPOURZARY-UHFFFAOYSA-N 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 238000003795 desorption Methods 0.000 description 2
- 238000001027 hydrothermal synthesis Methods 0.000 description 2
- 229910017053 inorganic salt Inorganic materials 0.000 description 2
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 2
- 238000003760 magnetic stirring Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 238000011056 performance test Methods 0.000 description 2
- -1 polytetrafluoroethylene Polymers 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 229910052761 rare earth metal Inorganic materials 0.000 description 2
- 150000002910 rare earth metals Chemical class 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- 150000003624 transition metals Chemical class 0.000 description 2
- ONDPHDOFVYQSGI-UHFFFAOYSA-N zinc nitrate Chemical compound [Zn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ONDPHDOFVYQSGI-UHFFFAOYSA-N 0.000 description 2
- BNGXYYYYKUGPPF-UHFFFAOYSA-M (3-methylphenyl)methyl-triphenylphosphanium;chloride Chemical compound [Cl-].CC1=CC=CC(C[P+](C=2C=CC=CC=2)(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 BNGXYYYYKUGPPF-UHFFFAOYSA-M 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- 239000013132 MOF-5 Substances 0.000 description 1
- 229910021586 Nickel(II) chloride Inorganic materials 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical group OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- MHCFAGZWMAWTNR-UHFFFAOYSA-M lithium perchlorate Chemical compound [Li+].[O-]Cl(=O)(=O)=O MHCFAGZWMAWTNR-UHFFFAOYSA-M 0.000 description 1
- 229910001486 lithium perchlorate Inorganic materials 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- QMMRZOWCJAIUJA-UHFFFAOYSA-L nickel dichloride Chemical compound Cl[Ni]Cl QMMRZOWCJAIUJA-UHFFFAOYSA-L 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000001338 self-assembly Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000011232 storage material Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 150000003751 zinc Chemical class 0.000 description 1
Images
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
本发明涉及一种金属有机化合物传感材料及其制备和应用,金属有机化合物是由锂盐和1,4-萘二甲酸配位形成的金属有机骨架化合物,是由二维的层状结构堆积成的无线扩展的三维结构,属于P2(1)/c空间群,是单斜晶系;其结构式为Li2(1,4-ndc)(DMF),该晶体的分子式为C15H13Li2NO5,锂的配位是一个扭曲的四面体构型;该化合物的溶剂可达的空自由体积占总体积的3.9%。本发明制得的材料具有良好的溶剂分子及二氧化碳传感性能,在常温常压的条件下对不同浓度的溶剂分子及二氧化碳有响应规律,且灵敏度高,选择性好,性能稳定,易再生。The invention relates to a metal-organic compound sensing material and its preparation and application. The metal-organic compound is a metal-organic framework compound formed by the coordination of lithium salt and 1,4-naphthalene dicarboxylic acid, and is composed of a two-dimensional layered structure. The wireless extended three-dimensional structure belongs to the P2(1)/c space group and is a monoclinic crystal system; its structural formula is Li 2 (1,4-ndc)(DMF), and the molecular formula of the crystal is C 15 H 13 Li 2 NO 5 , the coordination of lithium is a distorted tetrahedral configuration; the solvent-accessible void free volume of this compound accounts for 3.9% of the total volume. The material prepared by the invention has good sensing performance of solvent molecules and carbon dioxide, has regular response to solvent molecules and carbon dioxide of different concentrations under normal temperature and normal pressure conditions, and has high sensitivity, good selectivity, stable performance and easy regeneration.
Description
技术领域 technical field
本发明涉及一种金属有机化合物的制备方法及对溶剂分子和二氧化碳的传感性能,具体说的是通过控制合成条件制备金属有机化合物,并具有很好的对溶剂分子及二氧化碳的传感性能。The invention relates to a preparation method of a metal organic compound and its sensing performance to solvent molecules and carbon dioxide. Specifically, the metal organic compound is prepared by controlling synthesis conditions, and has good sensing performance to solvent molecules and carbon dioxide.
背景技术 Background technique
金属有机化合物,通常指有机分子配体与金属离子通过自组装形成的具有周期性网络结构的金属有机骨架晶体材料。其晶体结构由于金属与配体的配位模式的不同而呈现不同的拓扑结构。这种材料在空间上形成的一维、二维或三维具有无限网络结构。由于其具有独特的孔结构、较大的比表面积和选择性吸附小分子等特点,使其研究受到各国研究者的高度重视,在最近十年取得了迅猛发展。具有代表性的工作是O.M.Yaghi小组在1999年“Nature”杂志中报道的以对苯二甲酸为配体的配位聚合物MOF-5(HailianLi,Mohamed Eddaoudi,M.O′Keeffe,O.M.Yaghi,Nature,1999,402,6759,276),以该配合物的结构为基础,Yaghi研究小组选取了锌盐与各种刚性的芳香羧酸桥联配体作用,从而构筑出一系列具有不同大小的孔道,在储存气体(特别是储存氢气)、分离气体、催化、非线性光学、磁学等方面有着潜在的应用前景。Metal-organic compounds generally refer to metal-organic framework crystal materials with periodic network structures formed by self-assembly of organic molecular ligands and metal ions. Its crystal structure exhibits different topologies due to the different coordination modes of metals and ligands. The one-dimensional, two-dimensional or three-dimensional space formed by this material has an infinite network structure. Due to its unique pore structure, large specific surface area and selective adsorption of small molecules, its research has been highly valued by researchers from all over the world, and has achieved rapid development in the last ten years. The representative work is the coordination polymer MOF-5 (HailianLi, Mohamed Eddaoudi, M.O'Keeffe, O.M.Yaghi, Nature, 1999, 402, 6759, 276), based on the structure of the complex, the Yaghi research group selected zinc salts to interact with various rigid aromatic carboxylic acid bridging ligands to construct a series of pores with different sizes. It has potential applications in gas storage (especially hydrogen storage), gas separation, catalysis, nonlinear optics, magnetism, etc.
石英晶体微天平QCM(Quartz Crystal Microbalance)是由AT切石英晶体片和镀在其上下表面的金属电极构成的一种谐振式传感器。QCM作为微质量传感器具有结构简单、成本低、灵敏度高、测量精度可以达到纳克量级的优点,被广泛应用于各个科学领域中,用以进行气体、液体的成分分析以及微质量的测量、薄膜厚度的检测等。将具有一定选择性吸附能力的多孔金属有机化合物修饰在石英晶体微天平(QCM)的晶片表面,通过检测材料对不同物质的吸附能力引起的频率变化情况,可以定性及定量的在线监测被吸附物质在一定范围内的浓度范围变化。目前国际上利用金属有机化合物作为化学传感器的研究报道很少。复旦大学的孙大林研究小组成功的利用了QCM进行了金属有机络合物储氢性能的测定(陈国荣,孙大林,徐华华,曹冠英,纳米金属有机络合物贮氢材料及其制备方法,专利公开号:CN1546495);大连化物所的孙立贤小组首次将QCM应用于金属有机化合物的传感方面(Ying-Ya Liu,Jian Zhang,Fen Xu,Li-Xian Sun,Tao Zhang,Wan-Sheng You,Yi Zhao,Julan Zeng,Zhong Cao,Daowu Yang,CrystalGrowth&Design,2008,8,3127)。目前国际上合成的金属有机化合物多是通过过渡金属和稀土金属配位合成的,而碱金属和碱土金属配位聚合物的研究很少,但是轻质金属的配位聚合物的配位形式不同于传统的过渡和稀土金属,可能构筑出新颖的拓扑结构;而且轻质金属可以定向设计合成出轻质的金属有机骨架,在气体存储等各方面会有很大的优势。Quartz Crystal Microbalance QCM (Quartz Crystal Microbalance) is a resonant sensor composed of an AT-cut quartz crystal plate and metal electrodes plated on its upper and lower surfaces. As a micro-mass sensor, QCM has the advantages of simple structure, low cost, high sensitivity, and measurement accuracy of nanogram level. It is widely used in various scientific fields for composition analysis of gases and liquids and measurement of micro-mass. Detection of film thickness, etc. The porous metal-organic compound with a certain selective adsorption capacity is modified on the surface of the quartz crystal microbalance (QCM), and the adsorbed substance can be monitored qualitatively and quantitatively online by detecting the frequency change caused by the adsorption capacity of the material to different substances The concentration range varies within a certain range. At present, there are few research reports on the use of metal-organic compounds as chemical sensors in the world. Sun Dalin's research group at Fudan University successfully used QCM to measure the hydrogen storage properties of metal-organic complexes (Chen Guorong, Sun Dalin, Xu Huahua, Cao Guanying, Nano-metal-organic complex hydrogen storage materials and their preparation methods, patent publication No.: CN1546495); Sun Lixian's group of Dalian Institute of Chemical Physics applied QCM to the sensing of metal organic compounds for the first time (Ying-Ya Liu, Jian Zhang, Fen Xu, Li-Xian Sun, Tao Zhang, Wan-Sheng You, Yi Zhao , Julan Zeng, Zhong Cao, Daowu Yang, Crystal Growth & Design, 2008, 8, 3127). At present, most of the metal-organic compounds synthesized in the world are synthesized by the coordination of transition metals and rare earth metals, while there are few studies on the coordination polymers of alkali metals and alkaline earth metals, but the coordination forms of the coordination polymers of light metals are different. Compared with traditional transition and rare earth metals, it is possible to construct novel topological structures; and light metals can be directional designed and synthesized into lightweight metal-organic frameworks, which will have great advantages in gas storage and other aspects.
我们通过溶剂热法合成出了锂的金属有机化合物,分子式是Li2(1,4-ndc)(DMF),并研究了它对于不同的溶剂分子及二氧化碳的传感性能。We synthesized a lithium metal organic compound with the molecular formula Li 2 (1,4-ndc)(DMF) by a solvothermal method, and studied its sensing properties for different solvent molecules and carbon dioxide.
发明内容 Contents of the invention
本发明的目的在于提供一种金属有机化合物传感材料及其制备和应用,其具有良好的溶剂分子及二氧化碳的传感性能。The object of the present invention is to provide a metal organic compound sensing material and its preparation and application, which has good sensing properties of solvent molecules and carbon dioxide.
为达到上述目的,本发明采用的技术方案如下:In order to achieve the above object, the technical scheme adopted in the present invention is as follows:
金属有机化合物是由锂盐和1,4-萘二甲酸配位形成的新型金属有机骨架化合物,是由二维的层状结构堆积成的无线扩展的三维结构,属于P2(1)/c空间群,是单斜晶系。其结构式为Li2(1,4-ndc)(DMF),其结构的确定通过在Bruker Samrt APEX II X射线单晶衍射仪上测试,结果表明,该晶体的分子式为C15H13Li2NO5,晶胞参数a=10.354b=15.630c=9.939β=111.999°,晶胞体积为1491.4结构中含有两个晶体学独立的四配位的锂原子,Li-O的键长在1.881~2.061之间,所以锂的配位是一个扭曲的四面体构型。由Platon软件计算得该化合物的溶剂可达的空自由体积占总体积的3.9%。Metal-organic compounds are new metal-organic framework compounds formed by the coordination of lithium salts and 1,4-naphthalene dicarboxylic acid. It is a wirelessly extended three-dimensional structure formed by stacking two-dimensional layered structures, belonging to the P2(1)/c space group, is a monoclinic crystal system. Its structural formula is Li 2 (1,4-ndc) (DMF), and its structure is determined by testing on Bruker Samrt APEX II X-ray single crystal diffractometer. The results show that the molecular formula of the crystal is C 15 H 13 Li 2 NO 5 , unit cell parameter a=10.354 b=15.630 c=9.939 β=111.999°, the unit cell volume is 1491.4 The structure contains two crystallographically independent four-coordinated lithium atoms, and the bond length of Li-O is between 1.881 and 2.061 Between, so the coordination of lithium is a distorted tetrahedral configuration. Calculated by Platon software, the solvent accessible void free volume of this compound accounts for 3.9% of the total volume.
金属有机化合物传感材料,可按如下步骤制备:The metal organic compound sensing material can be prepared according to the following steps:
1)水热或溶剂热合成:将金属无机盐和有机羧酸按照不同的配比溶解于水或有机溶剂中,在不同的反应温度,不同的晶化反应时间下得到金属有机化合物;1) Hydrothermal or solvothermal synthesis: metal inorganic salts and organic carboxylic acids are dissolved in water or organic solvents according to different proportions, and metal organic compounds are obtained at different reaction temperatures and different crystallization reaction times;
金属无机盐与有机羧酸按金属阳离子与酸根离子化学计量比为1.1~3.0;反应温度是60~160℃,晶化反应时间为24~72小时;The stoichiometric ratio of metal inorganic salt and organic carboxylic acid is 1.1-3.0 according to metal cation and acid radical ion; the reaction temperature is 60-160°C, and the crystallization reaction time is 24-72 hours;
2)将产物收集,抽滤、用水或有机溶剂洗涤、在30~150℃真空干燥,制得具有传感性能的金属有机化合物材料。2) Collect the product, filter it with suction, wash it with water or an organic solvent, and dry it in vacuum at 30-150° C. to prepare a metal-organic compound material with sensing properties.
所述步骤1)中金属无机盐为氯化镍、氯化锂、硝酸铬、硝酸锌、高氯酸锂或硝酸铝;有机酸为甲酸、草酸、间苯二甲酸、对苯二甲酸或1,4-萘二甲酸。有机溶剂为N,N’-二甲基甲酰胺、1.4-二氧六环、乙醇、四氢呋喃或甲醇。The metal inorganic salt in the step 1) is nickel chloride, lithium chloride, chromium nitrate, zinc nitrate, lithium perchlorate or aluminum nitrate; the organic acid is formic acid, oxalic acid, isophthalic acid, terephthalic acid or 1 , 4-naphthalene dicarboxylic acid. The organic solvent is N, N'-dimethylformamide, 1.4-dioxane, ethanol, tetrahydrofuran or methanol.
步骤2)的干燥时间在2~24小时可调。The drying time of step 2) is adjustable from 2 to 24 hours.
所述金属有机化合物传感材料具有良好的溶剂分子及二氧化碳传感性能,可用于溶剂分子或二氧化碳的吸附检测;所述溶剂分子为水或乙二醇。The metal organic compound sensing material has good sensing performance for solvent molecules and carbon dioxide, and can be used for the adsorption detection of solvent molecules or carbon dioxide; the solvent molecules are water or ethylene glycol.
对所述传感材料的传感性能测试是在Maxtek公司石英晶体微天平(QCM:Quartz Crystal Microbalance)上进行的,具体操作过程为:The sensing performance test of the sensing material is carried out on a Maxtek company quartz crystal microbalance (QCM: Quartz Crystal Microbalance), and the specific operation process is:
1)称取0.005-0.05g左右样品,放入10-50ml溶剂中,在超声中振荡1~2小时,样品充分分散在溶剂中。溶剂为水、N,N’-二甲基甲酰胺、乙醇或甲醇;1) Weigh about 0.005-0.05g of sample, put it into 10-50ml of solvent, vibrate in ultrasonic for 1-2 hours, and the sample is fully dispersed in the solvent. The solvent is water, N, N'-dimethylformamide, ethanol or methanol;
2)取3-25μl超声分散的溶液滴加到晶片表面,加热蒸发溶剂,得到修饰的QCM晶片。2) Take 3-25 μl of the ultrasonically dispersed solution and drop it on the surface of the wafer, heat and evaporate the solvent to obtain a modified QCM wafer.
3)将晶片置于0.5L的密闭检测池中进行传感性能的测试,用计算机监控晶片的频率变化进而得知材料对溶剂分子及二氧化碳的传感性能(吸附、脱附性能)。3) Put the wafer in a 0.5L airtight detection cell to test the sensing performance, monitor the frequency change of the wafer with a computer to know the sensing performance (adsorption and desorption performance) of the material to solvent molecules and carbon dioxide.
本发明所提供的传感材料及制备方法具有如下优点:The sensing material and preparation method provided by the present invention have the following advantages:
1.合成简单,成本较低。采用水热或溶剂热法合成,可以在短时间内得到具有较高产率的产物。1. The synthesis is simple and the cost is low. By adopting hydrothermal or solvothermal synthesis, the product with higher yield can be obtained in a short time.
2.通过控制合成条件可以制备化合物。同样的反应物,在一定的范围内改变反应温度、反应时间、反应物的比例、溶剂等条件可以得到相同的化合物。2. Compounds can be prepared by controlling the synthesis conditions. For the same reactant, the same compound can be obtained by changing the reaction temperature, reaction time, ratio of reactant, solvent and other conditions within a certain range.
3.对于不同的溶剂分子具有选择性的传感效应,而且相当灵敏,不同浓度的溶剂分子对应着晶片的频率变化不同,可通过晶片频率的变化来判断气氛里溶剂分子的含量,且重现性好。3. It has selective sensing effect for different solvent molecules, and is quite sensitive. Different concentrations of solvent molecules correspond to different frequency changes of the chip. The content of solvent molecules in the atmosphere can be judged by the change of chip frequency, and reproduce Good sex.
4.在常温下可逆的吸附、脱附二氧化碳气体,可做二氧化碳的传感器。4. Reversible adsorption and desorption of carbon dioxide gas at room temperature, can be used as a carbon dioxide sensor.
附图说明 Description of drawings
图1为本发明的具体实施例1的金属有机化合物修饰的QCM对不同浓度的水响应频率变化效果示意图;Fig. 1 is the schematic diagram of the effect of the QCM modified by the metal organic compound of the specific embodiment 1 of the present invention on the response frequency change effect of different concentrations of water;
图2为本发明的具体实施例1的金属有机化合物修饰的QCM对不同浓度的乙二醇响应频率变化效果示意图。Fig. 2 is a schematic diagram of the effect of the QCM modified by the metal organic compound in the specific example 1 of the present invention on the response frequency change of different concentrations of ethylene glycol.
图3为本发明的具体实施例1的金属有机化合物修饰的QCM对不同浓度的二氧化碳响应频率变化效果示意图。Fig. 3 is a schematic diagram showing the effect of the metal organic compound modified QCM on the response frequency change of different concentrations of carbon dioxide according to the specific example 1 of the present invention.
图4为本发明的具体实施例1的金属有机化合物的a轴向堆积图。可看到化合物是二维层状结构,层与层之间的DMF和萘环存在C-H...π相互作用。Fig. 4 is the a-axis stacking diagram of the metal organic compound of specific example 1 of the present invention. It can be seen that the compound is a two-dimensional layered structure, and there are C-H...π interactions between the DMF and the naphthalene ring between the layers.
图5为本发明的具体实施例2的金属有机化合物与具体实施例1及单晶数据模拟的X射线衍射谱图。可看到具体实施例1和2的衍射峰与模拟的数据一致,说明具体实施例1和2为同一种物质。Fig. 5 is the X-ray diffraction spectrum of the metal organic compound of the
具体实施方式 Detailed ways
本发明制备工艺简单,成本低,能够在温和条件下制备出一类新型的金属有机化合物。制得的材料具有良好的溶剂分子及二氧化碳传感性能,在常温常压的条件下对不同浓度的溶剂分子及二氧化碳有响应规律,且灵敏度高,选择性好,性能稳定,易再生。The preparation process of the invention is simple, the cost is low, and a class of novel metal organic compounds can be prepared under mild conditions. The prepared material has good sensing performance of solvent molecules and carbon dioxide, and has a regular response to solvent molecules and carbon dioxide of different concentrations under normal temperature and pressure conditions, and has high sensitivity, good selectivity, stable performance, and easy regeneration.
实施例1Example 1
1.称取0.18g氯化锂和0.22g 1,4-萘二甲酸溶于16ml N,N’-二甲基甲酰胺和8ml四氢呋喃的混合溶液,磁力搅拌使其充分溶解,然后将混合溶液移入50ml内衬聚四氟乙烯的不锈钢反应釜,于合成烘箱中150℃晶化72小时,自然冷却至室温。1. Weigh 0.18g of lithium chloride and 0.22g of 1,4-naphthalene dicarboxylic acid dissolved in 16ml of N,N'-dimethylformamide and 8ml of tetrahydrofuran mixed solution, magnetic stirring to fully dissolve, and then mix the solution Transfer to a 50ml stainless steel reaction kettle lined with polytetrafluoroethylene, crystallize in a synthesis oven at 150°C for 72 hours, and cool naturally to room temperature.
2.将产物抽滤,并用N,N’-二甲基甲酰胺洗涤,50℃真空条件下烘干24小时,得到目标产物。2. Suction filter the product, wash with N,N'-dimethylformamide, and dry under vacuum at 50°C for 24 hours to obtain the target product.
3.传感性能测试:取0.06g目标产物,置于10ml N,N’-二甲基甲酰胺中,超声振荡1小时使得产物在溶剂中分散均匀。用微量进样器取10μl超声后的溶液滴加在晶片表面,加热蒸发溶剂,得到修饰好的QCM晶片。处理条件:0.5L密闭检测池中抽真空至0.01MPa以下,且晶片的基频变化达到一个平稳的基线;测试条件:用进样器依次注入不同量的溶剂及二氧化碳,观察晶片频率的变化。从图1可以看出,在密闭检测池内注入的水的浓度为2-9ppm时,对应的晶片的频率变化也不同,且随着水的浓度的增加,晶片的响应频率变化越大,当晶片相应频率接近平稳时,对检测池重新抽真空,晶片的响应频率可以重新回到基频,说明对水的传感有较好的重现性;从图2可以看出,在密闭检测池内注入的乙二醇的浓度为0.2-0.8ppm时,对应的晶片的响应频率变化为600-2100Hz,且最后等晶片频率平稳之后再对检测池抽真空,晶片的响应频率回到了基频,说明材料对乙二醇的传感有较好的重现性;从图3可以看出,当向密闭的检测池注入的二氧化碳的浓度为0.17-0.83mmol/L时,对应的晶片的响应频率变化为8-24Hz,等晶片频率平稳之后再对检测池抽真空,晶片的响应频率都回到了基频,说明材料对二氧化碳的传感有较好的重现性。3. Sensing performance test: Take 0.06g of the target product, put it in 10ml of N,N'-dimethylformamide, and oscillate ultrasonically for 1 hour to make the product evenly dispersed in the solvent. Use a microsampler to take 10 μl of the ultrasonic solution and drop it on the surface of the wafer, heat and evaporate the solvent to obtain a modified QCM wafer. Processing conditions: evacuate the 0.5L airtight detection cell to below 0.01MPa, and the fundamental frequency change of the wafer reaches a stable baseline; Test conditions: Inject different amounts of solvent and carbon dioxide sequentially with an injector, and observe the frequency change of the wafer. It can be seen from Figure 1 that when the concentration of water injected into the airtight detection pool is 2-9ppm, the frequency changes of the corresponding wafers are also different, and as the concentration of water increases, the response frequency of the wafer changes more. When the corresponding frequency is close to stable, vacuumize the detection cell again, and the response frequency of the chip can return to the fundamental frequency, which shows that the sensing of water has good reproducibility; When the concentration of ethylene glycol is 0.2-0.8ppm, the response frequency of the corresponding chip changes to 600-2100Hz, and finally after the chip frequency is stable, the detection cell is evacuated, and the response frequency of the chip returns to the fundamental frequency, indicating that the material The sensing of ethylene glycol has good reproducibility; as can be seen from Figure 3, when the concentration of carbon dioxide injected into the airtight detection cell is 0.17-0.83mmol/L, the response frequency of the corresponding chip changes as 8-24Hz, wait until the frequency of the chip is stable and then evacuate the detection cell, the response frequency of the chip returns to the fundamental frequency, indicating that the material has good reproducibility in sensing carbon dioxide.
实施例2Example 2
1.称取0.17g氯化锂和0.21g 1,4-萘二甲酸溶于18ml N,N’-二甲基甲酰胺和6ml四氢呋喃的混合溶液,磁力搅拌使其充分溶解,然后将混合溶液移入50ml内衬聚四氟乙烯的不锈钢反应釜,于合成烘箱中140℃晶化48小时,自然冷却至室温。1. Weigh 0.17g of lithium chloride and 0.21g of 1,4-naphthalene dicarboxylic acid dissolved in 18ml of N,N'-dimethylformamide and 6ml of tetrahydrofuran mixed solution, magnetic stirring to fully dissolve, and then mix the solution Transfer to a 50ml stainless steel reaction kettle lined with polytetrafluoroethylene, crystallize in a synthesis oven at 140°C for 48 hours, and cool naturally to room temperature.
2.将产物抽滤,并用N,N’-二甲基甲酰胺洗涤,60℃真空条件下烘干16小时,得到的晶体通过X′Pert PRO粉末X射线衍射仪确定与目标产物一致,二者具有相同的衍射图谱,见图5。2. Suction filter the product, wash it with N,N'-dimethylformamide, and dry it under vacuum at 60°C for 16 hours. The obtained crystal is determined to be consistent with the target product by X'Pert PRO powder X-ray diffractometer. Both have the same diffraction pattern, see Figure 5.
本发明制备工艺简单,成本低,能够在温和条件下制备出一类新型的金属有机化合物。制得的材料具有良好的溶剂分子及二氧化碳传感性能,在常温常压的条件下对不同浓度的溶剂分子及二氧化碳有响应规律,且灵敏度高,选择性好,性能稳定,易再生。The preparation process of the invention is simple, the cost is low, and a class of novel metal organic compounds can be prepared under mild conditions. The prepared material has good sensing performance of solvent molecules and carbon dioxide, and has a regular response to solvent molecules and carbon dioxide of different concentrations under normal temperature and pressure conditions, and has high sensitivity, good selectivity, stable performance, and easy regeneration.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201010176603 CN102250128B (en) | 2010-05-19 | 2010-05-19 | Organometallic compound sensing material and preparation and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201010176603 CN102250128B (en) | 2010-05-19 | 2010-05-19 | Organometallic compound sensing material and preparation and application thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102250128A CN102250128A (en) | 2011-11-23 |
CN102250128B true CN102250128B (en) | 2013-09-18 |
Family
ID=44977735
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201010176603 Expired - Fee Related CN102250128B (en) | 2010-05-19 | 2010-05-19 | Organometallic compound sensing material and preparation and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102250128B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102886249B (en) * | 2012-10-15 | 2014-10-29 | 复旦大学 | Self-assembled microporous material capable of selectively absorbing and separating methanol molecules and preparation method thereof |
CN103111262B (en) * | 2013-01-31 | 2014-11-26 | 北京大学 | Porous material of metal-organic framework and preparation method of material |
CN103877577B (en) * | 2013-05-28 | 2016-04-06 | 南方医科大学南方医院 | A kind of cancer target zinc-base metal-organic framework pharmaceutical carrier and preparation method thereof |
CN109799159B (en) * | 2019-02-25 | 2021-05-28 | 重庆大学 | A MOFs-modified chloroform gas QCM sensor |
CN112649573A (en) * | 2020-12-17 | 2021-04-13 | 北京交通大学 | Dual-signal response residual chlorine sensor and preparation method and detection system thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101218377A (en) * | 2005-05-24 | 2008-07-09 | 巴斯福股份公司 | Method for producing porous metal-organic framework materials |
CN101434612A (en) * | 2007-11-14 | 2009-05-20 | 中国科学院大连化学物理研究所 | Metal organic framework compound material, as well as preparation and application thereof |
-
2010
- 2010-05-19 CN CN 201010176603 patent/CN102250128B/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101218377A (en) * | 2005-05-24 | 2008-07-09 | 巴斯福股份公司 | Method for producing porous metal-organic framework materials |
CN101434612A (en) * | 2007-11-14 | 2009-05-20 | 中国科学院大连化学物理研究所 | Metal organic framework compound material, as well as preparation and application thereof |
Non-Patent Citations (2)
Title |
---|
Design and synthesis of an exceptionally stable and highly porous metal-organic framework;Hailian Li, et al.;《Nature》;19991118;第402卷;276-279 * |
Hailian Li, et al..Design and synthesis of an exceptionally stable and highly porous metal-organic framework.《Nature》.1999,第402卷276-279. |
Also Published As
Publication number | Publication date |
---|---|
CN102250128A (en) | 2011-11-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101434612B (en) | A kind of metal organic framework compound material and its preparation and application | |
Guo et al. | A water-stable proton-conductive barium (II)-organic framework for ammonia sensing at high humidity | |
Reinsch et al. | Structures, sorption characteristics, and nonlinear optical properties of a new series of highly stable aluminum MOFs | |
CN102250128B (en) | Organometallic compound sensing material and preparation and application thereof | |
Volkringer et al. | High-throughput aided synthesis of the porous metal− organic framework-type aluminum pyromellitate, MIL-121, with extra carboxylic acid functionalization | |
Hou et al. | Porous metal− organic framework based on μ4-oxo tetrazinc clusters: sorption and guest-dependent luminescent properties | |
Fei et al. | Tandem postsynthetic metal ion and ligand exchange in zeolitic imidazolate frameworks | |
Zhang et al. | Unusual high thermal stability within a series of novel lanthanide TATB frameworks: Synthesis, structure, and properties (TATB= 4, 4′, 4 ″-s-Triazine-2, 4, 6-triyl-tribenzoate) | |
Biswal et al. | Probing molecular mechanisms of self-assembly in metal–organic frameworks | |
Zhou et al. | Facile synthesis of MOFs with uncoordinated carboxyl groups for selective CO 2 capture via postsynthetic covalent modification | |
CN102250130B (en) | Microporous metal-organic framework material as well as preparation method and application thereof | |
CN106749348B (en) | A kind of metal-organic framework material and preparation method and application | |
Al-Terkawi et al. | Mechanochemical synthesis, characterization, and structure determination of new alkaline earth metal-tetrafluoroterephthalate frameworks: Ca (p BDC-F4)· 4H2O, Sr (p BDC-F4)· 4H2O, and Ba (p BDC-F4) | |
CN109776504A (en) | A metal-organic framework material based on low-symmetric pyrazole-carboxylic acid ligand Zn, preparation method and application thereof | |
CN108559096B (en) | Luminescent metal organic framework material for detecting antibiotic pollutants in water | |
CN106674534A (en) | Europium rare earth metal-organic frame material and preparation method and application thereof | |
CN104610309B (en) | A coordination polymer with ferroelectric properties, preparation method and application thereof | |
Kim et al. | Reversible structural flexibility and sensing properties of a Zn (II) metal–organic framework: Phase transformation between interpenetrating 3D net and 2D sheet | |
Han et al. | Two isomeric magnesium metal–organic frameworks with [24-MC-6] metallacrown cluster | |
CN110128674A (en) | A water-stable rare-earth metal-organic framework material for fluorescent detection of sulfonamide antibiotics and its preparation method | |
Chiu et al. | Ligand Exchange in the Synthesis of Metal–Organic Frameworks Occurs Through Acid-Catalyzed Associative Substitution | |
Duan et al. | From one-dimensional, two-dimensional to three-dimensional entangled architectures with polythreading feature: synthesis, structures, and properties | |
Shi et al. | Solvent-triggered fast and visible switching between cage-and channel-type hydrogen-bonded organic frameworks | |
CN107880274A (en) | A kind of hybrid metal organic framework materials and its preparation method and application | |
CN108558917B (en) | A kind of zinc-furandicarboxylic acid organic framework material and preparation method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20130918 Termination date: 20160519 |