CN102185301A - Static discharge ESD protective circuit - Google Patents
Static discharge ESD protective circuit Download PDFInfo
- Publication number
- CN102185301A CN102185301A CN201110132583XA CN201110132583A CN102185301A CN 102185301 A CN102185301 A CN 102185301A CN 201110132583X A CN201110132583X A CN 201110132583XA CN 201110132583 A CN201110132583 A CN 201110132583A CN 102185301 A CN102185301 A CN 102185301A
- Authority
- CN
- China
- Prior art keywords
- trigger signal
- substrate
- circuit
- gate
- electrostatic discharge
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000003068 static effect Effects 0.000 title description 7
- 230000001681 protective effect Effects 0.000 title 1
- 239000000758 substrate Substances 0.000 claims abstract description 138
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 claims abstract description 29
- 238000001514 detection method Methods 0.000 claims description 84
- 239000000872 buffer Substances 0.000 claims description 21
- 230000000694 effects Effects 0.000 description 24
- 239000003990 capacitor Substances 0.000 description 8
- 238000010586 diagram Methods 0.000 description 8
- 230000005611 electricity Effects 0.000 description 6
- 238000000034 method Methods 0.000 description 5
- 230000015556 catabolic process Effects 0.000 description 4
- 230000005669 field effect Effects 0.000 description 2
- 230000003071 parasitic effect Effects 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 230000001960 triggered effect Effects 0.000 description 2
- 101000860173 Myxococcus xanthus C-factor Proteins 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Images
Landscapes
- Semiconductor Integrated Circuits (AREA)
Abstract
本发明公开了一种静电放电ESD保护电路,包括具有一个或多个MOS管的静电放电支路,还包括栅极触发信号产生电路,用于产生栅极触发信号,所述栅极触发信号连接到至少一个MOS管的栅极;衬底触发信号产生电路,用于产生衬底触发信号,所述衬底触发信号连接到所述至少一个MOS管的衬底;其中,所述衬底触发信号的反应时间不小于所述静电放电电压的上升时间或者不小于20ns。提高了静电放电保护电路的保护能力,降低误触发引起漏电流的可能性。
The invention discloses an electrostatic discharge ESD protection circuit, which includes an electrostatic discharge branch circuit with one or more MOS transistors, and a gate trigger signal generation circuit for generating a gate trigger signal, and the gate trigger signal is connected to To the gate of at least one MOS transistor; the substrate trigger signal generating circuit is used to generate a substrate trigger signal, and the substrate trigger signal is connected to the substrate of the at least one MOS transistor; wherein, the substrate trigger signal The response time is not less than the rise time of the electrostatic discharge voltage or not less than 20ns. The protection ability of the electrostatic discharge protection circuit is improved, and the possibility of leakage current caused by false triggering is reduced.
Description
技术领域technical field
本发明涉及静电放电ESD保护电路。The invention relates to an electrostatic discharge ESD protection circuit.
背景技术Background technique
当两个不导电物体接触与分离时,都有可能在两个物体间引起电子的转移,而使得这两个不导电物体产生额外电荷,此额外电荷即为静电。而当物体上累积的静电对电位相对较低的物体放电时,便产生静电放电(Electro-StaticDischarge,ESD)。When two non-conductive objects contact and separate, it is possible to cause the transfer of electrons between the two objects, causing the two non-conductive objects to generate additional charges, which are static electricity. Electro-Static Discharge (ESD) occurs when the static electricity accumulated on an object discharges an object with a relatively low potential.
随着半导体技术的发展,静电放电ESD问题在集成电路中日趋严重。设计人员从集成电路的工艺级、器件级、电路级与系统级等研发了多种静电放电ESD保护电路。其中,基于场效应管MOS的静电放电ESD保护电路由于其易于实现且保护能力好,被广泛应用。With the development of semiconductor technology, the problem of electrostatic discharge (ESD) is becoming more and more serious in integrated circuits. Designers have developed a variety of electrostatic discharge ESD protection circuits from the process level, device level, circuit level and system level of integrated circuits. Among them, the electrostatic discharge ESD protection circuit based on field effect transistor MOS is widely used because of its easy implementation and good protection ability.
基于场效应管MOS的静电放电ESD保护电路中,为了提高MOS管的面积利用率和减少栅电阻,一般采用叉指结构。叉指结构中,当每个叉指均匀导通电流时,MOS管承受电流的能力最大,静电放电保护能力最强。但实际的情况是,只有少部分的叉指结构能够在静电放电时导通,即使导通,也只是在沟道宽度W方向上部分导通。In the electrostatic discharge ESD protection circuit based on the field effect transistor MOS, in order to improve the area utilization rate of the MOS transistor and reduce the gate resistance, an interdigitated structure is generally adopted. In the interdigitated structure, when each interdigit conducts current evenly, the ability of the MOS tube to withstand the current is the largest, and the electrostatic discharge protection ability is the strongest. However, the actual situation is that only a small part of the interdigitated structure can be turned on during electrostatic discharge, and even if it is turned on, it is only partially turned on in the direction of the channel width W.
为了提高静电放电ESD保护电路中,MOS管的导通能力,即增大静电放电ESD保护电路的保护能力。利用栅极偏置效应或者利用衬底偏置效应能够有效地达到上述目的,且衬底偏置效应的效果会更好。In order to improve the conduction ability of the MOS tube in the electrostatic discharge ESD protection circuit, that is to increase the protection ability of the electrostatic discharge ESD protection circuit. The above purpose can be effectively achieved by utilizing the gate bias effect or the substrate bias effect, and the effect of the substrate bias effect will be better.
其中,利用栅极偏置效应提高MOS管的导通能力是指,通过在MOS管的栅极上施加一定的电压,以降低MOS管的栅极触发电压是,使MOS管工作在亚阀区或者饱和区。由于MOS管的触发电压得到降低,MOS管能够迅速地响应静电放电。同时,MOS管的二次击穿电流值得到增大,静电放电保护保护能力得到增强。此种方式存在的缺陷是,由于MOS管具有表面电流集中效应,当存在栅极电压时,MOS管的表面必然会产生一定的热功耗。如果栅极电压持续存在,则MOS管表面的温度将逐渐增大,可能损伤或者损毁MOS管。Among them, using the gate bias effect to improve the conduction capability of the MOS tube refers to applying a certain voltage on the gate of the MOS tube to reduce the trigger voltage of the gate of the MOS tube so that the MOS tube works in the sub-valve region. or saturation zone. Since the trigger voltage of the MOS tube is reduced, the MOS tube can quickly respond to electrostatic discharge. At the same time, the secondary breakdown current value of the MOS tube is increased, and the electrostatic discharge protection capability is enhanced. The disadvantage of this method is that since the MOS tube has a surface current concentration effect, when there is a gate voltage, the surface of the MOS tube will inevitably generate a certain amount of thermal power consumption. If the gate voltage continues to exist, the temperature on the surface of the MOS tube will gradually increase, which may damage or destroy the MOS tube.
利用衬底偏置提升MOS管的导通能力是指,在MOS管的衬底上施加一定的偏压,使衬底与源极间的PN结正偏,提升MOS管的二次击穿电流值。在寄生的NPN元件中,正偏衬底与源极间的PN结(即正偏寄生NPN元件的发射结),可以使NPN元件工作在放大区,导通大量的电流,提高静电放电电路的保护能力。衬底偏置效应会产生漏电流,在正常的静电放电ESD过程中,这个漏电流正是提高静电放电电流量的关键。但是,当衬底偏置效应不是由正常的静电触发,而是由一些干扰(比如干扰脉冲)引起的,那么这个漏电流将对电路产生影响。因此采用衬底偏置效应提高静电放电保护电路的保护能力时,有可能由于误触发而产生漏电流。Improving the conduction capability of the MOS transistor by using the substrate bias refers to applying a certain bias voltage on the substrate of the MOS transistor to make the PN junction between the substrate and the source positively biased and increase the secondary breakdown current of the MOS transistor. value. In the parasitic NPN element, the PN junction between the forward-biased substrate and the source (that is, the emitter junction of the forward-biased parasitic NPN element) can make the NPN element work in the amplification area, conduct a large amount of current, and improve the electrostatic discharge circuit. protection ability. The substrate bias effect will generate a leakage current, which is the key to increasing the electrostatic discharge current during the normal electrostatic discharge ESD process. However, when the substrate bias effect is not triggered by normal static electricity, but is caused by some interference (such as interference pulse), then this leakage current will have an impact on the circuit. Therefore, when the substrate bias effect is used to improve the protection capability of the electrostatic discharge protection circuit, leakage current may be generated due to false triggering.
发明内容Contents of the invention
本发明要解决的主要技术问题是,提供一种静电放电ESD保护电路,能在提高静电放电保护能力的同时,降低误触发引起漏电流的可能性。为解决上述技术问题,本发明提供了一种静电放电ESD保护电路,包括具有一个或多个MOS管的静电放电支路,还包括:The main technical problem to be solved by the present invention is to provide an electrostatic discharge ESD protection circuit, which can reduce the possibility of leakage current caused by false triggering while improving the electrostatic discharge protection capability. In order to solve the above technical problems, the present invention provides an electrostatic discharge ESD protection circuit, including an electrostatic discharge branch circuit with one or more MOS tubes, and also includes:
栅极触发信号产生电路,用于产生栅极触发信号,所述栅极触发信号产生电路的输出端连接到至少一个MOS管的栅极;A gate trigger signal generating circuit, configured to generate a gate trigger signal, the output terminal of the gate trigger signal generating circuit is connected to the gate of at least one MOS transistor;
衬底触发信号产生电路,用于产生衬底触发信号,所述衬底触发信号产生电路的输出端连接到所述至少一个MOS管的衬底;A substrate trigger signal generation circuit, configured to generate a substrate trigger signal, the output end of the substrate trigger signal generation circuit is connected to the substrate of the at least one MOS transistor;
其中,所述衬底触发信号的反应时间不小于所述静电放电电压的上升时间;或者所述衬底触发信号的反应时间不小于20ns。Wherein, the response time of the substrate trigger signal is not less than the rise time of the electrostatic discharge voltage; or the response time of the substrate trigger signal is not less than 20 ns.
一种实施方式中,所述静电放电支路包括:一NMOS管;所述NMOS管包括栅极、第一电极、第二电极和衬底,所述栅极连接到所述栅极触发信号产生电路的输出端,第一电极连接到电源,第二电极连接到地,衬底连接到衬底触发信号产生电路的输出端;In one embodiment, the electrostatic discharge branch circuit includes: an NMOS transistor; the NMOS transistor includes a gate, a first electrode, a second electrode and a substrate, and the gate is connected to the gate to trigger signal generation The output terminal of the circuit, the first electrode is connected to the power supply, the second electrode is connected to the ground, and the substrate is connected to the output terminal of the substrate trigger signal generating circuit;
所述栅极触发信号产生电路包括:第一检测电路和反相电路;The gate trigger signal generation circuit includes: a first detection circuit and an inverting circuit;
所述第一检测电路包括:一第一电阻元件和一第一电容元件;所述第一电阻元件的一端连接到电源,所述第一电容元件的一端连接到所述第一电阻元件的另一端,所述第一电容元件的另一端连接到地;The first detection circuit includes: a first resistance element and a first capacitance element; one end of the first resistance element is connected to a power supply, and one end of the first capacitance element is connected to the other end of the first resistance element One end, the other end of the first capacitive element is connected to ground;
所述反相电路由奇数个反相器级联而成,包括输入端和输出端,所述输入端连接到所述第一电阻元件和第一电容元件之间,所述输出端为所述栅极触发信号产生电路的输出端,输出栅极触发信号,连接到所述NMOS管的栅极。The inverter circuit is formed by cascading an odd number of inverters, including an input end and an output end, the input end is connected between the first resistance element and the first capacitance element, and the output end is the The output terminal of the gate trigger signal generating circuit outputs the gate trigger signal and is connected to the gate of the NMOS transistor.
进一步地,所述第一检测电路的第一电阻元件和第一电容元件的时间常数为第一时间常数,所述第一时间常数大于静电放电电压的上升时间,小于静电放电电压的持续时间。Further, the time constant of the first resistive element and the first capacitive element of the first detection circuit is a first time constant, and the first time constant is longer than the rise time of the electrostatic discharge voltage and shorter than the duration of the electrostatic discharge voltage.
一种实施方式中,所述衬底触发信号产生电路包括:第二检测电路、缓冲器、第三检测电路和逻辑门;In one implementation manner, the substrate trigger signal generation circuit includes: a second detection circuit, a buffer, a third detection circuit, and a logic gate;
所述第二检测电路包括:一第二电阻元件和一第二电容元件,所述第二电阻元件的一端连接到电源,所述第二电容元件的一端连接到所述第一电阻元件的另一端,所述第二电容元件的另一端连接到地;The second detection circuit includes: a second resistance element and a second capacitance element, one end of the second resistance element is connected to a power supply, and one end of the second capacitance element is connected to the other end of the first resistance element one end, the other end of the second capacitive element is connected to ground;
所述缓冲器包括:输入端和输出端,所述输入端连接到所述第二检测电路的第二电阻元件和第二电容元件之间;The buffer includes: an input terminal and an output terminal, the input terminal is connected between the second resistance element and the second capacitance element of the second detection circuit;
所述第三检测电路包括:一第三电阻元件和一第三电容元件,所述第三电阻元件的一端连接到所述缓冲器的输出端,所述第三电容元件的一端连接到所述第三电阻元件的另一端,所述第三电容元件的另一端连接到地;The third detection circuit includes: a third resistance element and a third capacitance element, one end of the third resistance element is connected to the output end of the buffer, and one end of the third capacitance element is connected to the The other end of the third resistive element, the other end of the third capacitive element is connected to ground;
所述逻辑门为异或逻辑门,包括两个输入端和输出端,其中一个输入端连接到第二检测电路的第二电阻元件和第二电容元件之间,另一个输入端连接到第三检测电路的第三电阻元件和第三电容元件之间;所述输出端为所述衬底触发信号产生电路的输出端,用于输出衬底触发信号,并连接到所述NMOS管的衬底。The logic gate is an XOR logic gate, including two input terminals and an output terminal, wherein one input terminal is connected between the second resistance element and the second capacitance element of the second detection circuit, and the other input terminal is connected to the third Between the third resistive element and the third capacitive element of the detection circuit; the output end is the output end of the substrate trigger signal generating circuit, which is used to output the substrate trigger signal and is connected to the substrate of the NMOS transistor .
进一步地,所述第二检测电路的第二电阻元件和第二电容元件的时间常数为第二时间常数,所述第三检测电路的第三电阻元件和第三电容元件的时间常数为第三时间常数;Further, the time constant of the second resistance element and the second capacitance element of the second detection circuit is the second time constant, and the time constant of the third resistance element and the third capacitance element of the third detection circuit is the third time constant. time constant;
所述第三时间常数大于所述静电放电电压的持续时间;所述第二时间常数大于或等于所述静电放电电压的上升时间,小于第三时间常数。The third time constant is greater than the duration of the electrostatic discharge voltage; the second time constant is greater than or equal to the rise time of the electrostatic discharge voltage, but less than the third time constant.
另一种实施方式中,所述静电放电支路包括:一PMOS管;所述PMOS管包括栅极、第一电极、第二电极和衬底,所述栅极连接到栅极触发信号产生电路的输出端,第一电极连接到地,第二电极连接到电源,衬底连接到衬底触发信号产生电路的输出端;In another embodiment, the electrostatic discharge branch circuit includes: a PMOS transistor; the PMOS transistor includes a gate, a first electrode, a second electrode and a substrate, and the gate is connected to a gate trigger signal generating circuit The output end of the first electrode is connected to the ground, the second electrode is connected to the power supply, and the substrate is connected to the output end of the substrate trigger signal generating circuit;
所述栅极触发信号产生电路包括:第一检测电路;The gate trigger signal generation circuit includes: a first detection circuit;
所述第一检测电路包括:一第一电阻元件和一第一电容元件;所述第一电阻元件的一端连接到电源,所述第一电容元件的一端连接至所述第一电阻元件的另一端,所述第一电容元件的另一端连接到地;The first detection circuit includes: a first resistance element and a first capacitance element; one end of the first resistance element is connected to a power supply, and one end of the first capacitance element is connected to the other end of the first resistance element One end, the other end of the first capacitive element is connected to ground;
所述PMOS管的衬底连接到所述第一电阻元件和第一电容元件之间。The substrate of the PMOS transistor is connected between the first resistance element and the first capacitance element.
另一种实施方式中,所述静电放电支路包括:一PMOS元件;所述PMOS元件包括栅极、第一电极、第二电极和衬底,所述栅极连接到栅极触发信号产生电路的输出端,第一电极连接到地,第二电极连接到电源,衬底连接到衬底触发信号产生电路的输出端;In another embodiment, the electrostatic discharge branch circuit includes: a PMOS element; the PMOS element includes a gate, a first electrode, a second electrode and a substrate, and the gate is connected to a gate trigger signal generating circuit The output end of the first electrode is connected to the ground, the second electrode is connected to the power supply, and the substrate is connected to the output end of the substrate trigger signal generating circuit;
所述栅极触发信号产生电路包括:第一检测电路和同相电路;The gate trigger signal generation circuit includes: a first detection circuit and a non-inverting circuit;
所述第一检测电路包括:一第一电阻元件和一第一电容元件;所述第一电阻元件的一端连接到电源,所述第一电容元件的一端连接到所述第一电阻元件的另一端,所述第一电容元件的另一端连接到地;The first detection circuit includes: a first resistance element and a first capacitance element; one end of the first resistance element is connected to a power supply, and one end of the first capacitance element is connected to the other end of the first resistance element One end, the other end of the first capacitive element is connected to ground;
所述同相电路由偶数个反相器级联而成,包括输入端和输出端,所述同相电路的输入端连接到所述第一电阻元件和第一电容元件之间,输出端为所述栅极触发信号产生电路的输出端,连接到所述PMOS管的栅极。The non-inverting circuit is formed by cascading an even number of inverters, including an input terminal and an output terminal, the input terminal of the non-inverting circuit is connected between the first resistive element and the first capacitive element, and the output terminal is the The output end of the gate trigger signal generating circuit is connected to the gate of the PMOS transistor.
进一步地,所述第一检测电路的第一电阻元件和第一电容元件的时间常数为第一时间常数,所述第一时间常数大于静电放电电压的上升时间,小于静电放电电压的持续时间。Further, the time constant of the first resistive element and the first capacitive element of the first detection circuit is a first time constant, and the first time constant is longer than the rise time of the electrostatic discharge voltage and shorter than the duration of the electrostatic discharge voltage.
另一种实施方式中,所述衬底触发信号产生电路包括:第二检测电路、缓冲器、第三检测电路、逻辑门和反相电路;In another implementation manner, the substrate trigger signal generation circuit includes: a second detection circuit, a buffer, a third detection circuit, a logic gate, and an inverting circuit;
所述第二检测电路包括:一第二电阻元件、一第二电容元件,所述第二电阻元件的一端连接到电源,所述第二电容元件的一端连接到所述第二电阻元件的另一端,所述第二电容元件的另一端连接到地;The second detection circuit includes: a second resistance element and a second capacitance element, one end of the second resistance element is connected to a power supply, and one end of the second capacitance element is connected to the other end of the second resistance element one end, the other end of the second capacitive element is connected to ground;
所述缓冲器包括:输入端和输出端,所述输入端连接到所述第二检测电路的第二电阻元件和第二电容元件之间;The buffer includes: an input terminal and an output terminal, the input terminal is connected between the second resistance element and the second capacitance element of the second detection circuit;
所述第三检测电路包括:一第三电阻元件和一第三电容元件,所述第三电阻元件的一端连接到所述缓冲器的输出端,所述第三电容元件的一端连接到所述第三电阻元件的另一端,所述第三电容元件的另一端连接到地;The third detection circuit includes: a third resistance element and a third capacitance element, one end of the third resistance element is connected to the output end of the buffer, and one end of the third capacitance element is connected to the The other end of the third resistive element, the other end of the third capacitive element is connected to ground;
所述逻辑门为异或逻辑门,包括两个输入端和输出端,其中一个输入端连接到第二检测电路的第二电阻元件和第二电容元件之间,另一个输入端连接到第三检测电路的第三电阻元件和第三电容元件之间;The logic gate is an XOR logic gate, including two input terminals and an output terminal, wherein one input terminal is connected between the second resistance element and the second capacitance element of the second detection circuit, and the other input terminal is connected to the third Between the third resistance element and the third capacitance element of the detection circuit;
所述反相电路由奇数个反相器级联而成,包括输入端和输出端,反相电路的输入端连接到所述逻辑门的输出端,反相电路的输出端为所述衬底触发信号产生电路的输出端,连接到所述PMOS管的衬底。The inverting circuit is formed by cascading an odd number of inverters, including an input terminal and an output terminal, the input terminal of the inverting circuit is connected to the output terminal of the logic gate, and the output terminal of the inverting circuit is the substrate The output terminal of the trigger signal generating circuit is connected to the substrate of the PMOS transistor.
进一步地,所述第二检测电路的第二电阻元件和第二电容元件的时间常数为第二时间常数,所述第三检测电路的第三电阻元件和第三电容元件的时间常数为第三时间常数;Further, the time constant of the second resistance element and the second capacitance element of the second detection circuit is the second time constant, and the time constant of the third resistance element and the third capacitance element of the third detection circuit is the third time constant. time constant;
所述第三时间常数大于所述静电放电电压的持续时间;所述第二时间常数大于所述静电放电电压的上升时间,小于第三时间常数。The third time constant is greater than the duration of the electrostatic discharge voltage; the second time constant is greater than the rise time of the electrostatic discharge voltage but less than the third time constant.
本发明的有益效果是:栅极触发信号产生电路产生的栅极触发信号加到MOS元件的栅极上后,MOS元件的触发电压降低,提高了静电放电ESD保护电路的放电能力;衬底触发信号产生的衬底触发信号加到MOS元件的衬底上后,MOS元件发生衬底偏置效应,增强了MOS元件的电流导通能力,提高了静电放电保护电路的放电能力。同时,由于衬底触发信号的反应时间大于或者等于静电放电电压的上升时间(约为10ns),通常误触发的脉冲的持续时间不会大于正常的静电放电电压的上升时间,所以即使发生了误触发,衬底触发信号也不会作用于衬底,从而降低了非正常情况下漏电流产生的可能性。而将衬底触发信号的反应时间设置为不小于20ns时,是为了保留一定的设计余量,这符合电路的设计思想,并能够达到更好的效果。The beneficial effects of the present invention are: after the gate trigger signal generated by the grid trigger signal generation circuit is added to the gate of the MOS element, the trigger voltage of the MOS element is reduced, which improves the discharge capacity of the electrostatic discharge ESD protection circuit; the substrate trigger After the substrate trigger signal generated by the signal is added to the substrate of the MOS element, the substrate bias effect occurs on the MOS element, which enhances the current conduction capability of the MOS element and improves the discharge capability of the electrostatic discharge protection circuit. At the same time, since the response time of the substrate trigger signal is greater than or equal to the rise time of the electrostatic discharge voltage (about 10 ns), the duration of the falsely triggered pulse is usually not longer than the normal rise time of the electrostatic discharge voltage, so even if a false trigger, the substrate trigger signal will not act on the substrate, thereby reducing the possibility of leakage current under abnormal conditions. When the response time of the substrate trigger signal is set to not less than 20 ns, it is to keep a certain design margin, which is in line with the design idea of the circuit and can achieve better results.
附图说明Description of drawings
图1为本发明一种实施方式的静电放电ESD保护电路整体图;Fig. 1 is an overall diagram of an electrostatic discharge ESD protection circuit of an embodiment of the present invention;
图2为本发明一种实施方式的栅极触发信号产生电路图;FIG. 2 is a circuit diagram for generating a gate trigger signal according to an embodiment of the present invention;
图3为本发明另一种实施方式的栅极触发信号产生电路图;3 is a circuit diagram of a gate trigger signal generation circuit in another embodiment of the present invention;
图4为本发明一种实施方式的衬底触发信号产生电路图;4 is a circuit diagram of a substrate trigger signal generation circuit in an embodiment of the present invention;
图5为本发明一种实施方式的衬底触发信号产生电路的具体结构图;5 is a specific structural diagram of a substrate trigger signal generating circuit according to an embodiment of the present invention;
图6为本发明另一种实施方式的栅极触发信号产生电路;FIG. 6 is a gate trigger signal generation circuit in another embodiment of the present invention;
图7为本发明另一种实施方式的衬底触发信号产生电路;FIG. 7 is a substrate trigger signal generation circuit in another embodiment of the present invention;
图8为图3中A信号和栅极触发信号的波形示意图;FIG. 8 is a schematic diagram of waveforms of the A signal and the gate trigger signal in FIG. 3;
图9为5中B信号、C信号、D信号、E信号和衬底触发信号的波形示意图。FIG. 9 is a schematic diagram of the waveforms of the B signal, the C signal, the D signal, the E signal and the substrate trigger signal in 5.
具体实施方式Detailed ways
下面通过具体实施方式结合附图对本发明作进一步详细说明。The present invention will be further described in detail below through specific embodiments in conjunction with the accompanying drawings.
实施例1:Example 1:
请参考图1,一种静电放电ESD保护电路,包括静电放电支路30、栅极触发信号产生电路10和衬底触发信号产生电路20。Please refer to FIG. 1 , an electrostatic discharge ESD protection circuit includes an
其中,静电放电支路30包括一个或者多个MOS管,这些MOS管的类型可以是NMOS管或者PMOS管。当静电放电支路30包括多个MOS管时,这些MOS管通过串联或者并联或者串并联等方式组成静电放电支路。静电放电支路30包括两个外部输入端子,分别用于与电源VCC和地VSS相连接,或者与外部焊盘PAD和地VSS相连接,用于将电源VCC或者焊盘PAD产生的静电通过静电放电支路30传输给地,实现放电。优选地,静电放电支路30包括一个NMOS管或者一个PMOS管。Wherein, the
栅极触发信号产生电路10,用于产生栅极触发信号,并将该栅极触发信号施加到MOS管的栅极。当静电放电支路30只包括一个MOS管时,栅极触发信号施加到该MOS管的栅极;当静电放电支路30包括多个MOS管时,栅极触发信号施加到多个MOS管中的一个或者部分或者全部上。栅极触发信号施加到MOS管的栅极上,能够降低MOS管的栅极触发电压,使MOS管尽早对静电进行放电,提高MOS管的二次击穿电流值。The gate trigger
衬底触发信号产生电路20,用于产生衬底触发信号,并将该衬底触发信号施加到MOS管的衬底上。当静电放电支路30只包括一个MOS管时,衬底触发信号施加到该MOS管的衬底;当静电放电支路包括多个MOS管时,衬底触发信号施加到多个MOS管中的一个或者部分或者全部上。衬底触发信号施加到MOS管的衬底上,使MOS管发生衬底偏置效应,提升MOS管的二次击穿电流值,增强MOS管的电流导通能力。The substrate trigger
优选地,栅极触发信号和衬底触发信号施加到相同的一个或者多个MOS管上。Preferably, the gate trigger signal and the substrate trigger signal are applied to the same one or more MOS transistors.
上述中,栅极触发信号和衬底触发信号存在时间差,衬底触发信号的反应时间大于或等于静电放电电压的上升时间,或者大于或等于20ns。In the above, there is a time difference between the gate trigger signal and the substrate trigger signal, and the response time of the substrate trigger signal is greater than or equal to the rise time of the electrostatic discharge voltage, or greater than or equal to 20 ns.
具体地,在一个放电周期中,栅极触发信号从静电放电周期一开始就施加在MOS管的栅极上,使MOS管发生栅极偏置效应,减小栅极触发电压。并且,栅极触发信号作用于MOS管的持续时间大于静电放电ESD电压的上升时间,小于静电放电ESD电压的持续时间,即在一个静电放电周期内,栅极触发信号不是总使MOS管的栅极发生栅极偏置效应。Specifically, in a discharge cycle, the gate trigger signal is applied to the gate of the MOS transistor from the beginning of the electrostatic discharge cycle, so that the gate bias effect of the MOS transistor occurs, reducing the gate trigger voltage. Moreover, the duration of the gate trigger signal acting on the MOS tube is longer than the rise time of the electrostatic discharge ESD voltage, and shorter than the duration of the electrostatic discharge ESD voltage, that is, in one electrostatic discharge cycle, the gate trigger signal does not always make the gate of the MOS tube gate bias effect occurs.
衬底触发信号具有一个反应时间,使其开始作用MOS管衬底的时间点晚于静电放电ESD电压的上升时间,但持续到静电放电结束。衬底触发信号使衬底发生偏置效应,提高MOS管的电流导通能力。The substrate trigger signal has a response time, so that the time point when it starts to act on the MOS transistor substrate is later than the rise time of the electrostatic discharge ESD voltage, but lasts until the electrostatic discharge ends. The substrate trigger signal causes a bias effect on the substrate to improve the current conduction capability of the MOS transistor.
在一个静电放电周期中,栅极触发信号在静电放电事件一发生时就作用于MOS管的栅极,使MOS管发生栅极偏置效应,提高了MOS管导通的电流量。同时,栅极触发信号的作用在静电放电完成前结束,减小了表面电流集中效应对MOS管的影响。主要影响表现在,在栅极存在偏压和MOS管有电流导通的情况下,如果栅压持续存在,由于MOS管具有表面电流集中效应,MOS管的表面的温度会越来越高,持续增加的温度可能损伤或者损坏MOS管。In an electrostatic discharge cycle, the gate trigger signal acts on the gate of the MOS transistor as soon as the electrostatic discharge event occurs, causing the gate bias effect of the MOS transistor to increase the conduction current of the MOS transistor. At the same time, the effect of the gate trigger signal ends before the electrostatic discharge is completed, which reduces the influence of the surface current concentration effect on the MOS tube. The main impact is that when there is a bias voltage on the gate and the current conduction of the MOS tube, if the gate voltage continues to exist, the surface temperature of the MOS tube will become higher and higher due to the surface current concentration effect of the MOS tube. The increased temperature may damage or damage the MOS tube.
衬底触发信号开始作用MOS管衬底的时间点晚于静电放电ESD电压的上升时间,所以即使发生误触发,也不会产生漏电流。因为,通常误触发的时间很短,小于静电放电ESD电压的上升时间,所以衬底触发信号不会对误触发作出反应,也就不会产生漏电流。并且该种方式,可以根据实际电路中误触发可能的时间合理地设计衬底触发信号的反应时间,从而更好地实现避免由于误触发引起的漏电流的产生。The time point when the substrate trigger signal starts to act on the MOS transistor substrate is later than the rise time of the electrostatic discharge ESD voltage, so even if a false trigger occurs, no leakage current will be generated. Because, usually, the false trigger time is very short, less than the rise time of the electrostatic discharge ESD voltage, so the substrate trigger signal will not react to the false trigger, and no leakage current will be generated. And in this way, the response time of the substrate trigger signal can be reasonably designed according to the possible time of false triggering in the actual circuit, so as to better avoid the generation of leakage current caused by false triggering.
实施例2:Example 2:
在实施例1的基础上,参考图2至5对当静电放电支路包括一NMOS管时的静电放电保护电路进行说明。On the basis of
静电放电支路包括:一NMOS管。NMOS管包括栅极、第一电极、第二电极和衬底。其中,栅极连接到栅极触发信号产生电路的输出端,栅极触发信号产生电路的输出端用于输出栅极触发信号;第一电极为漏极,连接到电源;第二电极为源极,连接到地;衬底连接到衬底触发信号产生电路的输出端,衬底触发信号产生电路的输出端用于输出衬底触发信号。The electrostatic discharge branch circuit includes: an NMOS tube. The NMOS transistor includes a gate, a first electrode, a second electrode and a substrate. Wherein, the gate is connected to the output end of the gate trigger signal generating circuit, and the output end of the gate trigger signal generating circuit is used to output the gate trigger signal; the first electrode is a drain and is connected to a power supply; the second electrode is a source , connected to ground; the substrate is connected to the output terminal of the substrate trigger signal generating circuit, and the output terminal of the substrate trigger signal generating circuit is used to output the substrate trigger signal.
如图2所示,栅极触发信号产生电路包括:第一检测电路101和反相电路102。As shown in FIG. 2 , the gate trigger signal generation circuit includes: a
其中,第一检测电路101包括:一第一电阻元件和一第一电容元件。第一电阻元件由一个或者多个电阻串联或者并联或者串并联而成,第一电容元件也由一个或者多个电容串联或者并联或者串并联而成。或者第一电阻元件由其它形式实现,第一电阻元件由其它形式实现。优选地,如图3所示,第一电阻元件为一电阻R1,第一电容元件为一电容C1。Wherein, the
第一电阻元件的一端连接到电源VCC,第一电容元件的一端连接至第一电阻元件的另一端,第一电容元件的另一端连接到地VSS。One end of the first resistance element is connected to the power supply VCC, one end of the first capacitance element is connected to the other end of the first resistance element, and the other end of the first capacitance element is connected to the ground VSS.
反相电路102由奇数个反相器级联而成,包括输入端和输出端,输入端连接到第一电阻元件和第一电容元件之间,输出端输出栅极触发信号,连接到NMOS管的栅极。优选地,如图3所示,反相电路102包括一个反相器,该反相器由一个NMOS管和PMOS管串联而成。其中,NMOS管和PMOS管的栅极均连接到电阻R1和电容C1之间,NMOS管的源极和衬底连接到地VSS,NMOS管的漏极和PMOS管的漏极连接并输出栅极触发信号,PMOS管的源极和衬底连接到电源VCC。The
如图4所示,所述衬底触发信号产生电路20包括:第二检测电路201、缓冲器203、第三检测电路202和逻辑门204;As shown in FIG. 4, the substrate trigger
其中,第二检测电路201包括:一第二电阻元件和一第二电容元件,第三检测电路202包括:一第三电阻元件和一第三电容元件。第二电阻元件和第三电阻元件由一个或者多个电阻串联或者并联或者串并联而成,第二电容元件和第三电容元件由一个或者多个电容串联或者并联或者串并联而成。优选地,如图5所示,第二检测电路201的第二电阻元件为一电阻R2,第二电容元件为一电容C2;第三检测电路202的第三电阻元件为一电阻R3,第三电容元件为一电容C3。Wherein, the
第二检测电路201中,第二电阻元件的一端连接到电源VCC,第二电容元件的一端连接到第二电阻元件的另一端,第二电容元件的另一端连接到地VSS。In the
缓冲器203包括:输入端和输出端,输入端连接到第二检测电路201的第二电阻元件和第二电容元件之间。优选地,如图5所示,缓冲器203由两个反相器级联而成,可以理解的是,缓冲器203可以由偶数个反相器级联而成,或者采用其它形式的缓冲器。The
第三检测电路202中,第三电阻元件的一端连接到缓冲器的输出端,第三电容元件的一端连接到第三电阻元件的另一端,第三电容元件的另一端连接到地VSS。In the
逻辑门204采用异或逻辑门,包括两个输入端和输出端,其中一个输入端连接到第二检测电路的第二电阻元件和第二电容元件之间,另一个输入端连接到第三检测电路的第三电阻元件和第三电容元件之间;输出端用于输出衬底触发信号,连接到NMOS的衬底。The
上述中,第一检测电路的第二电阻元件和第一电容元件的时间常数为第一时间常数,第二检测电路的第二电阻元件和第二电容元件的时间常数为第二时间常数,第三检测电路的第三电阻元件和第在三电容元件的时间常数为第三时间常数。In the above, the time constant of the second resistive element and the first capacitive element of the first detection circuit is the first time constant, the time constant of the second resistive element and the second capacitive element of the second detection circuit is the second time constant, the second The time constant of the third resistance element and the third capacitance element of the three detection circuits is a third time constant.
第一时间常数大于静电放电电压的上升时间(约小于10ns),小于静电放电电压的持续时间(约为100~1000ns);第三时间常数大于静电放电电压的持续时间;第二时间常数不小于所述静电放电电压的上升时间,小于第三时间常数,第二时间常数为衬底触发信号的反应时间。此时,第二时间常数即为衬底触发信号的反应时间,静电放电必须持续第二时间常数这么久的时间后,衬底触发信号才会使NMOS管的衬底发生衬底偏置效应。The first time constant is greater than the rise time of the electrostatic discharge voltage (about less than 10ns), and less than the duration of the electrostatic discharge voltage (about 100-1000ns); the third time constant is greater than the duration of the electrostatic discharge voltage; the second time constant is not less than The rise time of the electrostatic discharge voltage is less than the third time constant, and the second time constant is the response time of the substrate trigger signal. At this time, the second time constant is the response time of the substrate trigger signal, and the electrostatic discharge must last for such a long time as the second time constant before the substrate trigger signal causes the substrate of the NMOS transistor to have a substrate bias effect.
优选地,下面以栅极触发信号产生电路10和衬底触发信号产生电路20分别为图3和图5所示的具体结构时的情况为例,对栅极触发信号和衬底触发信号对NMOS管的作用情况进行说明:Preferably, the gate trigger
当静电放电ESD事件发生在电源VCC和地VSS之间时,图2中的电容C1不能够突变,第一检测电路101输出的信号A从0电压开始上升,经过反相电路102的作用,输出栅极触发信号Gate,信号A和栅极触发信号Gate的波形示意如图8所示。由图8可知,在ESD事件刚发生前,栅极触发信号Gate就已作用于NMOS管的栅极,使NMOS管工作在饱和区或者线性区,降低了栅极触发电压。在ESD事件发生时,由于电容C1两端的电压值不能够突变,栅极触发信号依旧为一高电平,当经过2.2倍第一时间常数后,栅极触发信号Gate才下降为0,栅极偏置效应不再生效。第一时间常数由R1和C1决定,其值为1/R1*C1。When an electrostatic discharge ESD event occurs between the power supply VCC and the ground VSS, the capacitor C1 in FIG. The waveforms of gate trigger signal Gate, signal A and gate trigger signal Gate are shown in FIG. 8 . It can be seen from FIG. 8 that just before the ESD event occurs, the gate trigger signal Gate has acted on the gate of the NMOS transistor, so that the NMOS transistor works in the saturation region or the linear region, reducing the gate trigger voltage. When an ESD event occurs, since the voltage value across the capacitor C1 cannot change suddenly, the gate trigger signal is still at a high level. After 2.2 times the first time constant, the gate trigger signal Gate drops to 0, and the gate trigger signal Bias effects no longer work. The first time constant is determined by R1 and C1, and its value is 1/R1*C1.
静电放电过程中,图5中第二检测电路201的输出信号B、缓冲器203的输出信号D、第三检测电路202的输出信号E和衬底触发信号Substrate的波形示意图如图9所示。由图可知,衬底触发信号Substrate由第二检测电路201的输出信号B和第三检测电路202的输出信号E异或而成。因此,在ESD事件发生时,由于,输出信号B为低电平,输出信号E为高电平,衬底触发信号Substrate为低电平,不能使NMOS管发生衬底偏置效应。当ESD事件发生经过2.2倍的第二时间常数后,输出信号B变为高电平,输出信号E也为高电平,衬底触发信号Substrate为高电平,使衬底发生衬底偏置效应。当ESD事件经过2.2倍的第三时间常数后,输出信号E变为低电平,衬底触发信号Substrate变为高电平,结束对衬底的作用。第二时间常数的值为1/R2*C2,第三时间常数的值为1/R3*C3。由于ESD事件必须持续2.2倍第二时间常数后,衬底触发信号Substrate才能对衬底起作用,使其发生衬底偏置效应,产生漏电流,提高MOS管的放电能力实际中,由于误触发的时间达不到2.2倍的第二时间常数(第二时间常数大于或等于ESD电压上升时间),所以误触发不会产生漏电流。During the electrostatic discharge process, the waveform diagrams of the output signal B of the
上述中,将栅极触发信号的作用时间限定为0~2.2/R1*C1,衬底触发信号的作用时间限定为2.2/R2*C2~2.2/R3*C3之间是为了保留一定的设计余量,符合实际设计的要求,也能达到更好的效果。In the above, the action time of the gate trigger signal is limited to 0~2.2/R1*C1, and the action time of the substrate trigger signal is limited to 2.2/R2*C2~2.2/R3*C3 in order to retain a certain design margin. Quantity, in line with the requirements of the actual design, can also achieve better results.
上述中,衬底触发信号的反应时间为2.2倍的第二时间常数,由此可见,衬底触发信号的反应时间与第二时间常数相关,通过合理确定第二时间常数1/R2*C2中R2和C2的值可以得到确定的衬底触发信号的反应时间。In the above, the reaction time of the substrate trigger signal is 2.2 times the second time constant. It can be seen that the reaction time of the substrate trigger signal is related to the second time constant. By reasonably determining the
实施例3:Example 3:
在实施例1和实施例2的基础上,继续参考图6对静电放电支路30包括一PMOS管时的情况进行说明。On the basis of
静电放电支路包括:一PMOS元件。PMOS元件包括栅极、第一电极、第二电极和衬底。其中,栅极连接到栅极触发信号产生电路的输出端;第一电极为漏极,连接到地;第二电极连为源极,连接到电源;衬底连接到衬底触发信号产生电路的输出端。The electrostatic discharge branch circuit includes: a PMOS element. The PMOS element includes a gate, a first electrode, a second electrode and a substrate. Wherein, the gate is connected to the output end of the gate trigger signal generating circuit; the first electrode is the drain and is connected to the ground; the second electrode is connected as the source and is connected to the power supply; the substrate is connected to the substrate trigger signal generating circuit output.
一种实施方式中,栅极触发信号产生电路10包括:第一检测电路。In one implementation manner, the gate trigger
第一检测电路包括:一第一电阻元件和一第一电容元件。第一电阻元件的一端连接到电源,第一电容元件的一端连接至第一电阻元件的另一端,第一电容元件的另一端连接到地VSS。The first detection circuit includes: a first resistance element and a first capacitance element. One end of the first resistive element is connected to the power supply, one end of the first capacitive element is connected to the other end of the first resistive element, and the other end of the first capacitive element is connected to the ground VSS.
PMOS管的栅极连接到第一检测电路的第一电阻元件和第一电容元件之间。The gate of the PMOS transistor is connected between the first resistance element and the first capacitance element of the first detection circuit.
另一种实施方式中,如图6所示,栅极触发信号产生电路10包括:第一检测电路101和同相电路102。In another implementation manner, as shown in FIG. 6 , the gate trigger
第一检测电路101包括:一第一电阻元件和一第一电容元件;第一电阻元件的一端连接到电源VCC,第一电容元件的一端连接至第一电阻元件的另一端,第一电容元件的另一端连接到地VCC;The
同相电路由偶数个反相器级联而成,包括输入端和输出端,同相电路的输入端连接到第一电阻元件和第一电容元件之间,输出端连接到PMOS元件的栅极。The non-inverting circuit is formed by cascading an even number of inverters, including an input terminal and an output terminal. The input terminal of the non-inverting circuit is connected between the first resistance element and the first capacitive element, and the output end is connected to the gate of the PMOS element.
如图7所示,衬底触发信号产生电路包括:第二检测电路201、缓冲器203、第三检测电路202、逻辑门204和反相电路205;As shown in FIG. 7, the substrate trigger signal generation circuit includes: a
其中,第二检测电路201、缓冲器203、第三检测电路202和逻辑门201与实施例2中所述的一致,不再叙述。Wherein, the
反相电路205由奇数个反相器级联而成,包括输入端和输出端,反相电路的输入端连接到逻辑门的输出端,反相电路的输出端连接到PMOS管的衬底。The
上述中,第一检测电路的第一电阻元件和第一电容元件的时间常数为第一时间常数,第二检测电路的第二电阻元件和第二电容元件的时间常数为第二时间常数,第三检测电路的第三电阻元件和第三电容元件的时间常数为第三时间常数;In the above, the time constant of the first resistive element and the first capacitive element of the first detection circuit is the first time constant, the time constant of the second resistive element and the second capacitive element of the second detection circuit is the second time constant, the second The time constant of the third resistive element and the third capacitive element of the three detection circuits is a third time constant;
第一时间常数大于静电放电电压的上升时间,小于静电放电电压的持续时间;第三时间常数大于静电放电电压的持续时间;第二时间常数大于或等于静电放电电压的上升时间,小于第三时间常数,衬底触发信号的反应时间与第二时间常数有关。The first time constant is greater than the rise time of the electrostatic discharge voltage and less than the duration of the electrostatic discharge voltage; the third time constant is greater than the duration of the electrostatic discharge voltage; the second time constant is greater than or equal to the rise time of the electrostatic discharge voltage and less than the third time constant, the response time of the substrate trigger signal is related to the second time constant.
以上内容是结合具体的实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。The above content is a further detailed description of the present invention in conjunction with specific embodiments, and it cannot be assumed that the specific implementation of the present invention is limited to these descriptions. For those of ordinary skill in the technical field of the present invention, without departing from the concept of the present invention, some simple deduction or replacement can be made, which should be regarded as belonging to the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110132583.XA CN102185301B (en) | 2011-05-20 | 2011-05-20 | Static discharge ESD protective circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110132583.XA CN102185301B (en) | 2011-05-20 | 2011-05-20 | Static discharge ESD protective circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102185301A true CN102185301A (en) | 2011-09-14 |
CN102185301B CN102185301B (en) | 2014-04-02 |
Family
ID=44571394
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201110132583.XA Active CN102185301B (en) | 2011-05-20 | 2011-05-20 | Static discharge ESD protective circuit |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102185301B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106786455A (en) * | 2015-12-16 | 2017-05-31 | 成都芯源系统有限公司 | Esd protection circuit |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6566715B1 (en) * | 2000-08-08 | 2003-05-20 | Taiwan Semiconductor Manufacturing Co., Ltd. | Substrate-triggered technique for on-chip ESD protection circuit |
US20030133237A1 (en) * | 2001-09-03 | 2003-07-17 | Kei-Kang Hung | Power-rail electrostatic discharge protection circuit with a dual trigger design |
US20060044716A1 (en) * | 2004-08-31 | 2006-03-02 | Taiwan Semiconductor Manufacturing Co., Ltd. | ESD protection circuit with improved trigger-on voltage |
CN101442869A (en) * | 2007-11-23 | 2009-05-27 | 上海华虹Nec电子有限公司 | Dynamic detection electrostatic protection circuit |
-
2011
- 2011-05-20 CN CN201110132583.XA patent/CN102185301B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6566715B1 (en) * | 2000-08-08 | 2003-05-20 | Taiwan Semiconductor Manufacturing Co., Ltd. | Substrate-triggered technique for on-chip ESD protection circuit |
US20030133237A1 (en) * | 2001-09-03 | 2003-07-17 | Kei-Kang Hung | Power-rail electrostatic discharge protection circuit with a dual trigger design |
US20060044716A1 (en) * | 2004-08-31 | 2006-03-02 | Taiwan Semiconductor Manufacturing Co., Ltd. | ESD protection circuit with improved trigger-on voltage |
CN101442869A (en) * | 2007-11-23 | 2009-05-27 | 上海华虹Nec电子有限公司 | Dynamic detection electrostatic protection circuit |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106786455A (en) * | 2015-12-16 | 2017-05-31 | 成都芯源系统有限公司 | Esd protection circuit |
CN106786455B (en) * | 2015-12-16 | 2019-01-15 | 成都芯源系统有限公司 | ESD protection circuit |
Also Published As
Publication number | Publication date |
---|---|
CN102185301B (en) | 2014-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104319275B (en) | Electrostatic discharge protection circuit | |
US9425616B2 (en) | RC triggered ESD protection device | |
US20070171587A1 (en) | Esd protection circuit with feedback technique | |
US7982523B2 (en) | Electro static discharge clamping device | |
CN101944530B (en) | An ESD protection circuit with a control circuit for an integrated circuit | |
CN103151350B (en) | The trigger circuit structure of ic power rail antistatic protection | |
CN103606548B (en) | A kind of high-voltage ESD protective device of little time stagnant SCR structure of Zener breakdown | |
CN113451293B (en) | Electrostatic discharge protection circuit | |
US9048101B2 (en) | ESD protection circuit | |
TWI678042B (en) | Electrostatic discharge protection system | |
CN103107528A (en) | Power clamping electrostatic discharge protection circuit | |
CN104753055A (en) | Electrostatic discharge protection circuit | |
CN102543963B (en) | An ESD Detection Clamp Circuit Based on Multilevel Current Mirror | |
CN104242286A (en) | Clamp ESD protection circuit for low-leakage power supply | |
CN104409456A (en) | SOI ESD two-stage protection network | |
CN102222669B (en) | Silicon controlled rectifier used for ESD protection | |
CN107039422A (en) | A kind of ESD full-chip protection circuit of integrated circuit | |
CN102148241B (en) | Coupling-capacitor triggered silicon controlled device | |
CN102185301A (en) | Static discharge ESD protective circuit | |
TWI806588B (en) | The novel voltage detection power clamp circuit for power eos event | |
CN106099887A (en) | A kind of high pressure resistant RC trigger-type ESD circuit | |
CN109216344B (en) | High-voltage electrostatic protection circuit with low-voltage base electrode triggering electrostatic current discharge circuit | |
CN110400798A (en) | A fast discharge RC type ESD protection circuit | |
CN102064813A (en) | Latching prevention circuit | |
CN114123147A (en) | An electrostatic discharge protection module for chip and device thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20110914 Assignee: GUANGDONG SHENHAI INFORMATION TECHNOLOGY Co.,Ltd. Assignor: PEKING University SHENZHEN GRADUATE SCHOOL Contract record no.: X2024980000614 Denomination of invention: ESD protection circuit for electrostatic discharge Granted publication date: 20140402 License type: Common License Record date: 20240112 |
|
EE01 | Entry into force of recordation of patent licensing contract | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20110914 Assignee: Shenzhen Dewei Chenxin Technology Co.,Ltd. Assignor: PEKING University SHENZHEN GRADUATE SCHOOL Contract record no.: X2024980002378 Denomination of invention: ESD protection circuit for electrostatic discharge Granted publication date: 20140402 License type: Common License Record date: 20240301 |
|
EE01 | Entry into force of recordation of patent licensing contract | ||
EE01 | Entry into force of recordation of patent licensing contract | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20110914 Assignee: SHENZHEN BLANDE TECHNOLOGY Co.,Ltd. Assignor: PEKING University SHENZHEN GRADUATE SCHOOL Contract record no.: X2024980003687 Denomination of invention: ESD protection circuit for electrostatic discharge Granted publication date: 20140402 License type: Common License Record date: 20240401 |
|
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20110914 Assignee: SHENZHEN ANYCUBIC TECHNOLOGY Co.,Ltd. Assignor: PEKING University SHENZHEN GRADUATE SCHOOL Contract record no.: X2024980004057 Denomination of invention: ESD protection circuit for electrostatic discharge Granted publication date: 20140402 License type: Common License Record date: 20240408 Application publication date: 20110914 Assignee: Shenzhen Yingchuang energy and Environment Technology Co.,Ltd. Assignor: PEKING University SHENZHEN GRADUATE SCHOOL Contract record no.: X2024980004051 Denomination of invention: ESD protection circuit for electrostatic discharge Granted publication date: 20140402 License type: Common License Record date: 20240408 |
|
EE01 | Entry into force of recordation of patent licensing contract | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20110914 Assignee: Deda medical (Hunan) Co.,Ltd. Assignor: PEKING University SHENZHEN GRADUATE SCHOOL Contract record no.: X2024980005640 Denomination of invention: ESD protection circuit for electrostatic discharge Granted publication date: 20140402 License type: Common License Record date: 20240513 |
|
EE01 | Entry into force of recordation of patent licensing contract | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20110914 Assignee: Shenzhen Jinghua Display Technology Co.,Ltd. Assignor: PEKING University SHENZHEN GRADUATE SCHOOL Contract record no.: X2024980007545 Denomination of invention: ESD protection circuit for electrostatic discharge Granted publication date: 20140402 License type: Common License Record date: 20240619 |
|
EE01 | Entry into force of recordation of patent licensing contract | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20110914 Assignee: Shenzhen Olanders Environmental Protection Technology Co.,Ltd. Assignor: PEKING University SHENZHEN GRADUATE SCHOOL Contract record no.: X2024980010683 Denomination of invention: Electrostatic discharge ESD protection circuit Granted publication date: 20140402 License type: Common License Record date: 20240725 |
|
EE01 | Entry into force of recordation of patent licensing contract | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20110914 Assignee: SHENZHEN CITY RUI PINE ELECTRIC APPLIANCE CO.,LTD. Assignor: PEKING University SHENZHEN GRADUATE SCHOOL Contract record no.: X2024980036768 Denomination of invention: Electrostatic discharge ESD protection circuit Granted publication date: 20140402 License type: Common License Record date: 20241213 |
|
EE01 | Entry into force of recordation of patent licensing contract | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20110914 Assignee: Dongguan Xieheng Electronic Technology Co.,Ltd. Assignor: PEKING University SHENZHEN GRADUATE SCHOOL Contract record no.: X2025980002684 Denomination of invention: Electrostatic discharge ESD protection circuit Granted publication date: 20140402 License type: Common License Record date: 20250122 Application publication date: 20110914 Assignee: Shenzhen xunengda Electric Technology Co.,Ltd. Assignor: PEKING University SHENZHEN GRADUATE SCHOOL Contract record no.: X2025980001885 Denomination of invention: Electrostatic discharge ESD protection circuit Granted publication date: 20140402 License type: Common License Record date: 20250117 |