CN102157746B - Jet air supply type single-chamber solid oxide fuel cell stack - Google Patents
Jet air supply type single-chamber solid oxide fuel cell stack Download PDFInfo
- Publication number
- CN102157746B CN102157746B CN2011100574661A CN201110057466A CN102157746B CN 102157746 B CN102157746 B CN 102157746B CN 2011100574661 A CN2011100574661 A CN 2011100574661A CN 201110057466 A CN201110057466 A CN 201110057466A CN 102157746 B CN102157746 B CN 102157746B
- Authority
- CN
- China
- Prior art keywords
- gas
- anode
- cathode
- porous
- pipe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 68
- 239000007787 solid Substances 0.000 title claims abstract description 34
- 239000007789 gas Substances 0.000 claims abstract description 67
- 238000009423 ventilation Methods 0.000 claims abstract description 57
- 239000012495 reaction gas Substances 0.000 claims abstract description 39
- 238000009792 diffusion process Methods 0.000 claims abstract description 6
- 239000000463 material Substances 0.000 claims description 25
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 24
- 239000001301 oxygen Substances 0.000 claims description 24
- 229910052760 oxygen Inorganic materials 0.000 claims description 24
- 239000003792 electrolyte Substances 0.000 claims description 18
- 229910052751 metal Inorganic materials 0.000 claims description 18
- 239000002184 metal Substances 0.000 claims description 16
- 239000003085 diluting agent Substances 0.000 claims description 15
- 239000002131 composite material Substances 0.000 claims description 13
- 238000005520 cutting process Methods 0.000 claims description 9
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 8
- 239000007769 metal material Substances 0.000 claims description 8
- 229910010293 ceramic material Inorganic materials 0.000 claims description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 6
- 229910052742 iron Inorganic materials 0.000 claims description 6
- 229910052746 lanthanum Inorganic materials 0.000 claims description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 5
- 239000000919 ceramic Substances 0.000 claims description 5
- 238000005245 sintering Methods 0.000 claims description 5
- 229910001220 stainless steel Inorganic materials 0.000 claims description 5
- 239000010935 stainless steel Substances 0.000 claims description 5
- 229910052723 transition metal Inorganic materials 0.000 claims description 5
- 229910052788 barium Inorganic materials 0.000 claims description 4
- 229910052791 calcium Inorganic materials 0.000 claims description 4
- 229910052747 lanthanoid Inorganic materials 0.000 claims description 4
- 150000002602 lanthanoids Chemical class 0.000 claims description 4
- 229910052748 manganese Inorganic materials 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 229910052712 strontium Inorganic materials 0.000 claims description 4
- 229910052719 titanium Inorganic materials 0.000 claims description 4
- 239000000956 alloy Substances 0.000 claims description 3
- 229910045601 alloy Inorganic materials 0.000 claims description 3
- 239000003795 chemical substances by application Substances 0.000 claims description 3
- 239000011248 coating agent Substances 0.000 claims description 3
- 238000000576 coating method Methods 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims description 3
- 238000003466 welding Methods 0.000 claims description 3
- 229910052693 Europium Inorganic materials 0.000 claims description 2
- 229910052688 Gadolinium Inorganic materials 0.000 claims description 2
- 229910052779 Neodymium Inorganic materials 0.000 claims description 2
- 229910052777 Praseodymium Inorganic materials 0.000 claims description 2
- 229910052772 Samarium Inorganic materials 0.000 claims description 2
- 239000010406 cathode material Substances 0.000 claims description 2
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 claims description 2
- 229910000420 cerium oxide Inorganic materials 0.000 claims description 2
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 claims description 2
- 229910052804 chromium Inorganic materials 0.000 claims description 2
- 229910017052 cobalt Inorganic materials 0.000 claims description 2
- 239000010941 cobalt Substances 0.000 claims description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 2
- 229910052802 copper Inorganic materials 0.000 claims description 2
- 239000002001 electrolyte material Substances 0.000 claims description 2
- LNTHITQWFMADLM-UHFFFAOYSA-N gallic acid Chemical compound OC(=O)C1=CC(O)=C(O)C(O)=C1 LNTHITQWFMADLM-UHFFFAOYSA-N 0.000 claims description 2
- -1 iron transition metals Chemical class 0.000 claims description 2
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 claims description 2
- 229910052749 magnesium Inorganic materials 0.000 claims description 2
- 229910052750 molybdenum Inorganic materials 0.000 claims description 2
- 229910052574 oxide ceramic Inorganic materials 0.000 claims description 2
- 239000011224 oxide ceramic Substances 0.000 claims description 2
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 claims description 2
- 230000009467 reduction Effects 0.000 claims description 2
- 239000007784 solid electrolyte Substances 0.000 claims description 2
- 229910052720 vanadium Inorganic materials 0.000 claims description 2
- 229910052727 yttrium Inorganic materials 0.000 claims description 2
- 229910052725 zinc Inorganic materials 0.000 claims description 2
- 238000004026 adhesive bonding Methods 0.000 claims 1
- 150000001875 compounds Chemical class 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 abstract description 4
- 238000010248 power generation Methods 0.000 abstract description 3
- 230000005611 electricity Effects 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 14
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 239000010445 mica Substances 0.000 description 4
- 229910052618 mica group Inorganic materials 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- DTDCCPMQHXRFFI-UHFFFAOYSA-N dioxido(dioxo)chromium lanthanum(3+) Chemical compound [La+3].[La+3].[O-][Cr]([O-])(=O)=O.[O-][Cr]([O-])(=O)=O.[O-][Cr]([O-])(=O)=O DTDCCPMQHXRFFI-UHFFFAOYSA-N 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 238000003487 electrochemical reaction Methods 0.000 description 2
- 239000002737 fuel gas Substances 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 239000003566 sealing material Substances 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 210000003437 trachea Anatomy 0.000 description 2
- 230000003749 cleanliness Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000003361 porogen Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
Abstract
射流供气式单气室固体氧化物燃料电池组,属于电化学发电领域。它解决了现有单气室固体氧化物燃料电池组中连接片阻挡了反应气体向电极表面的反应区扩散,使得电池各部位的性能受到影响的问题。方案一:第一通气管和第二通气管并列穿设在绝缘支撑体上,电池组设置在绝缘支撑体上,且电池组位于第一通气管和第二通气管之间,单电池之间通过导电连接体连接,第一通气管上开有第一通气孔,第二通气管上开有第二通气孔;方案二:反应气体输送管穿设在绝缘支撑体上,反应气体输送管的两侧各开有多个输送口,反应气体输送管两侧的输送口错位排布,单电池为电解质支撑的电极共面电池,多个单电池分列在反应气体输送管的两侧。本发明用于发电。
The utility model relates to a solid oxide fuel cell stack of a jet-flow gas-supply single-gas chamber, which belongs to the field of electrochemical power generation. It solves the problem that in the existing single-chamber solid oxide fuel cell group, the connecting piece blocks the diffusion of the reaction gas to the reaction area on the electrode surface, so that the performance of each part of the cell is affected. Option 1: The first ventilation pipe and the second ventilation pipe are arranged side by side on the insulating support body, the battery pack is arranged on the insulating support body, and the battery pack is located between the first ventilation pipe and the second ventilation pipe, and between the single cells Connected by a conductive connector, the first ventilation pipe is provided with a first ventilation hole, and the second ventilation pipe is provided with a second ventilation hole; Scheme 2: The reaction gas delivery pipe is installed on the insulating support body, and the reaction gas delivery pipe There are multiple delivery ports on both sides, and the delivery ports on both sides of the reaction gas delivery pipe are arranged in a dislocation manner. The single cell is an electrolyte-supported electrode coplanar battery, and multiple single cells are arranged on both sides of the reaction gas delivery pipe. The invention is used to generate electricity.
Description
技术领域 technical field
本发明涉及一种单气室固体氧化物燃料电池组,属于电化学发电领域。The invention relates to a single-chamber solid oxide fuel cell group, which belongs to the field of electrochemical power generation.
背景技术 Background technique
固体氧化物燃料电池(SOFC)是一种可以直接把燃料的化学能转换为电能的发电装置,具有高效、清洁和燃料来源广泛等优点,被认为是今后新能源应用的主要方向之一。单电池主要由电解质、阴极和阳极组成。由于单电池的电压和电流值输出有限,要想获得较高的输出电压和输出电流以达到实用价值,需要将单电池串联成电池组。传统双气室结构的SOFC具有两个气室,其中阳极气室中为燃料气体,阴极气室中为氧气(或空气),两个气室被电解质隔开。为了避免燃料的泄漏和与氧气的混合,要求电解质相对致密不透气,且边界处还必须用封接材料进行密封。在构成电池组时需要很多个气室且每个气室通入各自的反应气体,使系统的结构变得十分复杂,极大的增加了制作难度。而密封材料又存在与电池部件之间的匹配等问题,多个气室的密封过程复杂,因此双气室SOFC电池组对材料和制作工艺的要求很高。Solid oxide fuel cell (SOFC) is a power generation device that can directly convert the chemical energy of fuel into electrical energy. It has the advantages of high efficiency, cleanliness, and wide range of fuel sources. It is considered to be one of the main directions of new energy applications in the future. A single cell is mainly composed of electrolyte, cathode and anode. Due to the limited voltage and current output of single cells, in order to obtain higher output voltage and output current to achieve practical value, it is necessary to connect single cells in series to form a battery pack. The SOFC with the traditional double-chamber structure has two gas chambers, where fuel gas is in the anode gas chamber, oxygen (or air) is in the cathode gas chamber, and the two gas chambers are separated by an electrolyte. In order to avoid fuel leakage and mixing with oxygen, the electrolyte is required to be relatively dense and airtight, and the boundary must also be sealed with a sealing material. When forming a battery pack, many gas chambers are required, and each gas chamber is fed with its own reaction gas, which makes the structure of the system very complicated and greatly increases the difficulty of manufacture. However, there are problems such as matching between the sealing material and the battery components, and the sealing process of multiple gas chambers is complicated. Therefore, the dual-gas chamber SOFC battery pack has high requirements on materials and manufacturing processes.
单气室固体氧化物燃料电池(SC-SOFC)是将电池的阴极和阳极放置于同一个反应气室中,反应气室里面通入包含燃料和氧气的混合气体,利用阴极和阳极对混合气氛选择性催化差异所产生的电动势进行工作。单气室固体氧化物燃料电池突出特点是整个电池都处在燃料和空气的混合气氛下,因此与传统SOFC相比,SC-SOFC具有无需密封、结构简单、热启动快,以及便于组装电池组等优点。对于此类SOFC,专利号为ZL200610009799.6的中国发明专利“一种单气室固体氧化物燃料电池串联电池组”采用多个单电池依次堆迭、串联形成电池组。电池组是在一个方向上延伸,围绕着电池组的干路气流沿着与电极面垂直的方向缓慢流动,反应气体再沿着垂直于干路气流方向扩散到电池表面。该设计整个空间中的气体分布不均匀,因为随着电池的电化学反应、燃料部分氧化反应以及燃料气体与氧气直接反应的不断进行,电池组的前端和后端电池的工作气氛相差很大,对电池组的输出性能具有很大的影响,这使得电池堆叠的数目不能太多,因而不利于电池组的放大,其空间利用率也不高。专利号为ZL200810064668.7的中国发明专利“阵列式单气室固体氧化物燃料电池组模块”则提出了一种将多个单电池按照阵列式排布的电池组,这种设计结构紧凑,空间利用率较高,但电池组的实际气体流场较复杂,反应气体很难均匀地到达各个单电池的阴极和阳极,导致部分电池性能受到影响,进而降低电池组的输出电压和输出功率。申请号为201010261152.9的中国发明专利“具有双气路通道的无密封固体氧化物燃料电池组”采用两个通气管分别输送富燃料气体和富氧气体,富燃料通气管和富氧通气管分布均匀的通气口来分散气体,使到达各个单电池的反应气体比较均匀,但是由于使用带孔的金属薄片作为连接片,与电极表面发生大面积接触的连接片阻挡了反应气体向电极表面的反应区扩散,不利于电池性能的发挥和燃料的充分利用。另外,弯折成Z形或V形的金属连接片的存在,还会影响反应气体在电极附近的流动速率和流动方向,也会使电池各部位的性能受到不同程度的影响。Single-chamber solid oxide fuel cell (SC-SOFC) is to place the cathode and anode of the battery in the same reaction gas chamber. The reaction gas chamber is filled with a mixed gas containing fuel and oxygen, and the cathode and anode are used to pair the mixed atmosphere. The electromotive force generated by the selective catalytic difference works. The outstanding feature of a single-chamber solid oxide fuel cell is that the entire cell is in a mixed atmosphere of fuel and air. Therefore, compared with traditional SOFC, SC-SOFC has the advantages of no need for sealing, simple structure, fast thermal start, and easy assembly of battery packs. Etc. For this type of SOFC, the Chinese invention patent No. ZL200610009799.6 "A single-chamber solid oxide fuel cell series battery pack" uses multiple single cells to be stacked in sequence and connected in series to form a battery pack. The battery pack extends in one direction, and the dry gas flow around the battery pack flows slowly along the direction perpendicular to the electrode surface, and the reactant gas then diffuses to the battery surface along the direction perpendicular to the dry air flow. The gas distribution in the entire space of this design is not uniform, because the working atmosphere of the front-end and back-end cells of the battery pack is very different as the electrochemical reaction of the battery, the partial oxidation reaction of the fuel, and the direct reaction of the fuel gas with oxygen continue to proceed, It has a great impact on the output performance of the battery pack, which makes the number of battery stacks not too large, which is not conducive to the enlargement of the battery pack, and its space utilization rate is not high. The Chinese invention patent "array type single chamber solid oxide fuel cell module" with the patent number ZL200810064668.7 proposes a battery pack in which multiple single cells are arranged in an array. This design is compact in structure and space-saving. The utilization rate is high, but the actual gas flow field of the battery pack is complex, and it is difficult for the reaction gas to evenly reach the cathode and anode of each single cell, which affects the performance of some batteries, thereby reducing the output voltage and output power of the battery pack. The Chinese invention patent with application number 201010261152.9 "unsealed solid oxide fuel cell stack with dual gas channels" uses two vent pipes to transport fuel-rich gas and oxygen-rich gas respectively, and the fuel-rich vent pipe and oxygen-rich vent pipe are evenly distributed The air vents are used to disperse the gas, so that the reaction gas reaching each single cell is more uniform, but because the metal sheet with holes is used as the connecting piece, the connecting piece that has a large area of contact with the electrode surface blocks the reaction area of the reaction gas from the electrode surface Diffusion is not conducive to the performance of the battery and the full utilization of the fuel. In addition, the existence of the metal connecting piece bent into a Z shape or a V shape will also affect the flow rate and flow direction of the reactant gas near the electrodes, and will also affect the performance of various parts of the battery to varying degrees.
发明内容 Contents of the invention
本发明的目的是为了解决现有的单气室固体氧化物燃料电池组中连接片阻挡了反应气体向电极表面的反应区扩散,不利于电池性能的发挥和燃料的充分利用,影响反应气体在电极附近的流动速率和流动方向,使得电池各部位的性能受到影响的问题,提供一种射流供气式单气室固体氧化物燃料电池组。The purpose of the present invention is to solve the problem that the connecting piece in the existing single-gas chamber solid oxide fuel cell stack blocks the diffusion of the reaction gas to the reaction zone on the electrode surface, which is not conducive to the performance of the battery and the full utilization of the fuel, and affects the reaction gas in the battery. The flow rate and flow direction near the electrode affect the performance of each part of the battery, and a jet gas supply type single-chamber solid oxide fuel cell stack is provided.
本发明的技术方案一是:射流供气式单气室固体氧化物燃料电池组包括阳极引线、阴极引线、第一通气管、第二通气管和多个单电池,所述射流供气式单气室固体氧化物燃料电池组还包括绝缘支撑体和多个导电连接体,所述第一通气管和第二通气管相对并列穿设在绝缘支撑体上,所述绝缘支撑体上开有多个定位槽,多个定位槽由上至下等距离排布,且多个定位槽位于第一通气管和第二通气管之间,每个定位槽内设置有一个单电池,相邻的两个单电池之间通过导电连接体连接构成电池组,第一通气管的侧壁上开有多个第一通气孔,多个第一通气孔等大等距离排布,第二通气管与第一通气管相对的侧壁上开有多个第二通气孔,多个第二通气孔等大等距离排布,且每个单电池的多孔阳极与一个或多个第一通气孔相对应,每个单电池的多孔阴极与一个或多个第二通气孔相对应,所述电池组的阳极通过阳极引线引出,所述电池组的阴极通过阴极引线引出,第一通气管中通入燃料、燃料和稀释气体组成的混合气体或者燃料、氧气和稀释气体的混合气体,第二通气管中通入氧气、氧气和稀释气体组成的混合气体或者燃料、氧气和稀释气体的混合气体,第一通气孔的切割方向与单电池的多孔阳极的表面垂直,由第一通气孔喷出的气体垂直喷射在单电池的多孔阳极的表面上,第二通气孔的切割方向与单电池的多孔阴极的表面垂直,由第二通气孔喷出的气体垂直喷射在单电池的多孔阴极的表面上;所述的单电池由多孔阳极、电解质层和多孔阴极三个部分组成,多孔阳极和多孔阴极分列在电解质层的上端面和下端面上。The first technical solution of the present invention is: the jet gas-supplied single-chamber solid oxide fuel cell stack includes an anode lead, a cathode lead, a first ventilation pipe, a second ventilation pipe and a plurality of single cells, and the jet gas-supply single chamber The plenum solid oxide fuel cell stack also includes an insulating support and a plurality of conductive connectors, the first vent pipe and the second vent pipe are relatively juxtaposed on the insulating support, and the insulating support has multiple openings. A plurality of positioning slots are arranged equidistantly from top to bottom, and the plurality of positioning slots are located between the first ventilation pipe and the second ventilation pipe, each positioning slot is provided with a single battery, and the adjacent two The single cells are connected through conductive connectors to form a battery pack. A plurality of first ventilation holes are opened on the side wall of the first ventilation pipe, and the plurality of first ventilation holes are arranged at equal distances. The second ventilation pipe and the first ventilation pipe are arranged at equal distances. A plurality of second ventilation holes are opened on the opposite side wall of the ventilation pipe, and the plurality of second ventilation holes are arranged at equal distances, and the porous anode of each single cell corresponds to one or more first ventilation holes, The porous cathode of each single cell corresponds to one or more second vent holes, the anode of the battery pack is drawn out through the anode lead, the cathode of the battery pack is drawn out through the cathode lead, and fuel, The mixed gas composed of fuel and diluent gas or the mixed gas of fuel, oxygen and diluent gas, the second ventilation pipe is fed with the mixed gas composed of oxygen, oxygen and diluent gas or the mixed gas of fuel, oxygen and diluent gas, the first The cutting direction of the air hole is perpendicular to the surface of the porous anode of the single cell, the gas ejected from the first vent hole is vertically sprayed on the surface of the porous anode of the single cell, and the cutting direction of the second vent hole is perpendicular to the surface of the porous cathode of the single cell Vertically, the gas ejected from the second air hole is vertically sprayed on the surface of the porous cathode of the single cell; the single cell is composed of three parts: porous anode, electrolyte layer and porous cathode, and the porous anode and porous cathode are arranged in the The upper and lower end faces of the electrolyte layer.
本发明的技术方案二是:射流供气式单气室固体氧化物燃料电池组包括阳极引线、阴极引线和多个单电池,所述射流供气式单气室固体氧化物燃料电池组还包括绝缘支撑体、反应气体输送管和多个导电连接体,所述反应气体输送管穿设在绝缘支撑体上,反应气体输送管的两侧各开有多个等大的输送口,且反应气体输送管两侧的输送口错位排布,反应气体输送管同侧的输送口由上至下等距离排布,所述绝缘支撑体上开有多个定位槽,每个定位槽均与一个输送口相对应,每个定位槽内设置有一个单电池,多个单电池通过多个导电连接体连接构成电池组,所述单电池为电解质支撑的电极共面电池,电解质支撑的电极共面电池由多孔阳极、电解质层和多孔阴极三个部分组成,多孔阳极和多孔阴极均在电解质层的同侧端面上,所述电池组的阳极通过阳极引线引出,所述电池组的阴极通过阴极引线引出,反应气体输送管中通入燃料、氧气和稀释气体的混合气体,输送口的切割方向与单电池的多孔阳极和多孔阴极的表面垂直,由输送口喷出的气体垂直喷射在单电池的多孔阳极和多孔阴极的表面上。The second technical solution of the present invention is: the jet gas-supplied single-gas chamber solid oxide fuel cell stack includes an anode lead, a cathode lead and a plurality of single cells, and the jet gas-supplied single-gas chamber solid oxide fuel cell stack also includes An insulating support body, a reaction gas delivery pipe and a plurality of conductive connectors, the reaction gas delivery pipe is perforated on the insulating support body, a plurality of equal-sized delivery ports are opened on both sides of the reaction gas delivery pipe, and the reaction gas The delivery ports on both sides of the delivery pipe are arranged in dislocation, and the delivery ports on the same side of the reaction gas delivery pipe are arranged equidistantly from top to bottom. There are multiple positioning slots on the insulating support, and each positioning slot is connected to a delivery Corresponding to the mouth, each positioning groove is provided with a single cell, and multiple single cells are connected through a plurality of conductive connectors to form a battery pack. It consists of three parts: porous anode, electrolyte layer and porous cathode. Both the porous anode and the porous cathode are on the same side of the electrolyte layer. The anode of the battery pack is drawn out through the anode lead, and the cathode of the battery pack is drawn out through the cathode lead. , the mixed gas of fuel, oxygen and diluent gas is passed into the reaction gas delivery pipe, the cutting direction of the delivery port is perpendicular to the surface of the porous anode and the porous cathode of the single cell, and the gas ejected from the delivery port is vertically sprayed on the porous surface of the single cell on the surface of the anode and the porous cathode.
本发明与现有技术相比具有以下有益效果:本发明的射流供气式单气室固体氧化物燃料电池组使各个单电池处于均匀一致的反应气体中,消除了各电池之间气体组分的差异,同时反应气体直接喷射到单电池的电极表面有助于反应气体和电极表面充分接触,利于燃料利用率的提高。Compared with the prior art, the present invention has the following beneficial effects: the jet gas-supply single-chamber solid oxide fuel cell stack of the present invention makes each single cell in a uniform reaction gas, eliminating the gas components between the cells At the same time, the reaction gas is directly injected to the electrode surface of the single cell to help the reaction gas and the electrode surface fully contact, which is beneficial to the improvement of fuel utilization.
附图说明 Description of drawings
图1是本发明的射流供气式单气室固体氧化物燃料电池组的结构示意图,图2是绝缘支撑体4的结构示意图,图3是阳极支撑型单电池结构示意图,图4是电解质支撑型电极异面单电池结构示意图,图5是阴极支撑型单电池结构示意图,图6是截面为圆形的单电池的结构示意图,图7是截面为正方形的单电池的结构示意图,图8是截面为长方形的单电池的结构示意图,图9是截面为梯形的单电池的结构示意图,图10是具体实施方式八中截面为圆形的第一通气管2的结构示意图,图11是具体实施方式八中截面为正方形的第一通气管2的结构示意图,图12是具体实施方式八中截面为长方形的第一通气管2的结构示意图,图13是具体实施方式八中截面为圆形的第二通气管3的结构示意图,图14是具体实施方式八中截面为正方形的第二通气管3的结构示意图,图15是具体实施方式八中截面为长方形的第二通气管3的结构示意图,图16是具体实施方式九中第一通气孔2-1为矩形的第一通气管2结构示意图,图17是具体实施方式九中第一通气孔2-1为三角形的第一通气管2结构示意图,图18是具体实施方式九中第二通气孔3-1为矩形的第二通气管3结构示意图,图19是具体实施方式九中第二通气孔3-1为三角形的第二通气管3结构示意图,图20是具体实施方式十中单电池1与绝缘支撑体4之间的位置关系侧视图,图21是具体实施方式十中的单电池1与绝缘支撑体4之间的位置关系截面图,图22是具体实施方式九中第一通气孔2-1和第二通气孔3-1的形状还为冲钻的圆孔状时第一通气管2和第二通气管3的位置关系示意图,图23是具体实施方式十一中电解质支撑的电极共面电池俯视图,图24是图23的仰视图,图25是具体实施方式十一中射流供气式单气室固体氧化物燃料电池组的结构示意图,图26是具体实施方式十一中射流供气式单气室固体氧化物燃料电池组的绝缘支撑体4的结构图,图27是具体实施方式十六所述的本发明的输出特性曲线图(图中为放电特性曲线,为输出功率特性曲线)。Fig. 1 is a schematic structural view of a jet gas-supplied single-chamber solid oxide fuel cell stack of the present invention, Fig. 2 is a schematic structural view of an
具体实施方式 Detailed ways
具体实施方式一:结合图1至图5说明本实施方式,本实施方式的射流供气式单气室固体氧化物燃料电池组包括阳极引线5、阴极引线6、第一通气管2、第二通气管3和多个单电池1,所述射流供气式单气室固体氧化物燃料电池组还包括绝缘支撑体4和多个导电连接体7,所述第一通气管2和第二通气管3相对并列穿设在绝缘支撑体4上,所述绝缘支撑体4上开有多个定位槽4-1,多个定位槽4-1由上至下等距离排布,且多个定位槽4-1位于第一通气管2和第二通气管3之间,每个定位槽4-1内设置有一个单电池1,相邻的两个单电池1之间通过导电连接体7连接构成电池组,第一通气管2的侧壁上开有多个第一通气孔2-1,多个第一通气孔2-1等大等距离排布,第二通气管3与第一通气管2相对的侧壁上开有多个第二通气孔3-1,多个第二通气孔3-1等大等距离排布,且每个单电池1的多孔阳极1-1与一个或多个第一通气孔2-1相对应,每个单电池1的多孔阴极1-3与一个或多个第二通气孔3-1相对应,所述电池组的阳极通过阳极引线5引出,所述电池组的阴极通过阴极引线6引出,第一通气管2中通入燃料、燃料和稀释气体组成的混合气体或者燃料、氧气和稀释气体的混合气体,第二通气管3中通入氧气、氧气和稀释气体组成的混合气体或者燃料、氧气和稀释气体的混合气体,第一通气孔2-1的切割方向与单电池1的多孔阳极1-1的表面垂直,由第一通气孔2-1喷出的气体垂直喷射在单电池1的多孔阳极1-1的表面上,第二通气孔3-1的切割方向与单电池1的多孔阴极1-3的表面垂直,由第二通气孔3-1喷出的气体垂直喷射在单电池1的多孔阴极1-3的表面上。Specific Embodiment 1: This embodiment will be described with reference to FIG. 1 to FIG. 5. The jet gas-supplied single-chamber solid oxide fuel cell stack of this embodiment includes an
本实施方式所述的单电池1由多孔阳极1-1、电解质层1-2和多孔阴极1-3三个部分组成,多孔阳极1-1和多孔阴极1-3分列在电解质层1-2的上端面和下端面上。各个单电池1之间用导电连接体7相连,组装成一排具有双气路通道的电池组单元。第一通气管2和第二通气管3内分别通以一定流量的反应气体,从各第一通气孔2-1和第二通气孔3-1喷出的气体直接抵达单电池1的相应电极,第一通气孔2-1把反应气体喷到各单电池1的多孔阳极1-1表面,第二通气孔3-1把反应气体喷到各单电池1的多孔阴极1-3表面,这就使得到达各个单电池1电极表面的反应气体的流量和组分保持一致,使各个单电池1以相同的状态发生电化学反应。电池组的输出电流通过阳极引线5和阴极引线6引出。The
具体实施方式二:结合图3至图5说明本实施方式,本实施方式的单电池1为阳极支撑型燃料电池、电解质支撑型燃料电池或阴极支撑型燃料电池。其它组成及连接关系与实施方式一相同。Embodiment 2: This embodiment will be described with reference to FIG. 3 to FIG. 5 . The
具体实施方式三:结合图6至图9说明本实施方式,本实施方式的单电池1的横截面形状为圆形、正方形、长方形或梯形。其它组成及连接关系与实施方式一或二相同。Specific Embodiment Three: This embodiment is described with reference to FIG. 6 to FIG. 9 . The cross-sectional shape of the
具体实施方式四:结合图1、图3至图5说明本实施方式,本实施方式与实施方式一、二或三的不同之处在于:单电池1的多孔阳极1-1的材料为:镍、钴和铁过渡族金属的氧化物中的一种或几种进行混合,再与掺杂氧化锆或掺杂氧化铈以及造孔剂混合,经烧结和还原后形成的单质金属与氧化物陶瓷组成的复合材料;Specific Embodiment 4: This embodiment is described with reference to Fig. 1, Fig. 3 to Fig. 5. The difference between this embodiment and
或为对燃料具有选择催化作用的氧化物材料,包括La、Sr、Ba、Ca、Cr、Ti、Mg、Mo、Fe和Mn金属元素中的两种或多种成分的复合氧化物材料与造孔剂混合的复合材料;Or it is an oxide material with selective catalytic effect on fuel, including composite oxide materials and composite oxide materials of two or more components of La, Sr, Ba, Ca, Cr, Ti, Mg, Mo, Fe and Mn metal elements Composite materials mixed with porogens;
单电池1的电解质层1-2的材料为:掺杂氧化锆、掺杂氧化铈或者掺杂镓酸镧的固体电解质;The material of the electrolyte layer 1-2 of the
所述单电池1的多孔阴极1-3的材料为:具有ABO3或A2BO4通式的复合氧化物材料,或者具有ABO3或A2BO4通式的复合氧化物材料与电解质材料组成的复合阴极材料;其中O为氧元素,其中A位由一种或多种镧系稀土、碱土元素组成,所述镧系稀土包括La、Y、Pr、Nd、Sm、Eu和Gd,碱土元素包括Ca、Sr和Ba;B位为一种或多种过渡金属元素,包括Mn、Fe、Co、Ni、Cu、Ti、V和Zn。The material of the porous cathode 1-3 of the
具体实施方式五:结合图1说明本实施方式,本实施方式与具体实施方式一、二、三或四的不同之处在于:导电连接体7为耐高温耐氧化还原的导电金属材料、导电合金、氧化物导电陶瓷材料或带有氧化物涂层的金属材料,且导电连接体7为金属条带状或金属网格状。Embodiment 5: This embodiment is described in conjunction with FIG. 1. The difference between this embodiment and
本实施方式中的耐高温耐氧化还原的导电金属材料如金、银、铂或不锈钢;氧化物导电陶瓷材料如铬酸镧。In this embodiment, the high temperature resistant redox resistant conductive metal material such as gold, silver, platinum or stainless steel; the oxide conductive ceramic material such as lanthanum chromate.
具体实施方式六:结合图1说明本实施方式,本实施方式与具体实施方式一、二、三、四或五的不同之处在于:导电连接体7与单电池1之间采用导电胶粘结、扩散焊接或烧结的方式实现机械连接的同时实现电连接。Specific embodiment 6: This embodiment is described in conjunction with FIG. 1 . The difference between this embodiment and
具体实施方式七:结合图1说明本实施方式,本实施方式与具体实施方式一、二、三、四、五或六的不同之处在于:第一通气管2和第二通气管3的材料均为陶瓷、石英玻璃或者耐高温金属。Specific embodiment 7: This embodiment is described in conjunction with FIG. 1 . The difference between this embodiment and
本实施方式中的陶瓷、石英玻璃或者耐高温金属的化学稳定性好。本实施方式中的耐高温金属例如:不锈钢。The ceramics, quartz glass or high-temperature-resistant metals in this embodiment have good chemical stability. The high temperature resistant metal in this embodiment is, for example, stainless steel.
具体实施方式八:结合图10至图15说明本实施方式,本实施方式与具体实施方式一、二、三、四、五、六或七的不同之处在于:第一通气管2和第二通气管3的横截面形状均为圆形、正方形或者长方形。Embodiment 8: This embodiment is described with reference to FIGS. 10 to 15 . The difference between this embodiment and
具体实施方式九:结合图16至图19说明本实施方式,本实施方式与具体实施方式一、二、三、四、五、六、七或八的不同之处在于:第一通气孔2-1和第二通气孔3-1的形状均为矩形或者三角形。Specific embodiment nine: this embodiment is described in conjunction with Fig. 16 to Fig. 19. The difference between this embodiment and specific embodiment one, two, three, four, five, six, seven or eight is: the first air hole 2- 1 and the second ventilation holes 3-1 are both rectangular or triangular in shape.
本实施方式中的第一通气孔2-1和第二通气孔3-1的形状还可以为冲钻的圆孔状(参见图22)。The shapes of the first ventilation hole 2-1 and the second ventilation hole 3-1 in this embodiment may also be punched and drilled round holes (see FIG. 22 ).
具体实施方式十:结合图1和图2说明本实施方式,本实施方式与实施方式一、二、三、四、五、六、七、八或九不同之处在于:绝缘支撑体4的材料采用热传导快、耐高温且抗压强度高的材质。如陶瓷材质或云母板等,同时具备较低的热膨胀系数,优良的热稳定性,良好的抗热冲击性。例如:将单电池1镶嵌在云母板中,利用云母板将多孔阳极1-1和多孔阴极1-3的气氛在一定程度上隔离开(参见图20和图21)。Specific Embodiment Ten: This embodiment is described with reference to FIG. 1 and FIG. 2 . The difference between this embodiment and
具体实施方式十一:结合图23至图26说明本实施方式,本实施方式的射流供气式单气室固体氧化物燃料电池组包括阳极引线5、阴极引线6和多个单电池1,所述射流供气式单气室固体氧化物燃料电池组还包括绝缘支撑体4、反应气体输送管8和多个导电连接体7,所述反应气体输送管8穿设在绝缘支撑体4上,反应气体输送管8的两侧各开有多个等大的输送口8-1,且反应气体输送管8两侧的输送口8-1错位排布,反应气体输送管8同侧的输送口8-1由上至下等距离排布,所述绝缘支撑体4上开有多个定位槽4-1,每个定位槽4-1均与一个输送口8-1相对应,每个定位槽4-1内设置有一个单电池1,多个单电池1通过多个导电连接体7连接构成电池组,所述单电池1为电解质支撑的电极共面电池,电解质支撑的电极共面电池由多孔阳极1-1、电解质层1-2和多孔阴极1-3三个部分组成,多孔阳极1-1和多孔阴极1-3均在电解质层1-2的同侧端面上,所述电池组的阳极通过阳极引线5引出,所述电池组的阴极通过阴极引线6引出,反应气体输送管8中通入燃料、氧气和稀释气体的混合气体,输送口8-1的切割方向与单电池1的多孔阳极1-1和多孔阴极1-3的表面垂直,由输送口8-1喷出的气体垂直喷射在单电池1的多孔阳极1-1和多孔阴极1-3的表面上。Specific Embodiment Eleven: This embodiment will be described with reference to FIG. 23 to FIG. 26. The jet gas-supplied single-chamber solid oxide fuel cell stack of this embodiment includes an
具体实施方式十二:结合图25说明本实施方式,本实施方式与具体实施方式十一的不同之处在于:导电连接体7为耐高温耐氧化还原的导电金属材料、导电合金、氧化物导电陶瓷材料或带有氧化物涂层的金属材料,且导电连接体7为金属条带状或金属网格状。Embodiment 12: This embodiment is described in conjunction with FIG. 25. The difference between this embodiment and Embodiment 11 is that the conductive connecting
本实施方式中的耐高温耐氧化还原的导电金属材料如金、银、铂或不锈钢;氧化物导电陶瓷材料如铬酸镧。In this embodiment, the high temperature resistant redox resistant conductive metal material such as gold, silver, platinum or stainless steel; the oxide conductive ceramic material such as lanthanum chromate.
具体实施方式十三:结合图25说明本实施方式,本实施方式与具体实施方式十一或十二的不同之处在于:导电连接体7与单电池1之间采用导电胶粘结、扩散焊接或烧结的方式实现机械连接的同时实现电连接。Specific Embodiment Thirteen: This embodiment will be described with reference to FIG. 25 . The difference between this embodiment and specific embodiments eleven or twelve is that the
具体实施方式十四:结合图25说明本实施方式,本实施方式与具体实施方式十一、十二或十三的不同之处在于:反应气体输送管8的材料均为陶瓷、石英玻璃或者耐高温金属。Specific Embodiment 14: This embodiment is described in conjunction with FIG. 25. The difference between this embodiment and specific embodiments 11, 12 or 13 is that the material of the reaction
本实施方式中的陶瓷、石英玻璃或者耐高温金属的化学稳定性好。本实施方式中的耐高温金属例如:不锈钢。The ceramics, quartz glass or high-temperature-resistant metals in this embodiment have good chemical stability. The high temperature resistant metal in this embodiment is, for example, stainless steel.
具体实施方式十五:结合图25和图26说明本实施方式,本实施方式与实施方式十一、十二、十三或十四的不同之处在于:绝缘支撑体4的材料采用热传导快、耐高温且抗压强度高的材质。如陶瓷材质或云母板等,同时具备较低的热膨胀系数,优良的热稳定性,良好的抗热冲击性。Specific Embodiment 15: This embodiment is described with reference to Fig. 25 and Fig. 26. The difference between this embodiment and Embodiment 11, 12, 13 or 14 is that the material of the insulating
具体实施方式十六:下面结合图27说明本实施方式,图27所示为使用2个阳极支撑型单电池1串联形成的电池组的输出特性。电池组中的各个单电池1采用实施方式一所述的结构排列。其中单电池1为Ni+YSZ阳极支撑YSZ薄膜电池,使用LSM+SDC复合阴极。每个单电池1的有效面积为1.2平方厘米。具体工作气氛:多孔阳极1-1一侧的氮气流量为150毫升/分钟,甲烷流量为120毫升/分钟;多孔阴极一侧的氮气流量为0毫升/分钟,氧气流量为80毫升/分钟。从图中可以看出电池组的开路电压为2.1V,最大输出功率为1.12W,电池组最大功率所对应的燃料利用率约为3.2%,展现出很好的应用前景。Specific Embodiment Sixteen: The present embodiment will be described below with reference to FIG. 27 . FIG. 27 shows the output characteristics of a battery pack formed by using two anode-supported
本发明不局限于上述实施方式,还可以是上述各实施方式中所述技术特征的合理组合。The present invention is not limited to the above-mentioned embodiments, and may also be a reasonable combination of the technical features described in the above-mentioned embodiments.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011100574661A CN102157746B (en) | 2011-03-10 | 2011-03-10 | Jet air supply type single-chamber solid oxide fuel cell stack |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011100574661A CN102157746B (en) | 2011-03-10 | 2011-03-10 | Jet air supply type single-chamber solid oxide fuel cell stack |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102157746A CN102157746A (en) | 2011-08-17 |
CN102157746B true CN102157746B (en) | 2012-12-19 |
Family
ID=44439036
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2011100574661A Expired - Fee Related CN102157746B (en) | 2011-03-10 | 2011-03-10 | Jet air supply type single-chamber solid oxide fuel cell stack |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102157746B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104377372A (en) * | 2014-09-05 | 2015-02-25 | 中国科学院上海应用物理研究所 | Ventilation pipe for solid oxide fuel battery/electrolysis tank, and preparation method thereof |
CN108023096A (en) * | 2017-12-07 | 2018-05-11 | 北京理工大学 | The preparation method of solid oxide fuel cell densification double-layer ceramic connector |
CN110890570B (en) * | 2019-11-19 | 2021-05-28 | 西安交通大学 | Preparation method of double-layer junction electrode series tubular solid oxide fuel cell |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4827606A (en) * | 1988-05-11 | 1989-05-09 | The United States Of America As Represented By The United States Department Of Energy | Method and apparatus for assembling solid oxide fuel cells |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007165157A (en) * | 2005-12-15 | 2007-06-28 | Nippon Shokubai Co Ltd | Solid oxide fuel cell |
WO2010030032A1 (en) * | 2008-09-12 | 2010-03-18 | 日本碍子株式会社 | Manufacturing method for three-dimensional molded parts |
-
2011
- 2011-03-10 CN CN2011100574661A patent/CN102157746B/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4827606A (en) * | 1988-05-11 | 1989-05-09 | The United States Of America As Represented By The United States Department Of Energy | Method and apparatus for assembling solid oxide fuel cells |
Non-Patent Citations (1)
Title |
---|
JP特开2007-165157A 2007.06.28 |
Also Published As
Publication number | Publication date |
---|---|
CN102157746A (en) | 2011-08-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20090035635A1 (en) | Combination Structure Between Single Cell and Interconnect of Solid Oxide Fuel Cell | |
JPWO2012165409A1 (en) | Solid oxide fuel cell, fuel cell stack device, fuel cell module, fuel cell device | |
JP5132878B2 (en) | Fuel cell, fuel cell stack and fuel cell | |
KR20110022907A (en) | Flat Solid Oxide Fuel Cell Module | |
CN104521052B (en) | Fuel cell collector plate and the pile structure thing comprising it | |
KR101130126B1 (en) | Electrical Collector for Solid Oxide Fuel Cell Using Segmented Flat Tube Structure | |
CN102986076A (en) | Fuel cell bundle and fuel cell module provided with same | |
JP5709670B2 (en) | Fuel cell device | |
CN102157746B (en) | Jet air supply type single-chamber solid oxide fuel cell stack | |
CN114634164B (en) | Oxygen purifying device of ceramic oxygen pump and oxyhydrogen fuel cell | |
JPH10189017A (en) | Gas seal structure of honeycomb structure solid electrolyte fuel cell | |
CN101908637B (en) | Non-sealing solid oxide fuel battery pack with double gas channels | |
CN104508890A (en) | Stack structure for fuel cell and composition thereof | |
CN100386915C (en) | A single-chamber solid oxide fuel cell stack in series | |
KR20200094876A (en) | Solid oxide fuel cells and solid oxide electrolysis cells | |
CN101315986B (en) | Array type single chamber solid oxide fuel cell stack module | |
CN203871424U (en) | Solid oxide fuel battery pack based on monolithic electrolyte | |
JP2014041705A (en) | Solid oxide fuel cell and method for manufacturing the same | |
CN115207386B (en) | Preparation method of full-membranization flat-plate membrane-belt serial solid oxide fuel cell stack | |
KR101289171B1 (en) | Planar Solid Oxide Fuel Cell Without Manifold Sealing | |
JP2011233334A (en) | Horizontal-stripe solid oxide fuel cell stack and fuel cell | |
CN103956504A (en) | Single-sheet electrolyte solid oxide fuel battery pack | |
CN110121806A (en) | The preparation method and fuel cell of fuel cell | |
JP4544874B2 (en) | Fuel cell and fuel cell | |
JPH02168568A (en) | Solid electrolyte fuel cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20121219 Termination date: 20140310 |