[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN102111183B - GRAKE receiver and combined weight calculating method thereof - Google Patents

GRAKE receiver and combined weight calculating method thereof Download PDF

Info

Publication number
CN102111183B
CN102111183B CN200910251018.8A CN200910251018A CN102111183B CN 102111183 B CN102111183 B CN 102111183B CN 200910251018 A CN200910251018 A CN 200910251018A CN 102111183 B CN102111183 B CN 102111183B
Authority
CN
China
Prior art keywords
mrow
msub
mtd
centerdot
munderover
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN200910251018.8A
Other languages
Chinese (zh)
Other versions
CN102111183A (en
Inventor
陈茜茜
梁小涛
沈静
王茜竹
申敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Spreadtrum Communications Shanghai Co Ltd
Original Assignee
Chongqing Cyit Communication Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing Cyit Communication Technologies Co Ltd filed Critical Chongqing Cyit Communication Technologies Co Ltd
Priority to CN200910251018.8A priority Critical patent/CN102111183B/en
Publication of CN102111183A publication Critical patent/CN102111183A/en
Application granted granted Critical
Publication of CN102111183B publication Critical patent/CN102111183B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Noise Elimination (AREA)

Abstract

The invention relates to a wireless communication signal receiving technology, in particular to a GRAKE receiver and a combined weight calculating method thereof. The combined weight calculating method comprises the following steps of: acquiring the function of a demodulated interference part, selecting a finger position, constructing an angle-symmetric matrix, calculating Ru by using the angle-symmetric matrix, and calculating a combining weight according to a formula shown in the description. The GRAKE receiver comprises a combined weight calculating module which adopts the combined weight calculating method and a multi-path position selecting module, is not required to calculate RISI and RMUI any longer, calculates a combined weight by using the angle-symmetric matrix and effectively reduces an operation amount in the process of calculating the combined weight, and improves the performance of the GRAKE receiver by the selecting module for selecting the finger position. By using the GRAKE receiver, not only the calculating overhead and the realizing complexity are greatly reduced, but also the system performance is effectively improved.

Description

GRAKE receiver and combining weight calculation method thereof
Technical Field
The invention relates to a wireless communication signal receiving technology, in particular to a GRAKE receiver and a combining weight calculation method thereof.
Background
To meet the increasing rate demands of users, existing CDMA wireless communication systems introduce various technologies with higher and higher peak rates, such as HSDPA (high speed downlink packet access) and HSUPA (high speed uplink packet access). The introduction of these new techniques presents significant challenges to conventional RAKE reception techniques.
The RAKE receiver is the best receiver under white gaussian noise, and when the spreading factor is large, the interference in the channel can be considered to be approximately whitened, so that the optimal performance can be approximately obtained; however, when the spreading factor is small, the interference between multipath and the interference between multiple users are increased, and the colored component in the noise is increased, so that the RAKE receiver is difficult to fully compensate the interference in the channel, and the application of high-speed packet service is limited.
The GRAKE receiver can change colored noise of a receiving end into white noise without changing the structure of the RAKE receiver, effectively improve the influence caused by interference among multiple paths and other users, and provide guarantee for the application of high-speed packet service in a CDMA practical system.
A typical downlink DS-CDMA system architecture is shown in fig. 1: assuming that there are K users in the system, the own user (X0) and K-1 interfering users, the ith symbol of user K is spread with spreading waveform ak,i(t) spreading, denoted sk(i) Then, the transmission signal expression of user K is as follows:
<math> <mrow> <msub> <mi>x</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msqrt> <msub> <mi>E</mi> <mi>k</mi> </msub> </msqrt> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mo>-</mo> <mo>&infin;</mo> </mrow> <mo>&infin;</mo> </munderover> <msub> <mi>s</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <msub> <mi>a</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>-</mo> <mi>iT</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein E iskIs the average energy of the symbol, T is the symbol period, and each data symbol energy is normalized, i.e.: | sk(i)|2=1。
Spreading waveform a of ith symbol of Kth userk,i(t) from a spreading sequence ck,i(j)}i=0 Q-1Convolved with the chip waveform p (t), as follows:
<math> <mrow> <msub> <mi>a</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <msqrt> <mi>Q</mi> </msqrt> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>Q</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>c</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>j</mi> <mo>)</mo> </mrow> <mi>p</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>-</mo> <mi>j</mi> <msub> <mi>T</mi> <mi>c</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein: q is a spreading factor, TcIs the chip period. In DS-CDMA systems, the spreading codes are mutually orthogonal, i.e.
<math> <mrow> <msubsup> <mi>C</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>i</mi> </mrow> <mi>H</mi> </msubsup> <msub> <mi>C</mi> <mrow> <mi>j</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mi>k</mi> <mo>&NotEqual;</mo> <mi>j</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow> </math>
Wherein C isk,i=[cki(0),cki(1),......,cki(Q-1)]TUpper label ofTDenotes transpose, and H denotes conjugate transpose.
At a sending end of a base station, signals of all K users are superposed together and then transmitted through a multipath propagation channel; the multipath channel model can be simply expressed in terms of impulse response as follows:
<math> <mrow> <mi>g</mi> <mrow> <mo>(</mo> <mi>&tau;</mi> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>l</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>L</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>g</mi> <mi>l</mi> </msub> <mi>&delta;</mi> <mrow> <mo>(</mo> <mi>&tau;</mi> <mo>-</mo> <msub> <mi>&tau;</mi> <mi>l</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow> </math>
where L is the number of resolvable multipaths, glAnd τlRespectively the amplitude of the first path and the delay of the path.
As can be seen from equations (1) and (4), the signal at the receiving end can be expressed as follows:
<math> <mrow> <mi>r</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>l</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>L</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>g</mi> <mi>l</mi> </msub> <msub> <mi>x</mi> <mn>0</mn> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>-</mo> <msub> <mi>&tau;</mi> <mi>l</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>K</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <munderover> <mi>&Sigma;</mi> <mrow> <mi>l</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>L</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>g</mi> <mi>l</mi> </msub> <msub> <mi>x</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>-</mo> <msub> <mi>&tau;</mi> <mi>l</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mi>n</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow> </math>
where n (t) is interference, including inter-cell interference and thermal noise.
At a receiving end, a received signal firstly passes through a pulse shaping filter which is the same as that of the transmitting end, then is despread, and finally a target signal is obtained through weighting and combining. The above process is implemented by a GRAKE receiver, the GRAKE structure is shown in fig. 2.
The operation of the GRAKE receiver will be described with respect to the detection of the first symbol of the first user. The detection of the symbol can be expressed by the following formula:
<math> <mrow> <mi>y</mi> <mrow> <mo>(</mo> <msub> <mi>d</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <msubsup> <mo>&Integral;</mo> <mrow> <mo>-</mo> <mo>&infin;</mo> </mrow> <mrow> <mo>+</mo> <mo>&infin;</mo> </mrow> </msubsup> <mi>r</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>+</mo> <msub> <mi>d</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> <msubsup> <mi>a</mi> <mn>0,0</mn> <mo>*</mo> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mi>dt</mi> <mo>;</mo> <mi>j</mi> <mo>=</mo> <mn>1,2</mn> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mi>J</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow> </math>
the de-spreading sequence is formed by combining the weight w ═ w1,w2,...,wj]TProduces a decision statistic variable z:
<math> <mrow> <mi>z</mi> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>J</mi> </munderover> <msubsup> <mi>w</mi> <mi>j</mi> <mo>*</mo> </msubsup> <mi>y</mi> <mrow> <mo>(</mo> <msub> <mi>d</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mi>w</mi> <mi>H</mi> </msup> <mi>y</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein y ═ y (d)1),y(d2),...,y(dJ)]T
In the receiver, the number and delay of fingers are equal to the number and delay of paths of the channel, respectively, i.e.: j ═ L, dj=τj1, j 1,2, the L weighting factor is the amplitude w of the channel pathj=gj-1,j=1,2,...,L。
The existing GRAKE receiver and RAKE receiver have the same parameters, i.e. the number J of fingers, and the delay { d of fingers { D }j}j=1 JAnd a combining weight { wj}j=1 J(ii) a The difference is that the GRAKE has different combining weight determination methods and the GRAKE receiver has a significant performance improvement because it has a finger number exceeding the channel detectable path.
And (3) determining the combining weight and finger delay:
assuming we are only interested in the first symbol of the first user (others can be analogized), the despread signal can be expressed as follows:
y=hs0(0)+u (8)
s0(0) which is the symbol we are interested in, h is the quantity related to the fading information of each path, called the fading function of each path. u is the sum of all noise and interference, with a mean of 0 and a variance of Ru=E[uuH]The combined weight is:
w = R u - 1 h - - - ( 9 )
the despread signal can be derived from equation 5 as:
<math> <mrow> <mi>y</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msubsup> <mo>&Integral;</mo> <mrow> <mo>-</mo> <mo>&infin;</mo> </mrow> <mo>&infin;</mo> </msubsup> <mi>r</mi> <mrow> <mo>(</mo> <mi>&tau;</mi> <mo>)</mo> </mrow> <msubsup> <mi>a</mi> <mn>0,0</mn> <mo>*</mo> </msubsup> <mrow> <mo>(</mo> <mi>&tau;</mi> <mo>-</mo> <mi>t</mi> <mo>)</mo> </mrow> <mi>d&tau;</mi> </mrow> </math>
<math> <mrow> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>&kappa;</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>K</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <munderover> <mi>&Sigma;</mi> <mrow> <mi>l</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>L</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mo>-</mo> <mo>&infin;</mo> </mrow> <mo>&infin;</mo> </munderover> <msqrt> <msub> <mi>E</mi> <mi>k</mi> </msub> </msqrt> <msub> <mi>g</mi> <mi>l</mi> </msub> <msub> <mi>s</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <msub> <mi>R</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>-</mo> <mi>iT</mi> <mo>-</mo> <msub> <mi>&tau;</mi> <mi>l</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mover> <mi>n</mi> <mo>~</mo> </mover> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein:is noise after pulse shaping, Rk,i(t) is the cross-correlation function of the other symbols and the first symbol of the first code channel.
<math> <mrow> <msub> <mi>R</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msubsup> <mo>&Integral;</mo> <mrow> <mo>-</mo> <mo>&infin;</mo> </mrow> <mo>&infin;</mo> </msubsup> <msub> <mi>a</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mi>&tau;</mi> <mo>)</mo> </mrow> <msubsup> <mi>a</mi> <mn>0,0</mn> <mo>*</mo> </msubsup> <mrow> <mo>(</mo> <mi>&tau;</mi> <mo>)</mo> </mrow> <mi>d&tau;</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>11</mn> <mo>)</mo> </mrow> </mrow> </math>
Will be given in equation 2 <math> <mrow> <msub> <mi>a</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <msqrt> <mi>Q</mi> </msqrt> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>Q</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>c</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>j</mi> <mo>)</mo> </mrow> <mi>p</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>-</mo> <mi>j</mi> <msub> <mi>T</mi> <mi>c</mi> </msub> <mo>)</mo> </mrow> </mrow> </math> Substituting equation 11 yields:
<math> <mrow> <msub> <mi>R</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mi>Q</mi> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>l</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>Q</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <munderover> <mi>&Sigma;</mi> <mrow> <mi>m</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>Q</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>c</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>l</mi> <mo>)</mo> </mrow> <msubsup> <mi>c</mi> <mn>0,0</mn> <mo>*</mo> </msubsup> <mrow> <mo>(</mo> <mi>m</mi> <mo>)</mo> </mrow> <msub> <mi>R</mi> <mi>p</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>-</mo> <mrow> <mo>(</mo> <mi>l</mi> <mo>-</mo> <mi>m</mi> <mo>)</mo> </mrow> <msub> <mi>T</mi> <mi>c</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>12</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein: <math> <mrow> <msub> <mi>R</mi> <mi>p</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msubsup> <mo>&Integral;</mo> <mrow> <mo>-</mo> <mo>&infin;</mo> </mrow> <mo>&infin;</mo> </msubsup> <mi>p</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mi>&tau;</mi> <mo>)</mo> </mrow> <msup> <mi>p</mi> <mo>*</mo> </msup> <mrow> <mo>(</mo> <mi>&tau;</mi> <mo>)</mo> </mrow> <mi>d&tau;</mi> </mrow> </math> is the autocorrelation function of the chip waveform.
Ck,i(m) may be represented as follows:
<math> <mrow> <msub> <mi>C</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>m</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <munderover> <mi>&Sigma;</mi> <mrow> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>Q</mi> <mo>-</mo> <mn>1</mn> <mo>-</mo> <mi>m</mi> </mrow> </munderover> <msub> <mi>c</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <msubsup> <mi>c</mi> <mn>0,0</mn> <mo>*</mo> </msubsup> <mrow> <mo>(</mo> <mi>n</mi> <mo>+</mo> <mi>m</mi> <mo>)</mo> </mrow> <mo>,</mo> </mtd> <mtd> <mn>0</mn> <mo>&le;</mo> <mi>m</mi> <mo>&le;</mo> <mi>Q</mi> <mo>-</mo> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <munderover> <mi>&Sigma;</mi> <mrow> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>Q</mi> <mo>-</mo> <mn>1</mn> <mo>+</mo> <mi>m</mi> </mrow> </munderover> <msub> <mi>c</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>-</mo> <mi>m</mi> <mo>)</mo> </mrow> <msubsup> <mi>c</mi> <mn>0,0</mn> <mo>*</mo> </msubsup> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>,</mo> </mtd> <mtd> <mn>1</mn> <mo>-</mo> <mi>Q</mi> <mo>&le;</mo> <mi>m</mi> <mo>&lt;</mo> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>13</mn> <mo>)</mo> </mrow> </mrow> </math>
from equation 13, equation 12 can be abbreviated as:
<math> <mrow> <msub> <mi>R</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mi>Q</mi> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>m</mi> <mo>=</mo> <mn>1</mn> <mo>-</mo> <mi>Q</mi> </mrow> <mrow> <mi>Q</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>C</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>m</mi> <mo>)</mo> </mrow> <msub> <mi>R</mi> <mi>p</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mi>m</mi> <msub> <mi>T</mi> <mi>c</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>14</mn> <mo>)</mo> </mrow> </mrow> </math>
since the spreading codes are orthogonal to each other, we can obtain: ck,0(0)=0,k≠0;C0,0(0) Q. Thermal noise after pulse shapingThe autocorrelation function of (a) is:
R n ~ ( t ) ( t 1 , t 2 ) = E [ n ~ ( t 1 ) n ~ * ( t 2 ) ]
= N 0 R 0,0 ( t 1 - t 2 ) - - - ( 15 )
<math> <mrow> <mo>=</mo> <mfrac> <msub> <mi>N</mi> <mn>0</mn> </msub> <mi>Q</mi> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>m</mi> <mo>=</mo> <mn>1</mn> <mo>-</mo> <mi>Q</mi> </mrow> <mrow> <mi>Q</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>C</mi> <mn>0,0</mn> </msub> <mrow> <mo>(</mo> <mi>m</mi> <mo>)</mo> </mrow> <msub> <mi>R</mi> <mi>p</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>1</mn> </msub> <mo>-</mo> <msub> <mi>t</mi> <mn>2</mn> </msub> <mo>+</mo> <mi>m</mi> <msub> <mi>T</mi> <mi>c</mi> </msub> <mo>)</mo> </mrow> </mrow> </math>
according to equation 10, the despread signal can be divided into the following four parts by composition: user desired part yd(t), self-interference part yISI(t) multiple access interference yMUI(t) and thermal noise n' (t). Namely:
<math> <mrow> <mi>y</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msqrt> <msub> <mi>E</mi> <mn>0</mn> </msub> </msqrt> <msub> <mi>y</mi> <mi>d</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <msub> <mi>s</mi> <mn>0</mn> </msub> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>+</mo> <msqrt> <msub> <mi>E</mi> <mn>0</mn> </msub> </msqrt> <msub> <mi>y</mi> <mi>ISI</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msqrt> <msub> <mi>E</mi> <mi>I</mi> </msub> </msqrt> <msub> <mi>y</mi> <mi>MUI</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msqrt> <msub> <mi>N</mi> <mn>0</mn> </msub> </msqrt> <msup> <mi>n</mi> <mo>&prime;</mo> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>16</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein:
<math> <mrow> <msub> <mi>y</mi> <mi>d</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>l</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>L</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>g</mi> <mi>l</mi> </msub> <msub> <mi>R</mi> <mn>0,0</mn> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>-</mo> <msub> <mi>&tau;</mi> <mi>l</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>17</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msub> <mi>y</mi> <mi>ISI</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>l</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>L</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <munderover> <mi>&Sigma;</mi> <munder> <mrow> <mi>i</mi> <mo>=</mo> <mo>-</mo> <mo>&infin;</mo> </mrow> <mrow> <mi>i</mi> <mo>&NotEqual;</mo> <mn>0</mn> </mrow> </munder> <mo>&infin;</mo> </munderover> <msub> <mi>g</mi> <mi>l</mi> </msub> <msub> <mi>s</mi> <mn>0</mn> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <msub> <mi>R</mi> <mrow> <mn>0</mn> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>-</mo> <mi>iT</mi> <mo>-</mo> <msub> <mi>&tau;</mi> <mi>l</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>18</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msub> <mi>y</mi> <mi>MUI</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <msqrt> <msub> <mi>E</mi> <mi>I</mi> </msub> </msqrt> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>K</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msqrt> <msub> <mi>E</mi> <mi>k</mi> </msub> </msqrt> <munderover> <mi>&Sigma;</mi> <mrow> <mi>l</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>L</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mo>-</mo> <mo>&infin;</mo> </mrow> <mo>&infin;</mo> </munderover> <msub> <mi>g</mi> <mi>l</mi> </msub> <msub> <mi>s</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <msub> <mi>R</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>-</mo> <mi>iT</mi> <mo>-</mo> <msub> <mi>&tau;</mi> <mi>l</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>19</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein, <math> <mrow> <msub> <mi>E</mi> <mi>I</mi> </msub> <mo>=</mo> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>K</mi> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <msub> <mi>E</mi> <mi>k</mi> </msub> </mrow> </math> is the symbol energy, N, of all interference within a cell0Is gaussian white noise power.
At each delay time (d) of the diameter1,d2,...,dJ) Sampling the output of the matched filter to obtain y ═ y (d)1),y(d2),...,y(dJ)]T
The specific expression of y is obtained from equation 16:
<math> <mrow> <mi>y</mi> <mo>=</mo> <msqrt> <msub> <mi>E</mi> <mn>0</mn> </msub> </msqrt> <msub> <mi>y</mi> <mi>d</mi> </msub> <msub> <mi>s</mi> <mn>0</mn> </msub> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>+</mo> <msqrt> <msub> <mi>E</mi> <mn>0</mn> </msub> </msqrt> <msub> <mi>y</mi> <mi>ISI</mi> </msub> <mo>+</mo> <msqrt> <msub> <mi>E</mi> <mi>I</mi> </msub> </msqrt> <msub> <mi>y</mi> <mi>MUI</mi> </msub> <mo>+</mo> <msqrt> <msub> <mi>N</mi> <mn>0</mn> </msub> </msqrt> <msup> <mi>n</mi> <mo>&prime;</mo> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>20</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein: y ═ y (d)1),y(d2),...,y(dJ)]T
yISI=[yISI(d1),yISI(d2),...,yISI(dJ)]T
yMUI=[yMUI(d1),yMUI(d2),...,yMUI(dJ)]T
n′=[n′(d1),n′(d2),...,n′(dJ)]T
<math> <mrow> <mi>u</mi> <mo>=</mo> <msqrt> <msub> <mi>E</mi> <mn>0</mn> </msub> </msqrt> <msub> <mi>y</mi> <mi>ISI</mi> </msub> <mo>+</mo> <msqrt> <msub> <mi>E</mi> <mi>I</mi> </msub> </msqrt> <msub> <mi>y</mi> <mi>MUI</mi> </msub> <mo>+</mo> <msqrt> <msub> <mi>N</mi> <mn>0</mn> </msub> </msqrt> <msup> <mi>n</mi> <mo>&prime;</mo> </msup> </mrow> </math> Is the sum of all interference and noise.
Suppose yISI(t),yMUI(t) and n' (t) are independent, then:
Ru=E0RISI+EIRMUI+N0Rn′ (21)
wherein: R ISI = E [ y ISI y ISI H ] , R MUI = E [ y MUI y MUI H ] , Rn′=E[n′n′H]。
since the spreading codes are orthogonal to each other and according to equation (13) Ck,i(m) deriving the following two formulae:
<math> <mrow> <mi>E</mi> <mo>[</mo> <msub> <mi>C</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>m</mi> <mo>)</mo> </mrow> <msubsup> <mi>C</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>i</mi> </mrow> <mo>*</mo> </msubsup> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>]</mo> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mi>m</mi> <mo>&NotEqual;</mo> <mi>n</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>22</mn> <mo>)</mo> </mrow> </mrow> </math>
according to the formulas 20, 22 and 23, R in the matrix can be calculatedISI,RMUI,Rn′The respective elements of (a) are as follows:
R ISI ( d 1 , d 2 ) = E [ y ISI ( d 1 ) y ISI * ( d 2 ) ]
<math> <mrow> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>l</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>L</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <munderover> <mi>&Sigma;</mi> <mrow> <mi>q</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>L</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <munderover> <mi>&Sigma;</mi> <munder> <mrow> <mi>i</mi> <mo>=</mo> <mo>-</mo> <mo>&infin;</mo> </mrow> <mrow> <mi>i</mi> <mo>&NotEqual;</mo> </mrow> </munder> <mo>&infin;</mo> </munderover> <msub> <mi>g</mi> <mi>l</mi> </msub> <msubsup> <mi>g</mi> <mi>q</mi> <mo>*</mo> </msubsup> <mi>E</mi> <mo>[</mo> <msub> <mi>R</mi> <mrow> <mn>0</mn> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>d</mi> <mn>1</mn> </msub> <mo>-</mo> <mi>iT</mi> <mo>-</mo> <msub> <mi>&tau;</mi> <mi>l</mi> </msub> <mo>)</mo> </mrow> <msubsup> <mi>R</mi> <mrow> <mn>0</mn> <mo>,</mo> <mi>i</mi> </mrow> <mo>*</mo> </msubsup> <mrow> <mo>(</mo> <msub> <mi>d</mi> <mn>2</mn> </msub> <mo>-</mo> <mi>iT</mi> <mo>-</mo> <msub> <mi>&tau;</mi> <mi>q</mi> </msub> <mo>)</mo> </mrow> <mo>]</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>24</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <mo>=</mo> <mfrac> <mn>1</mn> <msup> <mi>Q</mi> <mn>2</mn> </msup> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>l</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>L</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <munderover> <mi>&Sigma;</mi> <mrow> <mi>q</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>L</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <munderover> <mi>&Sigma;</mi> <munder> <mrow> <mi>i</mi> <mo>=</mo> <mo>-</mo> <mo>&infin;</mo> </mrow> <mrow> <mi>i</mi> <mo>&NotEqual;</mo> <mn>0</mn> </mrow> </munder> <mo>&infin;</mo> </munderover> <msub> <mi>g</mi> <mi>l</mi> </msub> <msubsup> <mi>g</mi> <mi>q</mi> <mo>*</mo> </msubsup> <munderover> <mi>&Sigma;</mi> <mrow> <mi>m</mi> <mo>=</mo> <mn>1</mn> <mo>-</mo> <mi>Q</mi> </mrow> <mrow> <mi>Q</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <mrow> <mo>(</mo> <mi>Q</mi> <mo>-</mo> <mo>|</mo> <mi>m</mi> <mo>|</mo> <mo>)</mo> </mrow> <msub> <mi>R</mi> <mi>p</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>d</mi> <mn>1</mn> </msub> <mo>-</mo> <mi>m</mi> <msub> <mi>T</mi> <mi>c</mi> </msub> <mo>-</mo> <mi>iT</mi> <mo>-</mo> <msub> <mi>&tau;</mi> <mi>l</mi> </msub> <mo>)</mo> </mrow> <msubsup> <mi>R</mi> <mi>p</mi> <mo>*</mo> </msubsup> <mrow> <mo>(</mo> <msub> <mi>d</mi> <mn>2</mn> </msub> <mo>-</mo> <mi>m</mi> <msub> <mi>T</mi> <mi>c</mi> </msub> <mo>-</mo> <mi>iT</mi> <mo>-</mo> <msub> <mi>&tau;</mi> <mi>q</mi> </msub> <mo>)</mo> </mrow> </mrow> </math>
R MUI ( d 1 , d 2 ) = E [ y MUI ( d 1 ) y MUI * ( d 2 ) ]
<math> <mrow> <mo>=</mo> <mfrac> <mn>1</mn> <msup> <mi>Q</mi> <mn>2</mn> </msup> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>l</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>L</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <munderover> <mi>&Sigma;</mi> <mrow> <mi>q</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>L</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>g</mi> <mi>l</mi> </msub> <msubsup> <mi>g</mi> <mi>q</mi> <mo>*</mo> </msubsup> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mo>-</mo> <mo>&infin;</mo> </mrow> <mo>&infin;</mo> </munderover> <msub> <mi>g</mi> <mi>l</mi> </msub> <msubsup> <mi>g</mi> <mi>q</mi> <mo>*</mo> </msubsup> <munderover> <mi>&Sigma;</mi> <mrow> <mi>m</mi> <mo>=</mo> <mn>1</mn> <mo>-</mo> <mi>Q</mi> </mrow> <mrow> <mi>Q</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <mrow> <mo>(</mo> <mi>Q</mi> <mo>-</mo> <mo>|</mo> <mi>m</mi> <mo>|</mo> <mo>)</mo> </mrow> <msub> <mi>R</mi> <mi>p</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>d</mi> <mn>1</mn> </msub> <mo>+</mo> <mi>m</mi> <msub> <mi>T</mi> <mi>c</mi> </msub> <mo>-</mo> <mi>iT</mi> <mo>-</mo> <msub> <mi>&tau;</mi> <mi>l</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>25</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <mo>&times;</mo> <msubsup> <mi>R</mi> <mi>p</mi> <mo>*</mo> </msubsup> <mrow> <mo>(</mo> <msub> <mi>d</mi> <mn>2</mn> </msub> <mo>+</mo> <mi>m</mi> <msub> <mi>T</mi> <mi>c</mi> </msub> <mo>-</mo> <mi>iT</mi> <mo>-</mo> <msub> <mi>&tau;</mi> <mi>q</mi> </msub> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>&delta;</mi> <mrow> <mo>(</mo> <mi>m</mi> <mo>)</mo> </mrow> <mi>&delta;</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msub> <mi>R</mi> <msup> <mi>n</mi> <mo>&prime;</mo> </msup> </msub> <mrow> <mo>(</mo> <msub> <mi>d</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>d</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mi>E</mi> <mo>[</mo> <msup> <mi>n</mi> <mo>&prime;</mo> </msup> <mrow> <mo>(</mo> <msub> <mi>d</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <msup> <mi>n</mi> <mo>&prime;</mo> </msup> <mrow> <mo>(</mo> <msub> <mi>d</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>*</mo> </msup> <mo>]</mo> </mrow> </math>
= R 0,0 ( d 1 - d 2 ) - - - ( 26 )
<math> <mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mi>Q</mi> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>m</mi> <mo>=</mo> <mn>1</mn> <mo>-</mo> <mi>Q</mi> </mrow> <mrow> <mi>Q</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>C</mi> <mn>0,0</mn> </msub> <mrow> <mo>(</mo> <mi>m</mi> <mo>)</mo> </mrow> <msub> <mi>R</mi> <mi>p</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>d</mi> <mn>1</mn> </msub> <mo>-</mo> <msub> <mi>d</mi> <mn>2</mn> </msub> <mo>+</mo> <mi>m</mi> <msub> <mi>T</mi> <mi>c</mi> </msub> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msub> <mi>y</mi> <mi>d</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>d</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mi>Q</mi> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>l</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>L</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>g</mi> <mi>l</mi> </msub> <munderover> <mi>&Sigma;</mi> <mrow> <mi>m</mi> <mo>=</mo> <mn>1</mn> <mo>-</mo> <mi>Q</mi> </mrow> <mrow> <mi>Q</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>C</mi> <mn>0,0</mn> </msub> <mrow> <mo>(</mo> <mi>m</mi> <mo>)</mo> </mrow> <msub> <mi>R</mi> <mi>p</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>d</mi> <mn>1</mn> </msub> <mo>+</mo> <mi>m</mi> <msub> <mi>T</mi> <mi>c</mi> </msub> <mo>-</mo> <msub> <mi>&tau;</mi> <mi>l</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>27</mn> <mo>)</mo> </mrow> </mrow> </math>
it can be seen from the above derivation formula that the combining weight determination method adopted by the existing GRAKE receiver needs to calculate RISIAnd RMUITherefore, the operation overhead is very high, the implementation complexity is high, and the hardware implementation is not facilitated.
Disclosure of Invention
To solve the above problems, the present invention provides a combining weight calculation method for a GRAKE receiver, wherein R isuCalculating the total interference y by using an angular symmetry matrixiAnd (t) obtaining the autocorrelation function, and greatly reducing the operation complexity of the GRAKE receiver by adopting the method.
A combining weight calculation method of a GRAKE receiver comprises the following steps:
step A: obtaining a function of the demodulated interference portion:
b, selecting a finger position;
and C: constructing an angle symmetric matrix;
step D: computing R using an angularly symmetric matrixu
Step E: according to w = R u - 1 h Calculating a combined weight;
wherein R isuH is the impulse response estimated from the channel as the autocorrelation function of the total interference.
The finger position selection method can be as follows: determining the number J of fingers, namely taking the value of J in the interval of [ L,2L-1 ]; selecting J finger positions according to the positions of the L paths estimated by the channel, namely the rear L positions of the fingers are the same as the positions of the paths estimated by the channel, and the front J-L finger positions and the J-L paths in front of the L paths are symmetrical about the strongest path;
wherein, L is the number of paths estimated by the channel.
The angle symmetric matrix is a square matrix of dimension 2Q-1, a point with m being 0 is taken as a central symmetric point, and values on a main diagonal are 1,2 … Q-1,0, Q-1, …,2 and 1 in sequence;
wherein Q represents the length of the spreading code, and m is the finger position;
the R isuCan be expressed as:
<math> <mrow> <msub> <mi>R</mi> <mi>u</mi> </msub> <mo>=</mo> <msub> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>R</mi> <mrow> <msub> <mi>y</mi> <mi>i</mi> </msub> <msub> <mi>y</mi> <mi>i</mi> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mo>-</mo> <mi>m</mi> <mo>,</mo> <mo>-</mo> <mi>m</mi> <mo>)</mo> </mrow> </mtd> <mtd> <msub> <mi>R</mi> <mrow> <msub> <mi>y</mi> <mi>i</mi> </msub> <msub> <mi>y</mi> <mi>i</mi> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mo>-</mo> <mi>m</mi> <mo>,</mo> <mo>-</mo> <mi>m</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </mtd> <mtd> <mo>.</mo> <mo>.</mo> <mo>.</mo> </mtd> <mtd> <msub> <mi>R</mi> <mrow> <msub> <mi>y</mi> <mi>i</mi> </msub> <msub> <mi>y</mi> <mi>i</mi> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mo>-</mo> <mi>m</mi> <mo>,</mo> <mi>m</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>R</mi> <mrow> <msub> <mi>y</mi> <mi>i</mi> </msub> <msub> <mi>y</mi> <mi>i</mi> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mo>-</mo> <mi>m</mi> <mo>+</mo> <mn>1</mn> <mo>,</mo> <mo>-</mo> <mi>m</mi> <mo>)</mo> </mrow> </mtd> <mtd> <msub> <mi>R</mi> <mrow> <msub> <mi>y</mi> <mi>i</mi> </msub> <msub> <mi>y</mi> <mi>i</mi> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mo>-</mo> <mi>m</mi> <mo>+</mo> <mn>1</mn> <mo>,</mo> <mo>-</mo> <mi>m</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </mtd> <mtd> <mo>.</mo> <mo>.</mo> <mo>.</mo> </mtd> <mtd> <msub> <mi>R</mi> <mrow> <msub> <mi>y</mi> <mi>i</mi> </msub> <msub> <mi>y</mi> <mi>i</mi> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mo>-</mo> <mi>m</mi> <mo>+</mo> <mn>1</mn> <mo>,</mo> <mi>m</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>R</mi> <mrow> <msub> <mi>y</mi> <mi>i</mi> </msub> <msub> <mi>y</mi> <mi>i</mi> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mi>m</mi> <mo>,</mo> <mo>-</mo> <mi>m</mi> <mo>)</mo> </mrow> </mtd> <mtd> <msub> <mi>R</mi> <mrow> <msub> <mi>y</mi> <mi>i</mi> </msub> <msub> <mi>y</mi> <mi>i</mi> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mi>m</mi> <mo>,</mo> <mo>-</mo> <mi>m</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </mtd> <mtd> <mo>.</mo> <mo>.</mo> <mo>.</mo> </mtd> <mtd> <msub> <mi>R</mi> <mrow> <msub> <mi>y</mi> <mi>i</mi> </msub> <msub> <mi>y</mi> <mi>i</mi> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mi>m</mi> <mo>,</mo> <mi>m</mi> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mrow> <mi>J</mi> <mo>&times;</mo> <mi>J</mi> </mrow> </msub> </mrow> </math>
wherein,is RuThe middle element, i represents a row, j represents a column, which can be further represented as:
<math> <mrow> <msub> <mi>R</mi> <mrow> <msub> <mi>y</mi> <mi>i</mi> </msub> <msub> <mi>y</mi> <mi>i</mi> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>m</mi> <mo>=</mo> <mi>L</mi> <mo>-</mo> <mi>i</mi> </mrow> <mrow> <mi>J</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <mi>g</mi> <mrow> <mo>(</mo> <mi>m</mi> <mo>+</mo> <mn>1</mn> <mo>-</mo> <mrow> <mo>(</mo> <mi>L</mi> <mo>-</mo> <mi>j</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>*</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>n</mi> <mo>=</mo> <mi>L</mi> <mo>-</mo> <mi>j</mi> </mrow> <mrow> <mi>J</mi> <mo>-</mo> <mi>j</mi> </mrow> </munderover> <mi>conj</mi> <mrow> <mo>(</mo> <mi>g</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo>-</mo> <mrow> <mo>(</mo> <mi>L</mi> <mo>-</mo> <mi>j</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>*</mo> <mi>MULT</mi> <mo>_</mo> <mi>C</mi> <mrow> <mo>(</mo> <mi>m</mi> <mo>+</mo> <mi>Q</mi> <mo>,</mo> <mi>n</mi> <mo>+</mo> <mi>Q</mi> <mo>)</mo> </mrow> </mrow> </math>
wherein MULT _ C is the angular symmetry matrix constructed in step C, SiIs an interference symbol, conj () represents a complex conjugate operation, gtIs the estimated multipath.
A GRAKE receiver comprises a combining weight calculation module and a multipath position selection module;
the combination weight calculation module adopts the combination weight calculation method to calculate the combination weight;
the multi-path position selection module is used for selecting finger positions, and the selection method comprises the following steps: determining the number J of fingers, namely taking the value of J in the interval of [ L,2L-1 ]; selecting J finger positions according to the positions of the L paths estimated by the channel, namely the rear L positions of the fingers are the same as the positions of the paths estimated by the channel, and the front J-L finger positions and the J-L paths in front of the L paths are symmetrical about the strongest path;
wherein, L is the number of radial strips estimated by the channel.
The rest of the modules can adopt the corresponding modules of the existing GRAKE receiver
The GRAKE receiver of the present invention does not need to recalculate RISIAnd RMUIBy passingThe angle symmetric matrix realizes the calculation of the combined weight, effectively reduces the calculation amount of the calculated combined weight, and improves the performance of the GRAKE receiver through the selection module of the finger position. The GRAKE receiver not only greatly reduces the calculation cost and the realization complexity, but also effectively improves the system performance.
Drawings
FIG. 1 is a transmission model of a multiple access system
FIG. 2 is a diagram of a conventional GRAKE receiver architecture
FIG. 3 is a flow chart of a GRAKE combining weight calculation method according to an embodiment of the present invention
FIG. 4 is a GRAKE receiver structure of the present invention
Detailed Description
In order to make the objects, technical solutions and advantages of the present invention more apparent, the present invention is further described in detail below with reference to the accompanying drawings.
According to equations 20 and 21, the despread signal is divided into four parts: user desired part yd(t), self-interference part yISI(t) multiple access interference yMUI(t) and thermal noise n' (t):
<math> <mrow> <mi>y</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msqrt> <msub> <mi>E</mi> <mn>0</mn> </msub> </msqrt> <msub> <mi>y</mi> <mi>d</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <msub> <mi>s</mi> <mn>0</mn> </msub> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>+</mo> <msqrt> <msub> <mi>E</mi> <mn>0</mn> </msub> </msqrt> <msub> <mi>y</mi> <mi>ISI</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msqrt> <msub> <mi>E</mi> <mi>I</mi> </msub> </msqrt> <msub> <mi>y</mi> <mi>MUI</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msqrt> <msub> <mi>N</mi> <mn>0</mn> </msub> </msqrt> <msup> <mi>n</mi> <mo>&prime;</mo> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </math>
then the total interference is <math> <mrow> <msub> <mi>y</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msqrt> <msub> <mi>E</mi> <mn>0</mn> </msub> </msqrt> <msub> <mi>y</mi> <mi>ISI</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msqrt> <msub> <mi>E</mi> <mi>I</mi> </msub> </msqrt> <msub> <mi>y</mi> <mi>MUI</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msqrt> <msub> <mi>N</mi> <mn>0</mn> </msub> </msqrt> <msup> <mi>n</mi> <mo>&prime;</mo> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </math>
And because of Ru=E0RISI+EIRMUI+N0Rn′Wherein
R ISI = E [ y ISI y ISI H ] , R MUI = E [ y MUI y MUI H ] , Rn′=E[n′n′H]
It can be seen that RuIs the total interference yi(t) autocorrelation function, then find y directlyi(t) obtaining R as an autocorrelation functionu. According to the formula w = R u - 1 h Combining weights for GRAKE receivers may be obtained.
A method for calculating the combining weight of a GRAKE receiver comprises the following specific steps:
step A, obtaining a function of the demodulated interference part according to a formula 10:
assume that the receiving end receives a signal of <math> <mrow> <mi>r</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>m</mi> <mo>=</mo> <mn>0</mn> </mrow> <mi>L</mi> </munderover> <msub> <mi>g</mi> <mi>m</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>S</mi> <mi>s</mi> </msub> <msub> <mi>a</mi> <mi>s</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>-</mo> <mi>m</mi> <msub> <mi>T</mi> <mi>c</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>S</mi> <mi>i</mi> </msub> <msub> <mi>a</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>-</mo> <mi>m</mi> <msub> <mi>T</mi> <mi>c</mi> </msub> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mrow> </math>
Wherein SsFor the user data, SiFor interfering user data, L is the number of channel estimation paths.
By despreading, the following are obtained: <math> <mrow> <mi>y</mi> <mrow> <mo>(</mo> <mi>m</mi> <msub> <mi>T</mi> <mi>c</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <msubsup> <mo>&Integral;</mo> <mrow> <mo>-</mo> <mo>&infin;</mo> </mrow> <mo>&infin;</mo> </msubsup> <msubsup> <mi>a</mi> <mi>s</mi> <mo>*</mo> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mi>r</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mi>m</mi> <msub> <mi>T</mi> <mi>c</mi> </msub> <mo>)</mo> </mrow> <mi>dt</mi> <mo>=</mo> <mfrac> <mn>1</mn> <msqrt> <mi>Q</mi> </msqrt> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>Q</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msubsup> <mi>c</mi> <mi>s</mi> <mo>*</mo> </msubsup> <mrow> <mo>(</mo> <mi>j</mi> <mo>)</mo> </mrow> <mover> <mi>r</mi> <mo>~</mo> </mover> <mrow> <mo>(</mo> <mi>j</mi> <mo>+</mo> <mi>m</mi> <mo>)</mo> </mrow> </mrow> </math>
wherein: c. Cs(j) Is the spreading sequence of the target signal and,is a discrete signal sequence after the received data is filtered, <math> <mrow> <mover> <mi>r</mi> <mo>~</mo> </mover> <mrow> <mo>(</mo> <mi>j</mi> <mo>)</mo> </mrow> <mo>=</mo> <msubsup> <mo>&Integral;</mo> <mrow> <mo>-</mo> <mo>&infin;</mo> </mrow> <mo>&infin;</mo> </msubsup> <mi>r</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <msup> <mi>p</mi> <mo>*</mo> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>-</mo> <mi>j</mi> <msub> <mi>T</mi> <mi>c</mi> </msub> <mo>)</mo> </mrow> <mi>dt</mi> <mo>,</mo> </mrow> </math> the function that yields the despread interference part is: (the cross-correlation between the spreading code and the spreading code yields C, and the cross-correlation between C and C yields a matrix)
<math> <mrow> <msub> <mi>y</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>m</mi> <msub> <mi>T</mi> <mi>c</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>t</mi> <mo>=</mo> <mn>0</mn> </mrow> <mi>W</mi> </munderover> <msub> <mi>g</mi> <mi>t</mi> </msub> <msub> <mi>S</mi> <mi>i</mi> </msub> <msub> <mi>C</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>-</mo> <mi>m</mi> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math> Wherein SiIs an interference symbol, Ci(m) is the cross-correlation function between spreading codes. gtIs the estimated multipath, W is the window length of the estimated channel, typically window length ≦ spreading code length, and m is finger position.
B, selecting a finger position, namely determining an m value;
preferably, the finger position selection method comprises the following steps: determining the number J of fingers, namely taking the value of J in the interval of [ L,2L-1 ]; and selecting J finger positions according to the positions of the L paths estimated by the channel, namely the rear L positions of the fingers are the same as the positions of the paths estimated by the channel, and the front J-L finger positions and the J-L paths in front of the L paths are symmetrical about the strongest path. Wherein, L is the number of radial strips estimated by the channel.
Preferably, the process of selecting the finger location is: assuming that the number L of paths estimated by the channel is 3, and the chip positions are 0, 2, and 4, respectively, then the path can be represented as h (0), h (2), and h (4), where h (0) is the strongest path, n in h (n) represents the chip position, and h (n) represents the impulse response strength; the number J of fingers is selected to be J ═ 2 × L-1 ═ 5, and according to the method described above, the finger position is obtained to be m ═ 4, -2, 0, 2, 4.
Step C, constructing an angle symmetric matrix
It can be seen from the formula in step a that the autocorrelation function of the interference symbol is mainly calculated by calculating the correlation between the correlations of the spreading codes. Further, it can be obtained from formulas 22 and 23 that the correlation is an angle symmetric matrix symmetric to 0 point, according to the system characteristics, the window length W ═ spreading code length Q, m is the maximum value of spreading code length, the angle symmetric matrix is a square matrix MULT _ C of dimension 2Q-1, the point with m ═ 0 is the central symmetric point, and the values on the main diagonal are 1,2 … Q-1,0, Q-1, …,2,1 in sequence; in this embodiment, taking the spreading code length Q of the TD-SCDMA system as an example, the constructed angular symmetric matrix MULT _ C is represented as:
d, calculating R by utilizing the angular symmetry matrixu
RuCan be expressed as:
<math> <mrow> <msub> <mi>R</mi> <mi>u</mi> </msub> <mo>=</mo> <msub> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>R</mi> <mrow> <msub> <mi>y</mi> <mi>i</mi> </msub> <msub> <mi>y</mi> <mi>i</mi> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mo>-</mo> <mi>m</mi> <mo>,</mo> <mo>-</mo> <mi>m</mi> <mo>)</mo> </mrow> </mtd> <mtd> <msub> <mi>R</mi> <mrow> <msub> <mi>y</mi> <mi>i</mi> </msub> <msub> <mi>y</mi> <mi>i</mi> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mo>-</mo> <mi>m</mi> <mo>,</mo> <mo>-</mo> <mi>m</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </mtd> <mtd> <mo>.</mo> <mo>.</mo> <mo>.</mo> </mtd> <mtd> <msub> <mi>R</mi> <mrow> <msub> <mi>y</mi> <mi>i</mi> </msub> <msub> <mi>y</mi> <mi>i</mi> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mo>-</mo> <mi>m</mi> <mo>,</mo> <mi>m</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>R</mi> <mrow> <msub> <mi>y</mi> <mi>i</mi> </msub> <msub> <mi>y</mi> <mi>i</mi> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mo>-</mo> <mi>m</mi> <mo>+</mo> <mn>1</mn> <mo>,</mo> <mo>-</mo> <mi>m</mi> <mo>)</mo> </mrow> </mtd> <mtd> <msub> <mi>R</mi> <mrow> <msub> <mi>y</mi> <mi>i</mi> </msub> <msub> <mi>y</mi> <mi>i</mi> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mo>-</mo> <mi>m</mi> <mo>+</mo> <mn>1</mn> <mo>,</mo> <mo>-</mo> <mi>m</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </mtd> <mtd> <mo>.</mo> <mo>.</mo> <mo>.</mo> </mtd> <mtd> <msub> <mi>R</mi> <mrow> <msub> <mi>y</mi> <mi>i</mi> </msub> <msub> <mi>y</mi> <mi>i</mi> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mo>-</mo> <mi>m</mi> <mo>+</mo> <mn>1</mn> <mo>,</mo> <mi>m</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>R</mi> <mrow> <msub> <mi>y</mi> <mi>i</mi> </msub> <msub> <mi>y</mi> <mi>i</mi> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mi>m</mi> <mo>,</mo> <mo>-</mo> <mi>m</mi> <mo>)</mo> </mrow> </mtd> <mtd> <msub> <mi>R</mi> <mrow> <msub> <mi>y</mi> <mi>i</mi> </msub> <msub> <mi>y</mi> <mi>i</mi> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mi>m</mi> <mo>,</mo> <mo>-</mo> <mi>m</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </mtd> <mtd> <mo>.</mo> <mo>.</mo> <mo>.</mo> </mtd> <mtd> <msub> <mi>R</mi> <mrow> <msub> <mi>y</mi> <mi>i</mi> </msub> <msub> <mi>y</mi> <mi>i</mi> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mi>m</mi> <mo>,</mo> <mi>m</mi> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mrow> <mi>J</mi> <mo>&times;</mo> <mi>J</mi> </mrow> </msub> </mrow> </math>
wherein,is RuThe middle element, i represents a row, j represents a column, which can be further represented as:
<math> <mrow> <msub> <mi>R</mi> <mrow> <msub> <mi>y</mi> <mi>i</mi> </msub> <msub> <mi>y</mi> <mi>i</mi> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>m</mi> <mo>=</mo> <mi>L</mi> <mo>-</mo> <mi>i</mi> </mrow> <mrow> <mi>J</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <mi>g</mi> <mrow> <mo>(</mo> <mi>m</mi> <mo>+</mo> <mn>1</mn> <mo>-</mo> <mrow> <mo>(</mo> <mi>L</mi> <mo>-</mo> <mi>j</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>*</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>n</mi> <mo>=</mo> <mi>L</mi> <mo>-</mo> <mi>j</mi> </mrow> <mrow> <mi>J</mi> <mo>-</mo> <mi>j</mi> </mrow> </munderover> <mi>conj</mi> <mrow> <mo>(</mo> <mi>g</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo>-</mo> <mrow> <mo>(</mo> <mi>L</mi> <mo>-</mo> <mi>j</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>*</mo> <mi>MULT</mi> <mo>_</mo> <mi>C</mi> <mrow> <mo>(</mo> <mi>m</mi> <mo>+</mo> <mi>Q</mi> <mo>,</mo> <mi>n</mi> <mo>+</mo> <mi>Q</mi> <mo>)</mo> </mrow> </mrow> </math>
where L is the path of channel estimation, J is the number of fingers, J equals 2L-1 in this embodiment, and MULT _ C is the angular symmetric matrix constructed in step C.
Step E, according to w = R u - 1 h , Wherein h is the path estimated by the channel, and the number of the paths is L.
From the above implementation steps, it can be seen that the method greatly simplifies the implementation of GRAKE, and if the spreading codes are large, the correlation matrix of the correlations of all the spreading codes does not need to be stored, only the matrix of the number of the estimation paths needs to be stored, and the matrix is read according to the symmetry.
A GRAKE receiver comprises a combining weight calculation module and a multipath position selection module;
the combination weight calculation module adopts the combination weight calculation method to calculate the combination weight;
the multi-path position selection module is used for selecting finger positions, and the selection method comprises the following steps: determining the number J of fingers, namely taking the value of J in the interval of [ L,2L-1 ]; and selecting J finger positions according to the positions of the L paths estimated by the channel, namely the rear L positions of the fingers are the same as the positions of the paths estimated by the channel, and the front J-L finger positions and the J-L paths in front of the L paths are symmetrical about the strongest path. Wherein, L is the number of radial strips estimated by the channel.
The purpose, technical solutions and advantages of the present invention are further described in detail by the examples given in the present invention, and it should be understood that the examples given above are only preferred embodiments of the present invention, and are not intended to limit the present invention, and any modifications, equivalent substitutions, improvements and the like made within the spirit and principle of the present invention should be included in the scope of the present invention.

Claims (1)

1. A combining weight calculation method of a GRAKE receiver comprises the following steps:
step A: obtaining a function of the demodulated interference portion:
b, selecting finger positions, including determining the number J of fingers, namely taking values of J in the interval of [ L,2L-1 ]; selecting J finger positions according to the positions of the L paths estimated by the channel, namely the rear L positions of the fingers are the same as the positions of the paths estimated by the channel, and the front J-L finger positions and the J-L paths in front of the L paths are symmetrical about the strongest path; l is the path number estimated by the channel;
and C: constructing an angular symmetric matrix, wherein the angular symmetric matrix is a square matrix of a dimension 2Q-1, a point with m being 0 is taken as a central symmetric point, and values on a main diagonal are 1,2 … Q-1,0, Q-1, …,2 and 1 in sequence; q represents the length of the spreading code, and m is the finger position;
step D: computing R using an angularly symmetric matrixu(ii) a The R isuExpressed as:
<math> <mrow> <msub> <mi>R</mi> <mi>u</mi> </msub> <mo>=</mo> <msub> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>R</mi> <mrow> <msub> <mi>y</mi> <mi>i</mi> </msub> <msub> <mi>y</mi> <mi>i</mi> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mo>-</mo> <mi>m</mi> <mo>,</mo> <mo>-</mo> <mi>m</mi> <mo>)</mo> </mrow> </mtd> <mtd> <msub> <mi>R</mi> <mrow> <msub> <mi>y</mi> <mi>i</mi> </msub> <msub> <mi>y</mi> <mi>i</mi> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mo>-</mo> <mi>m</mi> <mo>,</mo> <mo>-</mo> <mi>m</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </mtd> <mtd> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> </mtd> <mtd> <msub> <mi>R</mi> <mrow> <msub> <mi>y</mi> <mi>i</mi> </msub> <msub> <mi>y</mi> <mi>i</mi> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mo>-</mo> <mi>m</mi> <mo>,</mo> <mi>m</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>R</mi> <mrow> <msub> <mi>y</mi> <mi>i</mi> </msub> <msub> <mi>y</mi> <mi>i</mi> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mo>-</mo> <mi>m</mi> <mo>+</mo> <mn>1</mn> <mo>,</mo> <mo>-</mo> <mi>m</mi> <mo>)</mo> </mrow> </mtd> <mtd> <msub> <mi>R</mi> <mrow> <msub> <mi>y</mi> <mi>i</mi> </msub> <msub> <mi>y</mi> <mi>i</mi> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mo>-</mo> <mi>m</mi> <mo>+</mo> <mn>1</mn> <mo>,</mo> <mo>-</mo> <mi>m</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </mtd> <mtd> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> </mtd> <mtd> <msub> <mi>R</mi> <mrow> <msub> <mi>y</mi> <mi>i</mi> </msub> <msub> <mi>y</mi> <mi>i</mi> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mo>-</mo> <mi>m</mi> <mo>+</mo> <mn>1</mn> <mo>,</mo> <mi>m</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>&CenterDot;</mo> </mtd> <mtd> <mo>&CenterDot;</mo> </mtd> <mtd> <mo>&CenterDot;</mo> </mtd> <mtd> <mo>&CenterDot;</mo> </mtd> </mtr> <mtr> <mtd> <mo>&CenterDot;</mo> </mtd> <mtd> <mo>&CenterDot;</mo> </mtd> <mtd> <mo>&CenterDot;</mo> </mtd> <mtd> <mo>&CenterDot;</mo> </mtd> </mtr> <mtr> <mtd> <mo>&CenterDot;</mo> </mtd> <mtd> <mo>&CenterDot;</mo> </mtd> <mtd> <mo>&CenterDot;</mo> </mtd> <mtd> <mo>&CenterDot;</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>R</mi> <mrow> <msub> <mi>y</mi> <mi>i</mi> </msub> <msub> <mi>y</mi> <mi>i</mi> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mi>m</mi> <mo>,</mo> <mo>-</mo> <mi>m</mi> <mo>)</mo> </mrow> </mtd> <mtd> <msub> <mi>R</mi> <mrow> <msub> <mi>y</mi> <mi>i</mi> </msub> <msub> <mi>y</mi> <mi>i</mi> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mi>m</mi> <mo>,</mo> <mo>-</mo> <mi>m</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </mtd> <mtd> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> </mtd> <mtd> <msub> <mi>R</mi> <mrow> <msub> <mi>y</mi> <mi>i</mi> </msub> <msub> <mi>y</mi> <mi>i</mi> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mi>m</mi> <mo>,</mo> <mi>m</mi> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mrow> <mi>J</mi> <mo>&times;</mo> <mi>J</mi> </mrow> </msub> </mrow> </math>
is RuThe middle element, i denotes a row, j denotes a column, which is further denoted as:
<math> <mrow> <msub> <mi>R</mi> <mrow> <msub> <mi>y</mi> <mi>i</mi> </msub> <msub> <mi>y</mi> <mi>i</mi> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>m</mi> <mo>=</mo> <mi>L</mi> <mo>-</mo> <mi>i</mi> </mrow> <mrow> <mi>J</mi> <mo>-</mo> <mi>i</mi> </mrow> </munderover> <mi>g</mi> <mrow> <mo>(</mo> <mi>m</mi> <mo>+</mo> <mn>1</mn> <mo>-</mo> <mrow> <mo>(</mo> <mi>L</mi> <mo>-</mo> <mi>j</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>*</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>m</mi> <mo>=</mo> <mi>L</mi> <mo>-</mo> <mi>j</mi> </mrow> <mrow> <mi>J</mi> <mo>-</mo> <mi>j</mi> </mrow> </munderover> <mi>conj</mi> <mrow> <mo>(</mo> <mi>g</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo>-</mo> <mrow> <mo>(</mo> <mi>L</mi> <mo>-</mo> <mi>j</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>*</mo> <mi>MULT</mi> <mo>_</mo> <mi>C</mi> <mrow> <mo>(</mo> <mi>m</mi> <mo>+</mo> <mi>Q</mi> <mo>,</mo> <mi>n</mi> <mo>+</mo> <mi>Q</mi> <mo>)</mo> </mrow> </mrow> </math>
MULT _ C is the angular symmetry matrix, S, constructed in step CiIs an interference symbol, conj () representsComplex conjugate operation, gtIs an estimated multipath;
step E: according toCalculating a combined weight;
wherein R isuH is the impulse response estimated from the channel as the autocorrelation function of the total interference.
CN200910251018.8A 2009-12-28 2009-12-28 GRAKE receiver and combined weight calculating method thereof Active CN102111183B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200910251018.8A CN102111183B (en) 2009-12-28 2009-12-28 GRAKE receiver and combined weight calculating method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN200910251018.8A CN102111183B (en) 2009-12-28 2009-12-28 GRAKE receiver and combined weight calculating method thereof

Publications (2)

Publication Number Publication Date
CN102111183A CN102111183A (en) 2011-06-29
CN102111183B true CN102111183B (en) 2015-07-08

Family

ID=44175226

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200910251018.8A Active CN102111183B (en) 2009-12-28 2009-12-28 GRAKE receiver and combined weight calculating method thereof

Country Status (1)

Country Link
CN (1) CN102111183B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9595988B2 (en) * 2014-12-10 2017-03-14 Intel Corporation Communication device and method for receiving a signal

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1983839A (en) * 2006-05-10 2007-06-20 华为技术有限公司 Method, device and PAKE receiver of each radial weighted value of computer
CN101277127A (en) * 2008-03-21 2008-10-01 华为技术有限公司 Method for receiving signal as well as receiver, method for combining signal as well as module

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1983839A (en) * 2006-05-10 2007-06-20 华为技术有限公司 Method, device and PAKE receiver of each radial weighted value of computer
CN101277127A (en) * 2008-03-21 2008-10-01 华为技术有限公司 Method for receiving signal as well as receiver, method for combining signal as well as module

Also Published As

Publication number Publication date
CN102111183A (en) 2011-06-29

Similar Documents

Publication Publication Date Title
Bottomley et al. A generalized RAKE receiver for interference suppression
JP4927828B2 (en) Adaptive timing recovery by general-purpose RAKE reception
US8432952B2 (en) Method and apparatus for DS-CDMA interference suppression using code-specific combining
US7778312B2 (en) Method and apparatus for selecting demodulation processing delays in a receiver
US7738534B2 (en) Multi-transmitter interference suppression using code-specific combining
JP5379156B2 (en) Speed-based hybrid parametric / nonparametric equalization
CN101523748A (en) Doppler frequency control of G-Rake receiver
JP2004519959A (en) Adaptive chip equalizer for synchronous DS-CDMA system with pilot sequence
EP1987599A2 (en) Reduced complexity interference suppression for wireless communications
WO2006091359A2 (en) Generalized rake receiver for wireless communication
EP2245753B1 (en) Code power estimation for mimo signals
CN100578954C (en) Method for receiving multi-path signal, device for calculating each path weighted value and PAKE receiver
CN102474478B (en) Reduced complexity equalisation in CDMA with impulse response shortening
CN102638289B (en) Reducing spread spectrum noise
CN1735083B (en) Method of noise factor computation for chip equalizer in spread spectrum receiver
CN102111183B (en) GRAKE receiver and combined weight calculating method thereof
US8295329B2 (en) Efficient computation of soft scaling factors for linear multi-user detector
Cairns et al. Low complexity parameter estimation for the generalized RAKE receiver
Boubaker et al. Combined multiuser successive interference cancellation and partial RAKE reception for ultra-wideband wireless communications
CN100349394C (en) Method for eliminating grouping single interference utilized in asynchronism code division multiple access system
Hara et al. Analysis of RAKE receiver in W-CDMA systems with downlink beamforming
JP2002280928A (en) Spreading factor estimation system and method
CN101345562A (en) Harrow type receiver and its method for decoding spread spectrum

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20170426

Address after: Nanping Street 400060 Chongqing Nan'an District Nancheng Road No. 199 left attached to the floor 403

Patentee after: Keen (Chongqing) Microelectronics Technology Co.,Ltd.

Address before: 400065 Chongqing Nan'an District huangjuezhen pass Fort Park No. 1

Patentee before: CHONGQING CYIT COMMUNICATION TECHNOLOGIES Co.,Ltd.

TR01 Transfer of patent right
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20181107

Address after: 201203 Building 1, exhibition hall, 2288 lane, 2288 Chong, road, Zhangjiang hi tech park, Shanghai

Patentee after: SPREADTRUM COMMUNICATIONS (SHANGHAI) Co.,Ltd.

Address before: 400060 Nanping Road 199, Nanping Street, Nan'an District, Chongqing, 403

Patentee before: Keen (Chongqing) Microelectronics Technology Co.,Ltd.

TR01 Transfer of patent right

Effective date of registration: 20200604

Address after: 8-07, building 6, ronghuiyuan, airport economic core area, Shunyi District, Beijing

Patentee after: Xin Xin finance leasing (Beijing) Co.,Ltd.

Address before: 201203 Shanghai city Zuchongzhi road Pudong New Area Zhangjiang hi tech park, Spreadtrum Center Building 1, Lane 2288

Patentee before: SPREADTRUM COMMUNICATIONS (SHANGHAI) Co.,Ltd.

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20201201

Address after: Room 2502, COFCO Plaza, 990 Nanma Road, Nankai District, Tianjin

Patentee after: Xin Xin finance leasing (Tianjin) Co.,Ltd.

Address before: 8-07, building 6, ronghuiyuan, airport economic core area, Shunyi District, Beijing

Patentee before: Xin Xin finance leasing (Beijing) Co.,Ltd.

TR01 Transfer of patent right
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20110629

Assignee: SPREADTRUM COMMUNICATIONS (SHANGHAI) Co.,Ltd.

Assignor: Xin Xin finance leasing (Tianjin) Co.,Ltd.

Contract record no.: X2021110000055

Denomination of invention: A Grake receiver and its combined weight calculation method

Granted publication date: 20150708

License type: Exclusive License

Record date: 20211227

EE01 Entry into force of recordation of patent licensing contract
TR01 Transfer of patent right

Effective date of registration: 20230713

Address after: 201203 Shanghai city Zuchongzhi road Pudong New Area Zhangjiang hi tech park, Spreadtrum Center Building 1, Lane 2288

Patentee after: SPREADTRUM COMMUNICATIONS (SHANGHAI) Co.,Ltd.

Address before: Room 2502, COFCO Plaza, 990 Nanma Road, Nankai District, Tianjin 300100

Patentee before: Xin Xin finance leasing (Tianjin) Co.,Ltd.

TR01 Transfer of patent right