[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN102095431A - Digital converter of magnetic encoder - Google Patents

Digital converter of magnetic encoder Download PDF

Info

Publication number
CN102095431A
CN102095431A CN 201010564657 CN201010564657A CN102095431A CN 102095431 A CN102095431 A CN 102095431A CN 201010564657 CN201010564657 CN 201010564657 CN 201010564657 A CN201010564657 A CN 201010564657A CN 102095431 A CN102095431 A CN 102095431A
Authority
CN
China
Prior art keywords
multiplier
angular velocity
totalizer
signal
export
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 201010564657
Other languages
Chinese (zh)
Other versions
CN102095431B (en
Inventor
吴忠
吕绪明
吴云涛
傅安琪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CN2010105646572A priority Critical patent/CN102095431B/en
Publication of CN102095431A publication Critical patent/CN102095431A/en
Application granted granted Critical
Publication of CN102095431B publication Critical patent/CN102095431B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

The invention discloses a digital converter of a magnetic encoder, comprising a magnetic encoder, a signal processor, a phase-sensitive detector, a feedforward signal generator and a state observer. The signal processor caries out amplitude conditioning and analog-to-digital conversion to the output signal of the magnetic encoder; the phase-sensitive detector can generate an error signal containing phase information according to the output signal of the magnetic encoder and an angle estimation value output by the state observer; the feedforward signal generator calculates a feedforward angular velocity value needed by the state observer according to the output signal of the signal processor; and the state observer demodulates the angle and the angular velocity of a tested rotating device according to the error signal and the feedforward angular velocity value. The invention can greatly reduce the phase lag of the demodulated signal when the rotating device continuously rotates and has high demodulation accuracy and strong anti-interference capability.

Description

磁编码器数字转换器Magnetic Encoder to Digital Converter

技术领域technical field

本发明涉及一种磁编码器数字转换器,更确切的说,是指一种可实现对磁编码器输出信号进行解调,并可在伺服控制系统中应用的磁编码器(位置传感器)数字转换器。The invention relates to a magnetic encoder digital converter, more precisely, it refers to a magnetic encoder (position sensor) digital converter that can demodulate the output signal of the magnetic encoder and can be applied in the servo control system. converter.

背景技术Background technique

磁编码器由线性霍尔或磁阻元件组成,是用于测量旋转角度的传感器。因其结构简单、体积小、成本低、抗干扰能力及环境适应能力强,在转子位置检测中具有非常重要的地位。Magnetic encoders consist of linear Hall or magnetoresistive elements and are sensors used to measure the angle of rotation. Because of its simple structure, small size, low cost, strong anti-interference ability and environmental adaptability, it plays a very important role in rotor position detection.

目前,磁编码器数字转换器对信号的解调方案很多,应用最为广泛的是反正切运算方案和角度跟踪型变换方案。反正切运算方案首先通过反正切运算得到角度信息,再通过差分得到角速度信息,该方案对噪声信号敏感,精度较差。角度跟踪型变换方案由正余弦乘法器、误差放大器、相敏解调器、计数器、压控振荡器等组成,通过预设角度估计值,利用相敏检测器得出实际转角值与估计值之差的正弦值,通过判断该正弦值的正负来调节估计值,构成闭环回路,使估计值逐渐逼近实际值。该方案精度不高,且存在相位滞后。At present, there are many demodulation schemes for the magnetic encoder digital converter, and the most widely used ones are the arctangent operation scheme and the angle tracking transformation scheme. The arctangent operation scheme first obtains the angle information through the arctangent operation, and then obtains the angular velocity information through the difference. This scheme is sensitive to noise signals and has poor precision. The angle tracking conversion scheme is composed of a sine-cosine multiplier, an error amplifier, a phase-sensitive demodulator, a counter, a voltage-controlled oscillator, etc., and the estimated value of the angle is preset, and the phase-sensitive detector is used to obtain the difference between the actual rotation angle value and the estimated value. The sine value of the difference, adjust the estimated value by judging the positive or negative of the sine value, forming a closed loop, so that the estimated value gradually approaches the actual value. The accuracy of this scheme is not high, and there is a phase lag.

发明内容Contents of the invention

本发明的目的是提供一种磁编码器数字转换器,该转换器通过引入一种带前馈的二阶状态观测器,不但可以从磁编码器输出信号中实时解调出被测旋转装置的角度

Figure BSA00000364924600011
和角速度
Figure BSA00000364924600012
而且可以明显改善被测旋转装置转速连续变化时,输出角度和角速度信号的相位滞后。本发明能够实现在变速情况下角度和角速度信息的高精度解调,输出精度比常规数字解调器输出精度提高几倍以上。The purpose of the present invention is to provide a magnetic encoder digital converter, which can not only demodulate the measured rotating device from the magnetic encoder output signal in real time by introducing a second-order state observer with feedforward angle
Figure BSA00000364924600011
and angular velocity
Figure BSA00000364924600012
Moreover, the phase lag of the output angle and angular velocity signals can be significantly improved when the rotational speed of the rotating device under test changes continuously. The invention can realize high-precision demodulation of angle and angular velocity information under variable speed, and the output precision is several times higher than that of conventional digital demodulators.

本发明的一种磁编码器数字转换器,其包括有信号调理器(3)、相敏检测器(4)、前馈信号发生器(5)和状态观测器(6);A magnetic encoder-digital converter of the present invention includes a signal conditioner (3), a phase-sensitive detector (4), a feedforward signal generator (5) and a state observer (6);

信号调理器(3)由调理器(31)和A/D转换器(32)组成;调理器(31)和A/D转换器(32)用于将接收的模拟正弦Vs(t)进行幅值调理、模数转换,输出数字正弦Vs(j);调理器(31)和A/D转换器(32)用于将接收的模拟余弦Vc(t)进行幅值调理、模数转换,输出数字余弦Vc(j);Signal conditioner (3) is made up of conditioner (31) and A/D converter (32); Conditioner (31) and A/D converter (32) are used for the analog sinusoidal V s (t) that receives Amplitude conditioning, analog-to-digital conversion, output digital sine V s (j); conditioner (31) and A/D converter (32) are used to carry out amplitude conditioning, modulus to analog cosine V c (t) received Convert, output digital cosine V c (j);

相敏检测器(4)由余弦发生器(41)、余弦发生器(42)、A乘法器(43)、B乘法器(44)、A加法器(45)组成;余弦发生器(41)用于产生角度估计值

Figure BSA00000364924600021
的余弦值
Figure BSA00000364924600022
正弦发生器(42)用于产生角度估计值的正弦值
Figure BSA00000364924600024
;A乘法器(43)将接收的数字正弦Vs(j)与余弦值
Figure BSA00000364924600025
相乘,输出第一中间量;B乘法器(44)将接收的数字余弦Vc(j)与正弦值
Figure BSA00000364924600026
相乘,输出第二中间量;A加法器(45)用第一中间量减去第二中间量获得在第j时刻的误差E(j);Phase-sensitive detector (4) is made up of cosine generator (41), cosine generator (42), A multiplier (43), B multiplier (44), A adder (45); cosine generator (41) used to generate angle estimates
Figure BSA00000364924600021
cosine of
Figure BSA00000364924600022
A sine generator (42) is used to generate angle estimates the sine of
Figure BSA00000364924600024
; A multiplier (43) will receive digital sine V s (j) and cosine value
Figure BSA00000364924600025
Multiply, output the first intermediate quantity; B multiplier (44) will receive digital cosine V c (j) and sine value
Figure BSA00000364924600026
Multiply, output the second intermediate quantity; A adder (45) subtracts the second intermediate quantity with the first intermediate quantity and obtains the error E (j) of the j moment;

前馈信号发生器(5)由反正切运算器(51)、B加法器(52)、A状态存储器(53)、C乘法器(54)、D加法器(55)、C加法器(56)、E乘法器(57)、B状态存储器(58)组成;反正切运算器(51)将接收的数字正弦Vs(j)、数字余弦Vc(j)进行反正切运算,输出旋转装置角度的估计信号

Figure BSA00000364924600027
B加法器(52)用接收的旋转装置度的估计信号
Figure BSA00000364924600028
减去A状态存储器(53)记载的前一时刻j-1的角度估计值
Figure BSA00000364924600029
输出第三中间变量;C乘法器(54)将接收的第三中间变量与采样周期的倒数
Figure BSA000003649246000210
相乘,输出第四中间变量
Figure BSA000003649246000211
T表示采样周期;D乘法器(55)将接收的第四中间变量与第一滤波系数a1相乘,输出第五中间变量;τ表示滤波时间常数;C加法器(56)将接收的第五中间变量与第六中间变量相加,输出前馈角速度值
Figure BSA000003649246000212
E乘法器(57)依据B状态存储器(58)记载的前一时刻j-1的前馈角速度值
Figure BSA000003649246000213
与第二滤波系数a2相乘,输出第六中间变量;Feedforward signal generator (5) is by arctangent operator (51), B adder (52), A state memory (53), C multiplier (54), D adder (55), C adder (56 ), E multiplier (57), B state memory (58); the arctangent operator (51) carries out the arctangent calculation with the received digital sine V s (j), digital cosine V c (j), and outputs the rotary device Angle estimate signal
Figure BSA00000364924600027
The B adder (52) uses the received estimated signal of the rotation device degree
Figure BSA00000364924600028
Subtract the estimated angle value of the previous moment j-1 recorded in the A state memory (53)
Figure BSA00000364924600029
Output the 3rd intermediate variable; C multiplier (54) will receive the reciprocal of the 3rd intermediate variable and sampling period
Figure BSA000003649246000210
Multiply, output the fourth intermediate variable
Figure BSA000003649246000211
T represents the sampling cycle; D multiplier (55) multiplies the 4th intermediate variable received with the first filter coefficient a 1 , and outputs the 5th intermediate variable; τ represents the filtering time constant; C adder (56) receives the 4th intermediate variable The fifth intermediate variable is added to the sixth intermediate variable to output the feedforward angular velocity value
Figure BSA000003649246000212
E multiplier (57) according to the feed-forward angular velocity value of the previous moment j-1 recorded in B state memory (58)
Figure BSA000003649246000213
Multiply with the second filter coefficient a 2 to output the sixth intermediate variable;

状态观测器(6)由角速度观测器模块(601)和角度观测器模块(602)组成;State observer (6) is made up of angular velocity observer module (601) and angle observer module (602);

所述角速度观测器模块(601)包括有F乘法器(61)、G乘法器(62)、D加法器(63)、E加法器(64)、C状态存储器(65);所述的F乘法器(61)内设定有角速度观测器增益系数KθDescribed angular velocity observer module (601) comprises F multiplier (61), G multiplier (62), D adder (63), E adder (64), C state memory (65); Described F The angular velocity observer gain coefficient K θ is set in the multiplier (61);

所述角度观测器模块(602)包括有H乘法器(66)、F加法器(67)、D状态存储器(69)、I乘法器(68)、G加法器(610)、E状态存储器(611);所述的H乘法器(66)内设定有角度观测器增益系数KωDescribed angle observer module (602) comprises H multiplier (66), F adder (67), D state storer (69), I multiplier (68), G adder (610), E state storer ( 611); The angle observer gain coefficient K ω is set in the described H multiplier (66);

F乘法器(61)将接收的误差E(j)与角速度观测器增益系数Kθ相乘,输出第七中间量;G乘法器(62)将接收的第七中间量与采样周期T相乘,输出第八中间量;D加法器(63)依据C状态存储器(65)记载的前一时刻j-1的反馈角速度估计值

Figure BSA000003649246000214
与第九中间量相加,输出第九中间量;E加法器(64)将前馈信号发生器(5)产生的前馈角速度信号
Figure BSA00000364924600031
与第九中间量相加,输出第j时刻的角速度值
Figure BSA00000364924600032
H乘法器(66)将接收的误差E(j)与角度观测器增益系数Kω相乘,输出第十中间量;F加法器(67)依据D状态存储器(69)记载的前一时刻j-1的角速度估计值
Figure BSA00000364924600033
与第十中间量相加,输出第十一中间量;I乘法器(68)将接收的第十一中间量与采样周期T相乘,输出第十二中间量;G加法器(610)依据E状态存储器(611)记载的前一时刻j-1的角度估计值
Figure BSA00000364924600034
与第十二中间量相加,输出第j时刻的角度值
Figure BSA00000364924600035
The F multiplier (61) multiplies the received error E(j) with the angular velocity observer gain coefficient K θ , and outputs the seventh intermediate quantity; the G multiplier (62) multiplies the received seventh intermediate quantity with the sampling period T , output the eighth intermediate quantity; D adder (63) according to the feedback angular velocity estimated value of the previous moment j-1 recorded in C state memory (65)
Figure BSA000003649246000214
Add the ninth intermediate quantity, output the ninth intermediate quantity; E adder (64) the feedforward angular velocity signal that feedforward signal generator (5) produces
Figure BSA00000364924600031
Add it to the ninth intermediate quantity, and output the angular velocity value at the jth moment
Figure BSA00000364924600032
H multiplier (66) multiplies the received error E (j) with angle observer gain coefficient K ω , and outputs the tenth intermediate quantity; F adder (67) records the previous moment j according to D state memory (69) Angular velocity estimate of -1
Figure BSA00000364924600033
Add the tenth intermediate quantity, output the eleventh intermediate quantity; I multiplier (68) multiplies the eleventh intermediate quantity received with the sampling period T, and outputs the twelfth intermediate quantity; G adder (610) based on The angle estimated value of the previous moment j-1 recorded in the E state memory (611)
Figure BSA00000364924600034
Add it to the twelfth intermediate value, and output the angle value at the jth moment
Figure BSA00000364924600035

本发明涉及的磁编码器数字转换器优点在于:(1)引入线性状态观测器,通过合理选取增益系数,可实时获取被测旋转装置的角位置和角速度;(2)引入角速度前馈,可大幅减小被测旋转装置的角速度连续变化时,状态观测器输出角度和转速信号的相位滞后;(3)相敏检测器、状态观测器和前馈信号发生器采用软件代码编译实现,使数字转换器解调精度高,抗干扰能力强。The advantages of the magnetic encoder digital converter involved in the present invention are: (1) introducing a linear state observer, by rationally selecting the gain coefficient, the angular position and angular velocity of the measured rotating device can be obtained in real time; (2) introducing angular velocity feedforward, which can When the angular velocity of the rotating device under test is continuously changed, the phase lag of the output angle and rotational speed signal of the state observer is greatly reduced; (3) the phase-sensitive detector, the state observer and the feedforward signal generator are implemented by software code compilation, so that the digital The converter has high demodulation accuracy and strong anti-interference ability.

附图说明Description of drawings

图1为本发明的结构原理框图;Fig. 1 is a structural principle block diagram of the present invention;

图2为本发明的信号调理器的原理框图。Fig. 2 is a functional block diagram of the signal conditioner of the present invention.

图3为本发明的相敏检测器原理框图。Fig. 3 is a functional block diagram of the phase sensitive detector of the present invention.

图4为本发明的前馈信号发生器原理框图。Fig. 4 is a functional block diagram of the feedforward signal generator of the present invention.

图5为本发明的状态观测器原理框图。Fig. 5 is a functional block diagram of the state observer of the present invention.

图中:      1.旋转装置    2.磁编码器        3.信号调理器      31.调理电路32.模数转换器   4.相敏检测器  41.余弦发生器     42.正弦发生器     43.A乘法器44.B乘法器      45.A加法器    5.前馈信号发生器  51.反正切运算器   52.B加法器53.A状态存储器  54.C乘法器    55.D乘法器        56.C加法器        57.E乘法器58.B状态存储器  6.状态观测器  601.速度观测器    602.角度观测器    61.F乘法器62.G乘法器      63.D加法器    64.E加法器        65.C状态存储器    66.H乘法器67.F加法器      68.I乘法器    69.D状态存储器    610.G加法器       611.E状态存储器In the figure: 1. Rotary device 2. Magnetic encoder 3. Signal conditioner 31. Conditioning circuit 32. Analog-to-digital converter 4. Phase-sensitive detector 41. Cosine generator 42. Sine generator 43. A multiplier 44. B Multiplier 45.A Adder 5.Feedforward Signal Generator 51.Arctangent Operator 52.B Adder 53.A State Memory 54.C Multiplier 55.D Multiplier 56.C Adder 57.E Multiplication 58.B State Memory 6. State Observer 601. Speed Observer 602. Angle Observer 61.F Multiplier 62.G Multiplier 63.D Adder 64.E Adder 65.C State Memory 66.H Multiplication 67.F adder 68.I multiplier 69.D state memory 610.G adder 611.E state memory

具体实施方式Detailed ways

下面将结合附图和实施例对本发明做进一步详细说明。The present invention will be described in further detail below in conjunction with the accompanying drawings and embodiments.

本发明是一种磁编码器数字转换器,主要包括信号调理器、相敏检测器、状态观测器和前馈信号发生器。相敏检测器、状态观测器和前馈信号发生器采用软件代码编译实现,存储于处理器芯片上。信号调理器将磁编码器输出信号进行幅值调理、模数转换;相敏检测器可根据磁编码器输出信号及状态观测器输出的角度值,生成包含相位信息的误差信号;前馈信号发生器根据信号调理器的输出信号计算得出状态观测器所需的前馈速度值;状态观测器根据上述误差信号和前馈速度值,解调出被测旋转装置的角位置和角速度。The invention is a magnetic encoder digital converter, which mainly includes a signal conditioner, a phase-sensitive detector, a state observer and a feedforward signal generator. The phase-sensitive detector, the state observer and the feed-forward signal generator are realized by compiling software codes and stored on the processor chip. The signal conditioner performs amplitude conditioning and analog-to-digital conversion on the output signal of the magnetic encoder; the phase-sensitive detector can generate an error signal containing phase information according to the output signal of the magnetic encoder and the angle value output by the state observer; the feedforward signal generates The controller calculates the feedforward velocity value required by the state observer according to the output signal of the signal conditioner; the state observer demodulates the angular position and angular velocity of the measured rotating device according to the above error signal and the feedforward velocity value.

如图1所示,在本发明中,磁编码器2用于将旋转装置1输出的角位置信息转换成模拟正弦Vs(t)、模拟余弦Vc(t)信号输出。Vs(t)=Kesinθ、Vc(t)=Kecosθ,Ke表示磁编码器2的增益系数,t表示被测体——旋转装置1转子运行时间内的测量时刻,θ表示被测体——旋转装置1转子转过的角度。As shown in FIG. 1 , in the present invention, the magnetic encoder 2 is used to convert the angular position information output by the rotating device 1 into analog sine V s (t) and analog cosine V c (t) signals for output. V s (t) = K e sin θ, V c (t) = K e cos θ, K e represents the gain coefficient of the magnetic encoder 2, t represents the measured object - the measurement time of the rotating device 1 rotor running time, θ Indicates the measured object - the angle of rotation of the rotor of the rotating device 1.

本发明是一种磁编码器数字转换器,所述磁编码器数字转换器是对磁编码器2输出的模拟正弦Vs(t)和模拟余弦Vc(t)信息进行转换处理的装置。本发明磁编码器数字转换器主要包括有信号调理模块3、相敏检测器4、前馈信号发生器5和状态观测器6;其中相敏检测器4、前馈信号发生器5和状态观测器6采用编译软件代码存储于处理器芯片(即将编译软件代码按照实现功能划分为相敏检测器4、前馈信号发生器5和状态观测器6)上实现。所述处理器可以是DSP芯片,如TMS320系列芯片。The present invention is a magnetic encoder digital converter, which is a device for converting and processing the information of the analog sine V s (t) and the analog cosine V c (t) output by the magnetic encoder 2 . The magnetic encoder digital converter of the present invention mainly includes a signal conditioning module 3, a phase-sensitive detector 4, a feedforward signal generator 5 and a state observer 6; wherein the phase-sensitive detector 4, the feedforward signal generator 5 and the state observer The device 6 is realized by storing the compiled software code on the processor chip (that is, the compiled software code is divided into a phase-sensitive detector 4, a feed-forward signal generator 5 and a state observer 6 according to the realized functions). The processor may be a DSP chip, such as a TMS320 series chip.

在本发明中,如图2所示,信号调理模块3由调理器31和A/D转换器32组成。信号调理模块3中的调理器31和A/D转换器32用于将接收的模拟正弦Vs(t)进行幅值调理、模数转换,输出数字正弦Vs(j);In the present invention, as shown in FIG. 2 , the signal conditioning module 3 is composed of a conditioner 31 and an A/D converter 32 . The conditioner 31 and the A/D converter 32 in the signal conditioning module 3 are used to carry out amplitude conditioning and analog-to-digital conversion to the received analog sine V s (t), and output digital sine V s (j);

信号调理模块3中的调理器31和A/D转换器32用于将接收的模拟余弦Vc(t)进行幅值调理、模数转换,输出数字余弦Vc(j);The conditioner 31 and the A/D converter 32 in the signal conditioning module 3 are used to carry out amplitude conditioning and analog-to-digital conversion to the received analog cosine V c (t), and output digital cosine V c (j);

在本发明中,如图3所示,相敏检测器4由余弦发生器41、余弦发生器42、A乘法器43、B乘法器44、A加法器45组成;在初始条件下,相敏检测器4接收的角度估计值

Figure BSA00000364924600041
取值为零;若在当前时刻,则相敏检测器4接收的角度估计值
Figure BSA00000364924600042
取值为
Figure BSA00000364924600043
In the present invention, as shown in Figure 3, phase-sensitive detector 4 is made up of cosine generator 41, cosine generator 42, A multiplier 43, B multiplier 44, A adder 45; The angle estimate received by detector 4
Figure BSA00000364924600041
The value is zero; if at the current moment, the angle estimate value received by the phase-sensitive detector 4
Figure BSA00000364924600042
The value is
Figure BSA00000364924600043

相敏检测器4中的余弦发生器41用于产生角度估计值的余弦值

Figure BSA00000364924600045
A cosine generator 41 in the phase sensitive detector 4 is used to generate an angle estimate cosine of
Figure BSA00000364924600045

相敏检测器4中的正弦发生器42用于产生角度估计值的正弦值

Figure BSA00000364924600047
The sine generator 42 in the phase sensitive detector 4 is used to generate the angle estimate the sine of
Figure BSA00000364924600047

相敏检测器4中的A乘法器43将接收的数字正弦Vs(j)与余弦值

Figure BSA00000364924600048
相乘,输出第一中间量;The A multiplier 43 in the phase-sensitive detector 4 combines the received digital sine V s (j) with the cosine value
Figure BSA00000364924600048
Multiply and output the first intermediate quantity;

相敏检测器4中的B乘法器44将接收的数字余弦Vc(j)与正弦值

Figure BSA00000364924600051
相乘,输出第二中间量;The B multiplier 44 in the phase-sensitive detector 4 combines the received digital cosine V c (j) with the sine value
Figure BSA00000364924600051
Multiply and output the second intermediate quantity;

相敏检测器4中的A加法器45用第一中间量减去第二中间量获得在第j时刻的误差E(j)。The A adder 45 in the phase sensitive detector 4 subtracts the second intermediate quantity from the first intermediate quantity to obtain the error E(j) at the jth moment.

在本发明中,如图4所示,前馈信号发生器5从实现的功能上划分由反正切运算器51、B加法器52、A状态存储器53、C乘法器54、D加法器55、C加法器56、E乘法器57、B状态存储器58组成;In the present invention, as shown in Figure 4, the feed-forward signal generator 5 is divided into arctangent operator 51, B adder 52, A state memory 53, C multiplier 54, D adder 55, C adder 56, E multiplier 57, B state memory 58 are formed;

前馈信号发生器5中的反正切运算器51将接收的数字正弦Vs(j)、数字余弦Vc(j)进行反正切运算,输出旋转装置角位置的估计信号

Figure BSA00000364924600052
The arctangent operator 51 in the feedforward signal generator 5 performs arctangent calculation on the received digital sine V s (j) and digital cosine V c (j), and outputs the estimated signal of the angular position of the rotating device
Figure BSA00000364924600052

前馈信号发生器5中的A状态存储器53用于记载前一时刻j-1(或称第j-1时刻)的角位置估计值

Figure BSA00000364924600053
The A-state memory 53 in the feedforward signal generator 5 is used to record the estimated value of the angular position at the previous moment j-1 (or called the j-1th moment)
Figure BSA00000364924600053

前馈信号发生器5中的B加法器52用接收的旋转装置位置的估计信号

Figure BSA00000364924600054
减去A状态存储器53记载的前一时刻j-1(或称第j-1时刻)的角位置估计值
Figure BSA00000364924600055
输出第三中间变量;The B adder 52 in the feedforward signal generator 5 uses the received estimated signal of the rotary device position
Figure BSA00000364924600054
Subtract the estimated value of the angular position at the previous moment j-1 (or claim the j-1th moment) recorded in the A state memory 53
Figure BSA00000364924600055
output the third intermediate variable;

前馈信号发生器5中的C乘法器54将接收的第三中间变量与采样周期的倒数

Figure BSA00000364924600056
相乘,输出第四中间变量
Figure BSA00000364924600057
T表示采样周期;The C multiplier 54 in the feed-forward signal generator 5 will receive the third intermediate variable and the reciprocal of the sampling period
Figure BSA00000364924600056
Multiply, output the fourth intermediate variable
Figure BSA00000364924600057
T represents the sampling period;

前馈信号发生器5中的D乘法器55将接收的第四中间变量与第一滤波系数α1相乘,输出第五中间变量;The D multiplier 55 in the feedforward signal generator 5 multiplies the received fourth intermediate variable with the first filter coefficient α1 , and outputs the fifth intermediate variable;

前馈信号发生器5中的B状态存储器58用于记载前馈角速度值,初始时前馈角速度值取值为零,若在当前时刻,则为前馈角速度值

Figure BSA00000364924600058
The B state memory 58 in the feed-forward signal generator 5 is used to record the feed-forward angular velocity value, and the initial value of the feed-forward angular velocity value is zero, if at the current moment, then it is the feed-forward angular velocity value
Figure BSA00000364924600058

前馈信号发生器5中的E乘法器57依据B状态存储器58记载的前一时刻j-1的前馈角速度值

Figure BSA00000364924600059
与第二滤波系数α2相乘,输出第六中间变量;第一滤波系数α1与第二滤波系数α2满足α12=1;The E multiplier 57 in the feedforward signal generator 5 is based on the feedforward angular velocity value of the previous moment j-1 recorded in the B state memory 58
Figure BSA00000364924600059
Multiply with the second filter coefficient α 2 to output the sixth intermediate variable; the first filter coefficient α 1 and the second filter coefficient α 2 satisfy α 12 =1;

前馈信号发生器5中的C加法器56将接收的第五中间变量与第六中间变量相加,输出前馈角速度值

Figure BSA000003649246000510
The C adder 56 in the feedforward signal generator 5 adds the received fifth intermediate variable to the sixth intermediate variable, and outputs the feedforward angular velocity value
Figure BSA000003649246000510

在本发明中,如图5所示,状态观测器6从实现的功能上划分由角速度观测器模块601和角度观测器模块602组成;在本发明中,角速度观测器模块601和角度观测器模块602构成了一个前馈型二阶状态观测器。In the present invention, as shown in Figure 5, state observer 6 is made up of angular velocity observer module 601 and angle observer module 602 from the functional division of realization; In the present invention, angular velocity observer module 601 and angle observer module 602 forms a feed-forward second-order state observer.

所述角速度观测器模块601包括有F乘法器61、G乘法器62、D加法器63、E加法器64、C状态存储器65;所述的F乘法器61内设定有角速度观测器增益系数KθThe angular velocity observer module 601 includes an F multiplier 61, a G multiplier 62, a D adder 63, an E adder 64, and a C state memory 65; the angular velocity observer gain coefficient is set in the F multiplier 61 K θ ;

所述角度观测器模块602包括有H乘法器66、F加法器67、D状态存储器69、I乘法器68、G加法器610、E状态存储器611;所述的H乘法器66内设定有角度观测器增益系数KωDescribed angle observer module 602 comprises H multiplier 66, F adder 67, D state storer 69, I multiplier 68, G adder 610, E state storer 611; Angle observer gain factor K ω .

状态观测器6中的F乘法器61将接收的误差E(j)与角速度观测器增益系数Kθ相乘,输出第七中间量;The F multiplier 61 in the state observer 6 multiplies the received error E (j) with the angular velocity observer gain coefficient K θ , and outputs the seventh intermediate quantity;

状态观测器6中的G乘法器62将接收的第七中间量与采样周期T相乘,输出第八中间量;The G multiplier 62 in the state observer 6 multiplies the seventh intermediate quantity received by the sampling period T, and outputs the eighth intermediate quantity;

状态观测器6中的C状态存储器65用于记载前一时刻j-1的反馈角速度估计值 The C-state memory 65 in the state observer 6 is used to record the estimated value of the feedback angular velocity at the previous moment j-1

状态观测器6中的D加法器63依据C状态存储器65记载的前一时刻j-1的反馈角速度估计值

Figure BSA00000364924600062
与第九中间量相加,输出第九中间量;The D adder 63 in the state observer 6 is based on the feedback angular velocity estimated value of the previous moment j-1 recorded in the C state memory 65
Figure BSA00000364924600062
Add the ninth intermediate quantity to output the ninth intermediate quantity;

状态观测器6中的E加法器64将前馈信号发生器5产生的前馈角速度信号

Figure BSA00000364924600063
与第九中间量相加,输出第j时刻的角速度值
Figure BSA00000364924600064
The E adder 64 in the state observer 6 takes the feedforward angular velocity signal that the feedforward signal generator 5 produces
Figure BSA00000364924600063
Add it to the ninth intermediate quantity, and output the angular velocity value at the jth moment
Figure BSA00000364924600064

状态观测器6中的H乘法器66将接收的误差E(j)与角度观测器增益系数Kω相乘,输出第十中间量;The H multiplier 66 in the state observer 6 multiplies the received error E (j) with the angle observer gain coefficient K ω , and outputs the tenth intermediate quantity;

状态观测器6中的D状态存储器69用于记载前一时刻j-1的角速度估计值 The D state memory 69 in the state observer 6 is used to record the estimated value of the angular velocity at the previous moment j-1

状态观测器6中的F加法器67依据D状态存储器69记载的前一时刻j-1的角速度估计值与第十中间量相加,输出第十一中间量;The F adder 67 in the state observer 6 is based on the angular velocity estimated value of the previous moment j-1 recorded in the D state memory 69 Add the tenth intermediate quantity to output the eleventh intermediate quantity;

状态观测器6中的I乘法器68将接收的第十一中间量与采样周期T相乘,输出第十二中间量;The I multiplier 68 in the state observer 6 multiplies the received eleventh intermediate quantity with the sampling period T, and outputs the twelfth intermediate quantity;

状态观测器6中的E状态存储器611用于记载前一时刻j-1的角度估计值

Figure BSA00000364924600067
The E state memory 611 in the state observer 6 is used to record the angle estimation value of the previous moment j-1
Figure BSA00000364924600067

状态观测器6中的G加法器610依据E状态存储器611记载的前一时刻j-1的角度估计值

Figure BSA00000364924600068
与第十二中间量相加,输出第j时刻的角度值
Figure BSA00000364924600069
The G adder 610 in the state observer 6 is based on the angle estimation value of the previous moment j-1 recorded in the E state memory 611
Figure BSA00000364924600068
Add it to the twelfth intermediate value, and output the angle value at the jth moment
Figure BSA00000364924600069

本发明磁编码器数字转换器中各信号的数学形式表示如下:The mathematical form of each signal in the magnetic encoder digital converter of the present invention is expressed as follows:

磁编码器2输出的模拟正弦信号记为Vs(t)=Kesinθ、模拟余弦信号记为Vc(t)=Kecosθ;Ke表示磁编码器2的增益系数,t表示被测体——旋转装置1转子运行时间内的测量时刻,θ表示被测体——旋转装置1转子转过的角度;The analog sine signal output by the magnetic encoder 2 is recorded as V s (t)=K e sinθ, and the analog cosine signal is recorded as V c (t)=K e cosθ; K e represents the gain coefficient of the magnetic encoder 2, and t represents the Measuring body - the measuring moment of the rotor running time of the rotating device 1, θ represents the angle of the measured body - the rotor of the rotating device 1;

当磁编码器2输出的模拟正弦信号Vs(t)、模拟余弦信号Vc(t)进入信号调理模块3中经调整幅值(由调理器31完成)、模/数转换(由A/D转换器32完成)后,输出数字正弦Vs(j)=sinθ(j)、数字余弦Vc(j)=cosθ(j),j表示当前时刻,j-1表示前一时刻。When the analog sine signal V s (t) and the analog cosine signal V c (t) output by the magnetic encoder 2 enter the signal conditioning module 3, the amplitude is adjusted (completed by the conditioner 31), the analog/digital conversion (by A/ After the D converter 32 is completed), it outputs digital sine V s (j)=sinθ(j) and digital cosine V c (j)=cosθ(j), where j represents the current moment and j-1 represents the previous moment.

如图3所示,余弦发生器41、正弦发生器42根据状态观测器6输出的角度估计值以查表方式得到角度估计值的正弦值余弦值

Figure BSA00000364924600073
然后通过运算得到误差输出
Figure BSA00000364924600074
As shown in Figure 3, cosine generator 41, sine generator 42 according to the angle estimation value that state observer 6 outputs Obtain the sine of the angle estimate by look-up table cosine value
Figure BSA00000364924600073
Then the error output is obtained by operation
Figure BSA00000364924600074

如图4所示,前馈信号发生器5用于产生状态观测器所需前馈速度信号,对磁编码器输出信号的解调有如下运算算式:As shown in Figure 4, the feedforward signal generator 5 is used to generate the feedforward speed signal required by the state observer, and the demodulation of the output signal of the magnetic encoder has the following calculation formula:

θθ ^^ ff (( jj )) == arctanarctan (( VV sthe s (( jj )) ,, VV cc (( jj )) )) -- -- -- (( 11 ))

ωω ^^ dd (( jj )) == [[ θθ ^^ ff (( jj )) -- θθ ^^ ff (( jj -- 11 )) ]] // TT -- -- -- (( 22 ))

ωω ^^ ff (( jj )) == αα 11 ωω ^^ dd (( jj )) ++ αα 22 ωω ^^ ff (( jj -- 11 )) -- -- -- (( 33 ))

根据上述三个式子的联立获得在第j时刻前馈速度信号 According to the combination of the above three formulas, the feed-forward speed signal at the jth moment is obtained

如图5所示,所述角速度观测器模块601的角速度输出值满足

Figure BSA00000364924600079
Figure BSA000003649246000710
所述角度观测器模块602的角度输出值满足
Figure BSA000003649246000711
As shown in Figure 5, the angular velocity output value of the angular velocity observer module 601 satisfies
Figure BSA00000364924600079
Figure BSA000003649246000710
The angle output value of the angle observer module 602 satisfies
Figure BSA000003649246000711

在本发明中,设计了前馈型二阶状态观测器,通过合理选取增益系数,不仅可以从磁编码器输出信号中解调出被测旋转装置的角位置,还可同时获取角速度,且解调精度高,抗干扰能力强。In the present invention, a feed-forward second-order state observer is designed. By reasonably selecting the gain coefficient, not only the angular position of the measured rotating device can be demodulated from the output signal of the magnetic encoder, but also the angular velocity can be obtained at the same time, and the solution High adjustment accuracy and strong anti-interference ability.

实施例:Example:

为便于比较本发明和传统解调方法的精度,进行了半物理仿真实验。选取一片TMS320系列DSP处理器芯片配合DA输出,作为磁编码器模拟器输出的两路正余弦信号。处理芯片采用另一片TMS320系列DSP处理器芯片。In order to compare the accuracy of the present invention and the traditional demodulation method, a semi-physical simulation experiment is carried out. Select a TMS320 series DSP processor chip with DA output as the two-way sine and cosine signals output by the magnetic encoder simulator. The processing chip adopts another TMS320 series DSP processor chip.

假设电机转子以ω=12.6+8sin(6.28t)rad/s转速运转,设定运行时间为30s,测量时间t为20s。所述角度观测器常数Kθ为500;所述角速度观测器常数Kω为62500。采样周期T为1ms。系统初始化时,D状态存储器69记载的第零个测量时刻的角速度估计值为0;E状态存储器611记载的第零个测量时刻的角度估计值

Figure BSA000003649246000713
为0。当各数据信息采集至处理器上时,经解调后本发明磁编码器数字转换器的角位置输出的最大误差值为0.00008弧度,角速度输出的最大误差为0.032rad/s;在本实例中,采用角度跟踪型方法时,角位置输出最大误差值为0.00052弧度。角速度输出最大误差为0.38rad/s。通过参数的对比,本发明的磁编码器数字转换器输出角位置精度提高了5倍以上,角速度精度提高了10倍左右。Assuming that the motor rotor is running at a speed of ω=12.6+8sin(6.28t)rad/s, the set running time is 30s, and the measurement time t is 20s. The angle observer constant K θ is 500; the angular velocity observer constant K ω is 62500. The sampling period T is 1ms. During system initialization, the estimated value of angular velocity at the zeroth measurement moment recorded in the D state memory 69 is 0; the estimated value of the angle at the zeroth measurement moment recorded in the E state memory 611
Figure BSA000003649246000713
is 0. When each data information is collected on the processor, the maximum error value of the angular position output of the magnetic encoder digital converter of the present invention after demodulation is 0.00008 radians, and the maximum error value of the angular velocity output is 0.032rad/s; in this example , when using the angle tracking method, the maximum error value of the angular position output is 0.00052 radians. The maximum error of angular velocity output is 0.38rad/s. Through the comparison of parameters, the accuracy of the output angular position of the magnetic encoder digital converter of the present invention is increased by more than 5 times, and the accuracy of the angular velocity is increased by about 10 times.

Figure BSA00000364924600081
Figure BSA00000364924600081

Figure BSA00000364924600091
Figure BSA00000364924600091

Claims (5)

1. a magnetic coder digital quantizer is characterized in that: include signal conditioner (3), phase sensitive detector (4), feed-forward signal generator (5) and state observer (6);
Signal conditioner (3) is made up of conditioner (31) and A/D converter (32); Conditioner (31) and A/D converter (32) are used for the analog sine V that will receive s(t) carry out amplitude conditioning, analog to digital conversion, output digital sine V s(j); Conditioner (31) and A/D converter (32) are used for the simulation cosine V that will receive c(t) carry out amplitude conditioning, analog to digital conversion, output digital cosine V c(j);
Phase sensitive detector (4) is made up of cosine generator (41), cosine generator (42), A multiplier (43), B multiplier (44), A totalizer (45); Cosine generator (41) is used to produce the angle estimated value
Figure FSA00000364924500011
Cosine value
Figure FSA00000364924500012
Forcing function generator (42) is used to produce the angle estimated value Sine value
Figure FSA00000364924500014
A multiplier (43) is with the digital sine V that receives s(j) and cosine value
Figure FSA00000364924500015
Multiply each other, export first intermediate quantity; B multiplier (44) is with the digital cosine V that receives c(j) and sine value
Figure FSA00000364924500016
Multiply each other, export second intermediate quantity; A totalizer (45) deducts second intermediate quantity with first intermediate quantity and obtains the error E (j) constantly at j;
Feed-forward signal generator (5) is made up of arctangent cp cp operation device (51), B totalizer (52), A condition storer (53), C multiplier (54), D totalizer (55), C totalizer (56), E multiplier (57), B status register (58); Arctangent cp cp operation device (51) is with the digital sine V that receives s(j), digital cosine V c(j) carry out arctangent cp cp operation, the estimated signal of output whirligig angle
Figure FSA00000364924500017
B totalizer (52) estimated signal of the whirligig degree that receives
Figure FSA00000364924500018
Deduct the angle estimated value of the previous moment j-1 of A condition storer (53) record Export the 3rd intermediate variable; The 3rd intermediate variable that C multiplier (54) will receive and the inverse in sampling period
Figure FSA000003649245000110
Multiply each other, export the 4th intermediate variable
Figure FSA000003649245000111
T represents the sampling period; The 4th intermediate variable that D multiplier (55) will receive and the first filter factor a 1Multiply each other, export the 5th intermediate variable; τ represents time constant filter; The 5th intermediate variable that C totalizer (56) will receive and the 6th intermediate variable addition, output feedforward magnitude of angular velocity
Figure FSA000003649245000112
E multiplier (57) is according to the feedforward magnitude of angular velocity of the previous moment j-1 of B status register (58) record
Figure FSA000003649245000113
With the second filter factor a 2Multiply each other, export the 6th intermediate variable;
State observer (6) is made up of angular velocity observer module (601) and angular observation device module (602);
Described angular velocity observer module (601) includes F multiplier (61), G multiplier (62), D totalizer (63), E totalizer (64), C status register (65); Be set with angular velocity observer gain coefficient K in the described F multiplier (61) θ
Described angular observation device module (602) includes H multiplier (66), F totalizer (67), D status register (69), I multiplier (68), G totalizer (610), E status register (611); Be set with angular observation device gain coefficient K in the described H multiplier (66) ω
F multiplier (61) is with the error E (j) and angular velocity observer gain coefficient K that receive θMultiply each other, export the 7th intermediate quantity; The 7th intermediate quantity and sampling period T that G multiplier (62) will receive multiply each other, and export the 8th intermediate quantity; D totalizer (63) is according to the feedback angular velocity estimated value of the previous moment j-1 of C status register (65) record
Figure FSA00000364924500021
With the 9th intermediate quantity addition, export the 9th intermediate quantity; The feedforward angular velocity signal that E totalizer (64) produces feed-forward signal generator (5)
Figure FSA00000364924500022
With the 9th intermediate quantity addition, export j magnitude of angular velocity constantly
Figure FSA00000364924500023
H multiplier (66) is with the error E (j) and angular observation device gain coefficient K that receive ωMultiply each other, export the tenth intermediate quantity; F totalizer (67) is according to the angular velocity estimated value of the previous moment j-1 of D status register (69) record
Figure FSA00000364924500024
With the tenth intermediate quantity addition, export the 11 intermediate quantity; The 11 intermediate quantity and sampling period T that I multiplier (68) will receive multiply each other, and export the 12 intermediate quantity; G totalizer (610) is according to the angle estimated value of the previous moment j-1 of E status register (611) record With the 12 intermediate quantity addition, export j angle value constantly
Figure FSA00000364924500026
2. magnetic coder digital quantizer according to claim 1 is characterized in that: the angular velocity output valve of angular velocity observer module (601) satisfies
Figure FSA00000364924500027
Figure FSA00000364924500028
The angle output valve of described angular observation device module (602) satisfies
Figure FSA00000364924500029
3. magnetic coder digital quantizer according to claim 1 is characterized in that: first filter coefficient alpha 1With second filter coefficient alpha 2Satisfy α 1+ α 2=1.
4. magnetic coder digital quantizer according to claim 1 is characterized in that: designed the linear condition observer, and added the angular velocity feedforward, by rationally choosing gain coefficient, demodulated tested angle and angular velocity from the magnetic coder output signal.
5. magnetic coder digital quantizer according to claim 1 is characterized in that: add the angular velocity feedforward in this converter, and in the time of can reducing tested whirligig rotating speed significantly and change continuously, the phase lag of state observer output angle and angular velocity signal.
CN2010105646572A 2010-11-30 2010-11-30 Digital converter of magnetic encoder Expired - Fee Related CN102095431B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010105646572A CN102095431B (en) 2010-11-30 2010-11-30 Digital converter of magnetic encoder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010105646572A CN102095431B (en) 2010-11-30 2010-11-30 Digital converter of magnetic encoder

Publications (2)

Publication Number Publication Date
CN102095431A true CN102095431A (en) 2011-06-15
CN102095431B CN102095431B (en) 2012-05-30

Family

ID=44128618

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010105646572A Expired - Fee Related CN102095431B (en) 2010-11-30 2010-11-30 Digital converter of magnetic encoder

Country Status (1)

Country Link
CN (1) CN102095431B (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103776471A (en) * 2014-01-28 2014-05-07 华中科技大学 Magnetic encoder based on double synchronous rotation coordinate systems
CN107091653A (en) * 2017-06-19 2017-08-25 四川大学 A kind of combinational algorithm magnetism encoder digital quantizer
CN107402311A (en) * 2017-07-11 2017-11-28 浙江零跑科技有限公司 Motor soft decoding intelligent speed measurement method
CN107505473A (en) * 2017-07-11 2017-12-22 浙江零跑科技有限公司 Motor soft decoding speed measurement algorithm based on phase-locked loop
CN107782344A (en) * 2016-08-31 2018-03-09 青岛农业大学 A kind of signals of rotating transformer converter suitable for Variable Velocity Condition
CN107796419A (en) * 2016-08-31 2018-03-13 青岛农业大学 Low-cost and high-precision digital composite shaft angle detector
CN109506680A (en) * 2018-11-23 2019-03-22 成都芯进电子有限公司 A kind of absolute type magnetic angle encoder Digital Implementation framework
CN112747664A (en) * 2020-12-30 2021-05-04 苏州博古特智造有限公司 Linear magnetic resistance position sensor
CN114528653A (en) * 2022-01-13 2022-05-24 无锡先导智能装备股份有限公司 Diaphragm feedforward speed determining method and device, electronic equipment and storage medium
CN115615467A (en) * 2022-12-16 2023-01-17 国仪量子(合肥)技术有限公司 Hall signal demodulation method and device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6891492B1 (en) * 2004-07-05 2005-05-10 Tamagawa Seiki Kabushiki Kaisha Method of converting an analog signal into a digital signal
CN1825054A (en) * 2006-02-20 2006-08-30 连云港杰瑞电子有限公司 Double speed angle-digital converter
CN101135573A (en) * 2007-10-12 2008-03-05 北京航空航天大学 Resolver to Digital Converter
JP2010164341A (en) * 2009-01-13 2010-07-29 Toyota Motor Corp Resolver-digital converter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6891492B1 (en) * 2004-07-05 2005-05-10 Tamagawa Seiki Kabushiki Kaisha Method of converting an analog signal into a digital signal
CN1825054A (en) * 2006-02-20 2006-08-30 连云港杰瑞电子有限公司 Double speed angle-digital converter
CN101135573A (en) * 2007-10-12 2008-03-05 北京航空航天大学 Resolver to Digital Converter
JP2010164341A (en) * 2009-01-13 2010-07-29 Toyota Motor Corp Resolver-digital converter

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103776471A (en) * 2014-01-28 2014-05-07 华中科技大学 Magnetic encoder based on double synchronous rotation coordinate systems
CN107782344A (en) * 2016-08-31 2018-03-09 青岛农业大学 A kind of signals of rotating transformer converter suitable for Variable Velocity Condition
CN107796419A (en) * 2016-08-31 2018-03-13 青岛农业大学 Low-cost and high-precision digital composite shaft angle detector
CN107091653A (en) * 2017-06-19 2017-08-25 四川大学 A kind of combinational algorithm magnetism encoder digital quantizer
CN107402311A (en) * 2017-07-11 2017-11-28 浙江零跑科技有限公司 Motor soft decoding intelligent speed measurement method
CN107505473A (en) * 2017-07-11 2017-12-22 浙江零跑科技有限公司 Motor soft decoding speed measurement algorithm based on phase-locked loop
CN107505473B (en) * 2017-07-11 2019-07-23 浙江零跑科技有限公司 Motor Soft Decoding Speed Measurement Algorithm Based on Phase Locked Loop
CN109506680A (en) * 2018-11-23 2019-03-22 成都芯进电子有限公司 A kind of absolute type magnetic angle encoder Digital Implementation framework
CN112747664A (en) * 2020-12-30 2021-05-04 苏州博古特智造有限公司 Linear magnetic resistance position sensor
CN112747664B (en) * 2020-12-30 2022-06-17 苏州博古特智造有限公司 Linear magnetic resistance position sensor
CN114528653A (en) * 2022-01-13 2022-05-24 无锡先导智能装备股份有限公司 Diaphragm feedforward speed determining method and device, electronic equipment and storage medium
CN115615467A (en) * 2022-12-16 2023-01-17 国仪量子(合肥)技术有限公司 Hall signal demodulation method and device

Also Published As

Publication number Publication date
CN102095431B (en) 2012-05-30

Similar Documents

Publication Publication Date Title
CN102095431B (en) Digital converter of magnetic encoder
CN100470201C (en) Resolver to Digital Converter
CN101719752B (en) Method and device for detecting rotor position of brushless motor
CN101852818B (en) Accelerometer error calibration and compensation method based on rotary mechanism
CN103256946B (en) Rotating transformer digital converter capable of on-line failure detection and fault-tolerant control
CN105452815B (en) For the position sensor arrangement for the position for determining mobile device
Ye et al. Ratiometric-linearization-based high-precision electronic interpolator for sinusoidal optical encoders
CN107332565A (en) Rotation based on DSADC becomes software decoding system and method
CN105915127A (en) Motor rotor position redundant measuring method and system and electronic device
CN108196213A (en) Zero-bit angle test device, the method and system of a kind of rotary transformer
US20100176799A1 (en) Sensor including two code rings and a magnetic field sensor between the code rings
CN111351535B (en) A kind of signal processing method of high frequency sine wave excitation electromagnetic flowmeter
CN101271007A (en) A Calibration Compensation Method for Angle Measurement Error of Resolver Based on Rate Turntable
CN101521480A (en) Resolution method and resolver for signals of rotating transformer
TW200839194A (en) Position detector
EP2693221B1 (en) Magnetic Sensor Arrangement
CN101701970A (en) Method and device for detecting acceleration
US8229697B2 (en) Method and device for the robust and efficient determination of the rotational direction and/or rotational speed of a wheel or a shaft
CN102401664B (en) Position detector
CN110022097B (en) Resolver angular position calculating device and method for rotary transformer
JPH0465985B2 (en)
CN100462686C (en) A Synthesizer/Resolver-Analog DC Voltage Conversion Method
CN207780217U (en) A kind of zero-bit angle test device of rotary transformer
CN107796419A (en) Low-cost and high-precision digital composite shaft angle detector
CN103776471A (en) Magnetic encoder based on double synchronous rotation coordinate systems

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120530

Termination date: 20131130