CN102095431A - Digital converter of magnetic encoder - Google Patents
Digital converter of magnetic encoder Download PDFInfo
- Publication number
- CN102095431A CN102095431A CN 201010564657 CN201010564657A CN102095431A CN 102095431 A CN102095431 A CN 102095431A CN 201010564657 CN201010564657 CN 201010564657 CN 201010564657 A CN201010564657 A CN 201010564657A CN 102095431 A CN102095431 A CN 102095431A
- Authority
- CN
- China
- Prior art keywords
- multiplier
- angular velocity
- totalizer
- signal
- export
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种磁编码器数字转换器,更确切的说,是指一种可实现对磁编码器输出信号进行解调,并可在伺服控制系统中应用的磁编码器(位置传感器)数字转换器。The invention relates to a magnetic encoder digital converter, more precisely, it refers to a magnetic encoder (position sensor) digital converter that can demodulate the output signal of the magnetic encoder and can be applied in the servo control system. converter.
背景技术Background technique
磁编码器由线性霍尔或磁阻元件组成,是用于测量旋转角度的传感器。因其结构简单、体积小、成本低、抗干扰能力及环境适应能力强,在转子位置检测中具有非常重要的地位。Magnetic encoders consist of linear Hall or magnetoresistive elements and are sensors used to measure the angle of rotation. Because of its simple structure, small size, low cost, strong anti-interference ability and environmental adaptability, it plays a very important role in rotor position detection.
目前,磁编码器数字转换器对信号的解调方案很多,应用最为广泛的是反正切运算方案和角度跟踪型变换方案。反正切运算方案首先通过反正切运算得到角度信息,再通过差分得到角速度信息,该方案对噪声信号敏感,精度较差。角度跟踪型变换方案由正余弦乘法器、误差放大器、相敏解调器、计数器、压控振荡器等组成,通过预设角度估计值,利用相敏检测器得出实际转角值与估计值之差的正弦值,通过判断该正弦值的正负来调节估计值,构成闭环回路,使估计值逐渐逼近实际值。该方案精度不高,且存在相位滞后。At present, there are many demodulation schemes for the magnetic encoder digital converter, and the most widely used ones are the arctangent operation scheme and the angle tracking transformation scheme. The arctangent operation scheme first obtains the angle information through the arctangent operation, and then obtains the angular velocity information through the difference. This scheme is sensitive to noise signals and has poor precision. The angle tracking conversion scheme is composed of a sine-cosine multiplier, an error amplifier, a phase-sensitive demodulator, a counter, a voltage-controlled oscillator, etc., and the estimated value of the angle is preset, and the phase-sensitive detector is used to obtain the difference between the actual rotation angle value and the estimated value. The sine value of the difference, adjust the estimated value by judging the positive or negative of the sine value, forming a closed loop, so that the estimated value gradually approaches the actual value. The accuracy of this scheme is not high, and there is a phase lag.
发明内容Contents of the invention
本发明的目的是提供一种磁编码器数字转换器,该转换器通过引入一种带前馈的二阶状态观测器,不但可以从磁编码器输出信号中实时解调出被测旋转装置的角度和角速度而且可以明显改善被测旋转装置转速连续变化时,输出角度和角速度信号的相位滞后。本发明能够实现在变速情况下角度和角速度信息的高精度解调,输出精度比常规数字解调器输出精度提高几倍以上。The purpose of the present invention is to provide a magnetic encoder digital converter, which can not only demodulate the measured rotating device from the magnetic encoder output signal in real time by introducing a second-order state observer with feedforward angle and angular velocity Moreover, the phase lag of the output angle and angular velocity signals can be significantly improved when the rotational speed of the rotating device under test changes continuously. The invention can realize high-precision demodulation of angle and angular velocity information under variable speed, and the output precision is several times higher than that of conventional digital demodulators.
本发明的一种磁编码器数字转换器,其包括有信号调理器(3)、相敏检测器(4)、前馈信号发生器(5)和状态观测器(6);A magnetic encoder-digital converter of the present invention includes a signal conditioner (3), a phase-sensitive detector (4), a feedforward signal generator (5) and a state observer (6);
信号调理器(3)由调理器(31)和A/D转换器(32)组成;调理器(31)和A/D转换器(32)用于将接收的模拟正弦Vs(t)进行幅值调理、模数转换,输出数字正弦Vs(j);调理器(31)和A/D转换器(32)用于将接收的模拟余弦Vc(t)进行幅值调理、模数转换,输出数字余弦Vc(j);Signal conditioner (3) is made up of conditioner (31) and A/D converter (32); Conditioner (31) and A/D converter (32) are used for the analog sinusoidal V s (t) that receives Amplitude conditioning, analog-to-digital conversion, output digital sine V s (j); conditioner (31) and A/D converter (32) are used to carry out amplitude conditioning, modulus to analog cosine V c (t) received Convert, output digital cosine V c (j);
相敏检测器(4)由余弦发生器(41)、余弦发生器(42)、A乘法器(43)、B乘法器(44)、A加法器(45)组成;余弦发生器(41)用于产生角度估计值的余弦值正弦发生器(42)用于产生角度估计值的正弦值;A乘法器(43)将接收的数字正弦Vs(j)与余弦值相乘,输出第一中间量;B乘法器(44)将接收的数字余弦Vc(j)与正弦值相乘,输出第二中间量;A加法器(45)用第一中间量减去第二中间量获得在第j时刻的误差E(j);Phase-sensitive detector (4) is made up of cosine generator (41), cosine generator (42), A multiplier (43), B multiplier (44), A adder (45); cosine generator (41) used to generate angle estimates cosine of A sine generator (42) is used to generate angle estimates the sine of ; A multiplier (43) will receive digital sine V s (j) and cosine value Multiply, output the first intermediate quantity; B multiplier (44) will receive digital cosine V c (j) and sine value Multiply, output the second intermediate quantity; A adder (45) subtracts the second intermediate quantity with the first intermediate quantity and obtains the error E (j) of the j moment;
前馈信号发生器(5)由反正切运算器(51)、B加法器(52)、A状态存储器(53)、C乘法器(54)、D加法器(55)、C加法器(56)、E乘法器(57)、B状态存储器(58)组成;反正切运算器(51)将接收的数字正弦Vs(j)、数字余弦Vc(j)进行反正切运算,输出旋转装置角度的估计信号B加法器(52)用接收的旋转装置度的估计信号减去A状态存储器(53)记载的前一时刻j-1的角度估计值输出第三中间变量;C乘法器(54)将接收的第三中间变量与采样周期的倒数相乘,输出第四中间变量T表示采样周期;D乘法器(55)将接收的第四中间变量与第一滤波系数a1相乘,输出第五中间变量;τ表示滤波时间常数;C加法器(56)将接收的第五中间变量与第六中间变量相加,输出前馈角速度值E乘法器(57)依据B状态存储器(58)记载的前一时刻j-1的前馈角速度值与第二滤波系数a2相乘,输出第六中间变量;Feedforward signal generator (5) is by arctangent operator (51), B adder (52), A state memory (53), C multiplier (54), D adder (55), C adder (56 ), E multiplier (57), B state memory (58); the arctangent operator (51) carries out the arctangent calculation with the received digital sine V s (j), digital cosine V c (j), and outputs the rotary device Angle estimate signal The B adder (52) uses the received estimated signal of the rotation device degree Subtract the estimated angle value of the previous moment j-1 recorded in the A state memory (53) Output the 3rd intermediate variable; C multiplier (54) will receive the reciprocal of the 3rd intermediate variable and sampling period Multiply, output the fourth intermediate variable T represents the sampling cycle; D multiplier (55) multiplies the 4th intermediate variable received with the first filter coefficient a 1 , and outputs the 5th intermediate variable; τ represents the filtering time constant; C adder (56) receives the 4th intermediate variable The fifth intermediate variable is added to the sixth intermediate variable to output the feedforward angular velocity value E multiplier (57) according to the feed-forward angular velocity value of the previous moment j-1 recorded in B state memory (58) Multiply with the second filter coefficient a 2 to output the sixth intermediate variable;
状态观测器(6)由角速度观测器模块(601)和角度观测器模块(602)组成;State observer (6) is made up of angular velocity observer module (601) and angle observer module (602);
所述角速度观测器模块(601)包括有F乘法器(61)、G乘法器(62)、D加法器(63)、E加法器(64)、C状态存储器(65);所述的F乘法器(61)内设定有角速度观测器增益系数Kθ;Described angular velocity observer module (601) comprises F multiplier (61), G multiplier (62), D adder (63), E adder (64), C state memory (65); Described F The angular velocity observer gain coefficient K θ is set in the multiplier (61);
所述角度观测器模块(602)包括有H乘法器(66)、F加法器(67)、D状态存储器(69)、I乘法器(68)、G加法器(610)、E状态存储器(611);所述的H乘法器(66)内设定有角度观测器增益系数Kω;Described angle observer module (602) comprises H multiplier (66), F adder (67), D state storer (69), I multiplier (68), G adder (610), E state storer ( 611); The angle observer gain coefficient K ω is set in the described H multiplier (66);
F乘法器(61)将接收的误差E(j)与角速度观测器增益系数Kθ相乘,输出第七中间量;G乘法器(62)将接收的第七中间量与采样周期T相乘,输出第八中间量;D加法器(63)依据C状态存储器(65)记载的前一时刻j-1的反馈角速度估计值与第九中间量相加,输出第九中间量;E加法器(64)将前馈信号发生器(5)产生的前馈角速度信号与第九中间量相加,输出第j时刻的角速度值H乘法器(66)将接收的误差E(j)与角度观测器增益系数Kω相乘,输出第十中间量;F加法器(67)依据D状态存储器(69)记载的前一时刻j-1的角速度估计值与第十中间量相加,输出第十一中间量;I乘法器(68)将接收的第十一中间量与采样周期T相乘,输出第十二中间量;G加法器(610)依据E状态存储器(611)记载的前一时刻j-1的角度估计值与第十二中间量相加,输出第j时刻的角度值 The F multiplier (61) multiplies the received error E(j) with the angular velocity observer gain coefficient K θ , and outputs the seventh intermediate quantity; the G multiplier (62) multiplies the received seventh intermediate quantity with the sampling period T , output the eighth intermediate quantity; D adder (63) according to the feedback angular velocity estimated value of the previous moment j-1 recorded in C state memory (65) Add the ninth intermediate quantity, output the ninth intermediate quantity; E adder (64) the feedforward angular velocity signal that feedforward signal generator (5) produces Add it to the ninth intermediate quantity, and output the angular velocity value at the jth moment H multiplier (66) multiplies the received error E (j) with angle observer gain coefficient K ω , and outputs the tenth intermediate quantity; F adder (67) records the previous moment j according to D state memory (69) Angular velocity estimate of -1 Add the tenth intermediate quantity, output the eleventh intermediate quantity; I multiplier (68) multiplies the eleventh intermediate quantity received with the sampling period T, and outputs the twelfth intermediate quantity; G adder (610) based on The angle estimated value of the previous moment j-1 recorded in the E state memory (611) Add it to the twelfth intermediate value, and output the angle value at the jth moment
本发明涉及的磁编码器数字转换器优点在于:(1)引入线性状态观测器,通过合理选取增益系数,可实时获取被测旋转装置的角位置和角速度;(2)引入角速度前馈,可大幅减小被测旋转装置的角速度连续变化时,状态观测器输出角度和转速信号的相位滞后;(3)相敏检测器、状态观测器和前馈信号发生器采用软件代码编译实现,使数字转换器解调精度高,抗干扰能力强。The advantages of the magnetic encoder digital converter involved in the present invention are: (1) introducing a linear state observer, by rationally selecting the gain coefficient, the angular position and angular velocity of the measured rotating device can be obtained in real time; (2) introducing angular velocity feedforward, which can When the angular velocity of the rotating device under test is continuously changed, the phase lag of the output angle and rotational speed signal of the state observer is greatly reduced; (3) the phase-sensitive detector, the state observer and the feedforward signal generator are implemented by software code compilation, so that the digital The converter has high demodulation accuracy and strong anti-interference ability.
附图说明Description of drawings
图1为本发明的结构原理框图;Fig. 1 is a structural principle block diagram of the present invention;
图2为本发明的信号调理器的原理框图。Fig. 2 is a functional block diagram of the signal conditioner of the present invention.
图3为本发明的相敏检测器原理框图。Fig. 3 is a functional block diagram of the phase sensitive detector of the present invention.
图4为本发明的前馈信号发生器原理框图。Fig. 4 is a functional block diagram of the feedforward signal generator of the present invention.
图5为本发明的状态观测器原理框图。Fig. 5 is a functional block diagram of the state observer of the present invention.
图中: 1.旋转装置 2.磁编码器 3.信号调理器 31.调理电路32.模数转换器 4.相敏检测器 41.余弦发生器 42.正弦发生器 43.A乘法器44.B乘法器 45.A加法器 5.前馈信号发生器 51.反正切运算器 52.B加法器53.A状态存储器 54.C乘法器 55.D乘法器 56.C加法器 57.E乘法器58.B状态存储器 6.状态观测器 601.速度观测器 602.角度观测器 61.F乘法器62.G乘法器 63.D加法器 64.E加法器 65.C状态存储器 66.H乘法器67.F加法器 68.I乘法器 69.D状态存储器 610.G加法器 611.E状态存储器In the figure: 1.
具体实施方式Detailed ways
下面将结合附图和实施例对本发明做进一步详细说明。The present invention will be described in further detail below in conjunction with the accompanying drawings and embodiments.
本发明是一种磁编码器数字转换器,主要包括信号调理器、相敏检测器、状态观测器和前馈信号发生器。相敏检测器、状态观测器和前馈信号发生器采用软件代码编译实现,存储于处理器芯片上。信号调理器将磁编码器输出信号进行幅值调理、模数转换;相敏检测器可根据磁编码器输出信号及状态观测器输出的角度值,生成包含相位信息的误差信号;前馈信号发生器根据信号调理器的输出信号计算得出状态观测器所需的前馈速度值;状态观测器根据上述误差信号和前馈速度值,解调出被测旋转装置的角位置和角速度。The invention is a magnetic encoder digital converter, which mainly includes a signal conditioner, a phase-sensitive detector, a state observer and a feedforward signal generator. The phase-sensitive detector, the state observer and the feed-forward signal generator are realized by compiling software codes and stored on the processor chip. The signal conditioner performs amplitude conditioning and analog-to-digital conversion on the output signal of the magnetic encoder; the phase-sensitive detector can generate an error signal containing phase information according to the output signal of the magnetic encoder and the angle value output by the state observer; the feedforward signal generates The controller calculates the feedforward velocity value required by the state observer according to the output signal of the signal conditioner; the state observer demodulates the angular position and angular velocity of the measured rotating device according to the above error signal and the feedforward velocity value.
如图1所示,在本发明中,磁编码器2用于将旋转装置1输出的角位置信息转换成模拟正弦Vs(t)、模拟余弦Vc(t)信号输出。Vs(t)=Kesinθ、Vc(t)=Kecosθ,Ke表示磁编码器2的增益系数,t表示被测体——旋转装置1转子运行时间内的测量时刻,θ表示被测体——旋转装置1转子转过的角度。As shown in FIG. 1 , in the present invention, the
本发明是一种磁编码器数字转换器,所述磁编码器数字转换器是对磁编码器2输出的模拟正弦Vs(t)和模拟余弦Vc(t)信息进行转换处理的装置。本发明磁编码器数字转换器主要包括有信号调理模块3、相敏检测器4、前馈信号发生器5和状态观测器6;其中相敏检测器4、前馈信号发生器5和状态观测器6采用编译软件代码存储于处理器芯片(即将编译软件代码按照实现功能划分为相敏检测器4、前馈信号发生器5和状态观测器6)上实现。所述处理器可以是DSP芯片,如TMS320系列芯片。The present invention is a magnetic encoder digital converter, which is a device for converting and processing the information of the analog sine V s (t) and the analog cosine V c (t) output by the
在本发明中,如图2所示,信号调理模块3由调理器31和A/D转换器32组成。信号调理模块3中的调理器31和A/D转换器32用于将接收的模拟正弦Vs(t)进行幅值调理、模数转换,输出数字正弦Vs(j);In the present invention, as shown in FIG. 2 , the
信号调理模块3中的调理器31和A/D转换器32用于将接收的模拟余弦Vc(t)进行幅值调理、模数转换,输出数字余弦Vc(j);The
在本发明中,如图3所示,相敏检测器4由余弦发生器41、余弦发生器42、A乘法器43、B乘法器44、A加法器45组成;在初始条件下,相敏检测器4接收的角度估计值取值为零;若在当前时刻,则相敏检测器4接收的角度估计值取值为 In the present invention, as shown in Figure 3, phase-
相敏检测器4中的余弦发生器41用于产生角度估计值的余弦值 A cosine generator 41 in the phase
相敏检测器4中的正弦发生器42用于产生角度估计值的正弦值 The sine generator 42 in the phase
相敏检测器4中的A乘法器43将接收的数字正弦Vs(j)与余弦值相乘,输出第一中间量;The A multiplier 43 in the phase-
相敏检测器4中的B乘法器44将接收的数字余弦Vc(j)与正弦值相乘,输出第二中间量;The B multiplier 44 in the phase-
相敏检测器4中的A加法器45用第一中间量减去第二中间量获得在第j时刻的误差E(j)。The A adder 45 in the phase
在本发明中,如图4所示,前馈信号发生器5从实现的功能上划分由反正切运算器51、B加法器52、A状态存储器53、C乘法器54、D加法器55、C加法器56、E乘法器57、B状态存储器58组成;In the present invention, as shown in Figure 4, the feed-
前馈信号发生器5中的反正切运算器51将接收的数字正弦Vs(j)、数字余弦Vc(j)进行反正切运算,输出旋转装置角位置的估计信号 The
前馈信号发生器5中的A状态存储器53用于记载前一时刻j-1(或称第j-1时刻)的角位置估计值 The
前馈信号发生器5中的B加法器52用接收的旋转装置位置的估计信号减去A状态存储器53记载的前一时刻j-1(或称第j-1时刻)的角位置估计值输出第三中间变量;The
前馈信号发生器5中的C乘法器54将接收的第三中间变量与采样周期的倒数相乘,输出第四中间变量T表示采样周期;The
前馈信号发生器5中的D乘法器55将接收的第四中间变量与第一滤波系数α1相乘,输出第五中间变量;The
前馈信号发生器5中的B状态存储器58用于记载前馈角速度值,初始时前馈角速度值取值为零,若在当前时刻,则为前馈角速度值 The
前馈信号发生器5中的E乘法器57依据B状态存储器58记载的前一时刻j-1的前馈角速度值与第二滤波系数α2相乘,输出第六中间变量;第一滤波系数α1与第二滤波系数α2满足α1+α2=1;The
前馈信号发生器5中的C加法器56将接收的第五中间变量与第六中间变量相加,输出前馈角速度值 The
在本发明中,如图5所示,状态观测器6从实现的功能上划分由角速度观测器模块601和角度观测器模块602组成;在本发明中,角速度观测器模块601和角度观测器模块602构成了一个前馈型二阶状态观测器。In the present invention, as shown in Figure 5,
所述角速度观测器模块601包括有F乘法器61、G乘法器62、D加法器63、E加法器64、C状态存储器65;所述的F乘法器61内设定有角速度观测器增益系数Kθ;The angular
所述角度观测器模块602包括有H乘法器66、F加法器67、D状态存储器69、I乘法器68、G加法器610、E状态存储器611;所述的H乘法器66内设定有角度观测器增益系数Kω。Described
状态观测器6中的F乘法器61将接收的误差E(j)与角速度观测器增益系数Kθ相乘,输出第七中间量;The
状态观测器6中的G乘法器62将接收的第七中间量与采样周期T相乘,输出第八中间量;The
状态观测器6中的C状态存储器65用于记载前一时刻j-1的反馈角速度估计值 The C-
状态观测器6中的D加法器63依据C状态存储器65记载的前一时刻j-1的反馈角速度估计值与第九中间量相加,输出第九中间量;The
状态观测器6中的E加法器64将前馈信号发生器5产生的前馈角速度信号与第九中间量相加,输出第j时刻的角速度值 The
状态观测器6中的H乘法器66将接收的误差E(j)与角度观测器增益系数Kω相乘,输出第十中间量;The
状态观测器6中的D状态存储器69用于记载前一时刻j-1的角速度估计值 The
状态观测器6中的F加法器67依据D状态存储器69记载的前一时刻j-1的角速度估计值与第十中间量相加,输出第十一中间量;The
状态观测器6中的I乘法器68将接收的第十一中间量与采样周期T相乘,输出第十二中间量;The
状态观测器6中的E状态存储器611用于记载前一时刻j-1的角度估计值 The
状态观测器6中的G加法器610依据E状态存储器611记载的前一时刻j-1的角度估计值与第十二中间量相加,输出第j时刻的角度值 The
本发明磁编码器数字转换器中各信号的数学形式表示如下:The mathematical form of each signal in the magnetic encoder digital converter of the present invention is expressed as follows:
磁编码器2输出的模拟正弦信号记为Vs(t)=Kesinθ、模拟余弦信号记为Vc(t)=Kecosθ;Ke表示磁编码器2的增益系数,t表示被测体——旋转装置1转子运行时间内的测量时刻,θ表示被测体——旋转装置1转子转过的角度;The analog sine signal output by the
当磁编码器2输出的模拟正弦信号Vs(t)、模拟余弦信号Vc(t)进入信号调理模块3中经调整幅值(由调理器31完成)、模/数转换(由A/D转换器32完成)后,输出数字正弦Vs(j)=sinθ(j)、数字余弦Vc(j)=cosθ(j),j表示当前时刻,j-1表示前一时刻。When the analog sine signal V s (t) and the analog cosine signal V c (t) output by the
如图3所示,余弦发生器41、正弦发生器42根据状态观测器6输出的角度估计值以查表方式得到角度估计值的正弦值余弦值然后通过运算得到误差输出 As shown in Figure 3, cosine generator 41, sine generator 42 according to the angle estimation value that
如图4所示,前馈信号发生器5用于产生状态观测器所需前馈速度信号,对磁编码器输出信号的解调有如下运算算式:As shown in Figure 4, the
根据上述三个式子的联立获得在第j时刻前馈速度信号 According to the combination of the above three formulas, the feed-forward speed signal at the jth moment is obtained
如图5所示,所述角速度观测器模块601的角速度输出值满足 所述角度观测器模块602的角度输出值满足 As shown in Figure 5, the angular velocity output value of the angular
在本发明中,设计了前馈型二阶状态观测器,通过合理选取增益系数,不仅可以从磁编码器输出信号中解调出被测旋转装置的角位置,还可同时获取角速度,且解调精度高,抗干扰能力强。In the present invention, a feed-forward second-order state observer is designed. By reasonably selecting the gain coefficient, not only the angular position of the measured rotating device can be demodulated from the output signal of the magnetic encoder, but also the angular velocity can be obtained at the same time, and the solution High adjustment accuracy and strong anti-interference ability.
实施例:Example:
为便于比较本发明和传统解调方法的精度,进行了半物理仿真实验。选取一片TMS320系列DSP处理器芯片配合DA输出,作为磁编码器模拟器输出的两路正余弦信号。处理芯片采用另一片TMS320系列DSP处理器芯片。In order to compare the accuracy of the present invention and the traditional demodulation method, a semi-physical simulation experiment is carried out. Select a TMS320 series DSP processor chip with DA output as the two-way sine and cosine signals output by the magnetic encoder simulator. The processing chip adopts another TMS320 series DSP processor chip.
假设电机转子以ω=12.6+8sin(6.28t)rad/s转速运转,设定运行时间为30s,测量时间t为20s。所述角度观测器常数Kθ为500;所述角速度观测器常数Kω为62500。采样周期T为1ms。系统初始化时,D状态存储器69记载的第零个测量时刻的角速度估计值为0;E状态存储器611记载的第零个测量时刻的角度估计值为0。当各数据信息采集至处理器上时,经解调后本发明磁编码器数字转换器的角位置输出的最大误差值为0.00008弧度,角速度输出的最大误差为0.032rad/s;在本实例中,采用角度跟踪型方法时,角位置输出最大误差值为0.00052弧度。角速度输出最大误差为0.38rad/s。通过参数的对比,本发明的磁编码器数字转换器输出角位置精度提高了5倍以上,角速度精度提高了10倍左右。Assuming that the motor rotor is running at a speed of ω=12.6+8sin(6.28t)rad/s, the set running time is 30s, and the measurement time t is 20s. The angle observer constant K θ is 500; the angular velocity observer constant K ω is 62500. The sampling period T is 1ms. During system initialization, the estimated value of angular velocity at the zeroth measurement moment recorded in the
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010105646572A CN102095431B (en) | 2010-11-30 | 2010-11-30 | Digital converter of magnetic encoder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010105646572A CN102095431B (en) | 2010-11-30 | 2010-11-30 | Digital converter of magnetic encoder |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102095431A true CN102095431A (en) | 2011-06-15 |
CN102095431B CN102095431B (en) | 2012-05-30 |
Family
ID=44128618
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2010105646572A Expired - Fee Related CN102095431B (en) | 2010-11-30 | 2010-11-30 | Digital converter of magnetic encoder |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102095431B (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103776471A (en) * | 2014-01-28 | 2014-05-07 | 华中科技大学 | Magnetic encoder based on double synchronous rotation coordinate systems |
CN107091653A (en) * | 2017-06-19 | 2017-08-25 | 四川大学 | A kind of combinational algorithm magnetism encoder digital quantizer |
CN107402311A (en) * | 2017-07-11 | 2017-11-28 | 浙江零跑科技有限公司 | Motor soft decoding intelligent speed measurement method |
CN107505473A (en) * | 2017-07-11 | 2017-12-22 | 浙江零跑科技有限公司 | Motor soft decoding speed measurement algorithm based on phase-locked loop |
CN107782344A (en) * | 2016-08-31 | 2018-03-09 | 青岛农业大学 | A kind of signals of rotating transformer converter suitable for Variable Velocity Condition |
CN107796419A (en) * | 2016-08-31 | 2018-03-13 | 青岛农业大学 | Low-cost and high-precision digital composite shaft angle detector |
CN109506680A (en) * | 2018-11-23 | 2019-03-22 | 成都芯进电子有限公司 | A kind of absolute type magnetic angle encoder Digital Implementation framework |
CN112747664A (en) * | 2020-12-30 | 2021-05-04 | 苏州博古特智造有限公司 | Linear magnetic resistance position sensor |
CN114528653A (en) * | 2022-01-13 | 2022-05-24 | 无锡先导智能装备股份有限公司 | Diaphragm feedforward speed determining method and device, electronic equipment and storage medium |
CN115615467A (en) * | 2022-12-16 | 2023-01-17 | 国仪量子(合肥)技术有限公司 | Hall signal demodulation method and device |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6891492B1 (en) * | 2004-07-05 | 2005-05-10 | Tamagawa Seiki Kabushiki Kaisha | Method of converting an analog signal into a digital signal |
CN1825054A (en) * | 2006-02-20 | 2006-08-30 | 连云港杰瑞电子有限公司 | Double speed angle-digital converter |
CN101135573A (en) * | 2007-10-12 | 2008-03-05 | 北京航空航天大学 | Resolver to Digital Converter |
JP2010164341A (en) * | 2009-01-13 | 2010-07-29 | Toyota Motor Corp | Resolver-digital converter |
-
2010
- 2010-11-30 CN CN2010105646572A patent/CN102095431B/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6891492B1 (en) * | 2004-07-05 | 2005-05-10 | Tamagawa Seiki Kabushiki Kaisha | Method of converting an analog signal into a digital signal |
CN1825054A (en) * | 2006-02-20 | 2006-08-30 | 连云港杰瑞电子有限公司 | Double speed angle-digital converter |
CN101135573A (en) * | 2007-10-12 | 2008-03-05 | 北京航空航天大学 | Resolver to Digital Converter |
JP2010164341A (en) * | 2009-01-13 | 2010-07-29 | Toyota Motor Corp | Resolver-digital converter |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103776471A (en) * | 2014-01-28 | 2014-05-07 | 华中科技大学 | Magnetic encoder based on double synchronous rotation coordinate systems |
CN107782344A (en) * | 2016-08-31 | 2018-03-09 | 青岛农业大学 | A kind of signals of rotating transformer converter suitable for Variable Velocity Condition |
CN107796419A (en) * | 2016-08-31 | 2018-03-13 | 青岛农业大学 | Low-cost and high-precision digital composite shaft angle detector |
CN107091653A (en) * | 2017-06-19 | 2017-08-25 | 四川大学 | A kind of combinational algorithm magnetism encoder digital quantizer |
CN107402311A (en) * | 2017-07-11 | 2017-11-28 | 浙江零跑科技有限公司 | Motor soft decoding intelligent speed measurement method |
CN107505473A (en) * | 2017-07-11 | 2017-12-22 | 浙江零跑科技有限公司 | Motor soft decoding speed measurement algorithm based on phase-locked loop |
CN107505473B (en) * | 2017-07-11 | 2019-07-23 | 浙江零跑科技有限公司 | Motor Soft Decoding Speed Measurement Algorithm Based on Phase Locked Loop |
CN109506680A (en) * | 2018-11-23 | 2019-03-22 | 成都芯进电子有限公司 | A kind of absolute type magnetic angle encoder Digital Implementation framework |
CN112747664A (en) * | 2020-12-30 | 2021-05-04 | 苏州博古特智造有限公司 | Linear magnetic resistance position sensor |
CN112747664B (en) * | 2020-12-30 | 2022-06-17 | 苏州博古特智造有限公司 | Linear magnetic resistance position sensor |
CN114528653A (en) * | 2022-01-13 | 2022-05-24 | 无锡先导智能装备股份有限公司 | Diaphragm feedforward speed determining method and device, electronic equipment and storage medium |
CN115615467A (en) * | 2022-12-16 | 2023-01-17 | 国仪量子(合肥)技术有限公司 | Hall signal demodulation method and device |
Also Published As
Publication number | Publication date |
---|---|
CN102095431B (en) | 2012-05-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102095431B (en) | Digital converter of magnetic encoder | |
CN100470201C (en) | Resolver to Digital Converter | |
CN101719752B (en) | Method and device for detecting rotor position of brushless motor | |
CN101852818B (en) | Accelerometer error calibration and compensation method based on rotary mechanism | |
CN103256946B (en) | Rotating transformer digital converter capable of on-line failure detection and fault-tolerant control | |
CN105452815B (en) | For the position sensor arrangement for the position for determining mobile device | |
Ye et al. | Ratiometric-linearization-based high-precision electronic interpolator for sinusoidal optical encoders | |
CN107332565A (en) | Rotation based on DSADC becomes software decoding system and method | |
CN105915127A (en) | Motor rotor position redundant measuring method and system and electronic device | |
CN108196213A (en) | Zero-bit angle test device, the method and system of a kind of rotary transformer | |
US20100176799A1 (en) | Sensor including two code rings and a magnetic field sensor between the code rings | |
CN111351535B (en) | A kind of signal processing method of high frequency sine wave excitation electromagnetic flowmeter | |
CN101271007A (en) | A Calibration Compensation Method for Angle Measurement Error of Resolver Based on Rate Turntable | |
CN101521480A (en) | Resolution method and resolver for signals of rotating transformer | |
TW200839194A (en) | Position detector | |
EP2693221B1 (en) | Magnetic Sensor Arrangement | |
CN101701970A (en) | Method and device for detecting acceleration | |
US8229697B2 (en) | Method and device for the robust and efficient determination of the rotational direction and/or rotational speed of a wheel or a shaft | |
CN102401664B (en) | Position detector | |
CN110022097B (en) | Resolver angular position calculating device and method for rotary transformer | |
JPH0465985B2 (en) | ||
CN100462686C (en) | A Synthesizer/Resolver-Analog DC Voltage Conversion Method | |
CN207780217U (en) | A kind of zero-bit angle test device of rotary transformer | |
CN107796419A (en) | Low-cost and high-precision digital composite shaft angle detector | |
CN103776471A (en) | Magnetic encoder based on double synchronous rotation coordinate systems |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20120530 Termination date: 20131130 |