CN102053384B - Speckle elimination device based on field emission deformation polymer - Google Patents
Speckle elimination device based on field emission deformation polymer Download PDFInfo
- Publication number
- CN102053384B CN102053384B CN 201110031555 CN201110031555A CN102053384B CN 102053384 B CN102053384 B CN 102053384B CN 201110031555 CN201110031555 CN 201110031555 CN 201110031555 A CN201110031555 A CN 201110031555A CN 102053384 B CN102053384 B CN 102053384B
- Authority
- CN
- China
- Prior art keywords
- field
- base polymer
- light pipe
- deformation
- deformation base
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229920000642 polymer Polymers 0.000 title claims abstract description 46
- 230000008030 elimination Effects 0.000 title abstract description 21
- 238000003379 elimination reaction Methods 0.000 title abstract description 21
- 230000005684 electric field Effects 0.000 claims description 8
- 239000002245 particle Substances 0.000 claims description 7
- 239000004205 dimethyl polysiloxane Substances 0.000 claims description 6
- 239000004005 microsphere Substances 0.000 claims description 6
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 claims description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 3
- 239000004793 Polystyrene Substances 0.000 claims description 2
- 239000002184 metal Substances 0.000 claims description 2
- 229910052751 metal Inorganic materials 0.000 claims description 2
- 229920002223 polystyrene Polymers 0.000 claims description 2
- 229920005601 base polymer Polymers 0.000 claims 18
- 235000013870 dimethyl polysiloxane Nutrition 0.000 claims 2
- CXQXSVUQTKDNFP-UHFFFAOYSA-N octamethyltrisiloxane Chemical compound C[Si](C)(C)O[Si](C)(C)O[Si](C)(C)C CXQXSVUQTKDNFP-UHFFFAOYSA-N 0.000 claims 2
- 238000004987 plasma desorption mass spectroscopy Methods 0.000 claims 2
- DQMUQFUTDWISTM-UHFFFAOYSA-N O.[O-2].[Fe+2].[Fe+2].[O-2] Chemical compound O.[O-2].[Fe+2].[Fe+2].[O-2] DQMUQFUTDWISTM-UHFFFAOYSA-N 0.000 claims 1
- 229910010413 TiO 2 Inorganic materials 0.000 claims 1
- 230000004913 activation Effects 0.000 claims 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 9
- 238000000034 method Methods 0.000 abstract description 9
- 230000008901 benefit Effects 0.000 abstract description 3
- 238000004519 manufacturing process Methods 0.000 abstract description 3
- 230000001427 coherent effect Effects 0.000 abstract description 2
- 238000006116 polymerization reaction Methods 0.000 abstract 1
- 238000009826 distribution Methods 0.000 description 13
- 230000005540 biological transmission Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 239000007864 aqueous solution Substances 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 3
- 230000010354 integration Effects 0.000 description 3
- 238000002310 reflectometry Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- SZVJSHCCFOBDDC-UHFFFAOYSA-N ferrosoferric oxide Chemical compound O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 description 2
- 229910017053 inorganic salt Inorganic materials 0.000 description 2
- 238000009835 boiling Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- -1 polydimethylsiloxane Polymers 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/48—Laser speckle optics
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/10—Beam splitting or combining systems
- G02B27/1006—Beam splitting or combining systems for splitting or combining different wavelengths
- G02B27/102—Beam splitting or combining systems for splitting or combining different wavelengths for generating a colour image from monochromatic image signal sources
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/0001—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
- G02B6/0011—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
- G02B6/0033—Means for improving the coupling-out of light from the light guide
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Projection Apparatus (AREA)
- Mechanical Light Control Or Optical Switches (AREA)
Abstract
本发明涉及以相干光为光源的显示技术领域,具体是一种基于场致形变类聚合物的散斑消除装置,解决了现有散斑消除方法存在的消除散斑效果不佳、实现结构复杂、易损坏、成本高等问题,基于场致形变类聚合物的散斑消除装置,包括内壁为反射镜面的导光管、设置于导光管内的场致形变类聚合物、用于产生驱动管内聚合物形变所需外场的致动装置;场致形变类聚合物与导光管内壁间留有空隙;所述致动装置包含至少两个设置于导光管内或管外的外场施加组件。本发明结构合理、紧凑,散斑消除效果好,易实现,造价低,激光利用率高,性能稳定,安全可靠,并具有匀光功能。
The invention relates to the field of display technology using coherent light as a light source, in particular to a speckle elimination device based on field-induced deformation polymers, which solves the problems of poor speckle elimination effect and complicated structure in existing speckle elimination methods. , easily damaged, and high cost, the speckle elimination device based on field-induced deformation polymers includes a light pipe whose inner wall is a reflective mirror, field-induced deformation polymers arranged in the light pipe, and used to generate polymerization in the drive tube The actuating device for the external field required for object deformation; there is a gap between the field deformation polymer and the inner wall of the light pipe; the actuating device includes at least two external field application components arranged inside or outside the light pipe. The invention has the advantages of reasonable and compact structure, good speckle elimination effect, easy realization, low manufacturing cost, high laser utilization rate, stable performance, safety and reliability, and light uniformity function.
Description
技术领域 technical field
本发明涉及以相干光为光源的显示技术领域,具体是一种基于场致形变类聚合物的散斑消除装置,主要针对激光显示技术及光学仪器中存在的光学散斑现象。 The present invention relates to the field of display technology using coherent light as a light source, specifically a speckle elimination device based on field-induced deformation polymers, mainly aimed at the optical speckle phenomenon existing in laser display technology and optical instruments.
背景技术 Background technique
以激光为光源照射屏幕时,由于激光的相干性及屏幕的粗糙,导致人眼看到被散斑覆盖的图像,严重影响图像显示质量,阻碍观察者从图像中提取有用信息。因此,如何消除散斑一直是以激光为光源的光学仪器领域和显示技术领域中的研发热点。而就目前的研究结果来看,为消除散斑所用的方法大致可以分为两大类:一、通过控制激光光源的时间相干性来降低散斑,其原理是通过调整激光波长(或者频率)及多波长光源产生沸腾散斑,目前通过控制激光时间相干性成功消除光斑达到实用要求的技术方案基本上以多光源叠加为主;目前通过控制激光时间相干性成功消除光斑达到实用要求的技术方案基本上以多光源叠加为主;二、通过控制激光光束空间相干性消除散斑,是目前消除散斑的主要方法,基本原理是调整激光光束中基元光波的相位分布,从而改变散斑的空间分布,将多个散斑图像在人眼积分时间内相叠加,得到一个光能分布均匀的图像,进而实现消除散斑的目的。具体的方法有:采用旋转散射体、振动屏幕、振动具有Hadamard图形散射体、高频振动光纤等。上述方法,或要借助机械振动,甚至需要高频或大幅振动,或要集成多光源,实现结构复杂、易损坏、成本高,更主要的是散斑消除效果不佳。 When the laser is used as the light source to irradiate the screen, due to the coherence of the laser and the roughness of the screen, the human eye sees an image covered by speckle, which seriously affects the image display quality and prevents the observer from extracting useful information from the image. Therefore, how to eliminate speckle has always been a research and development hotspot in the field of optical instruments and display technology with laser as the light source. As far as the current research results are concerned, the methods used to eliminate speckle can be roughly divided into two categories: 1. Reduce speckle by controlling the temporal coherence of the laser light source. The principle is to adjust the laser wavelength (or frequency) and multi-wavelength light sources produce boiling speckle. At present, the technical solution to successfully eliminate the light spot by controlling the laser time coherence to meet the practical requirements is basically based on the superposition of multiple light sources; the current technical solution to successfully eliminate the light spot by controlling the laser time coherence to meet the practical requirements Basically, the superposition of multiple light sources is the main method; second, eliminating speckle by controlling the spatial coherence of the laser beam is the main method for eliminating speckle at present. Spatial distribution, multiple speckle images are superimposed within the integration time of the human eye to obtain an image with uniform light energy distribution, thereby achieving the purpose of eliminating speckles. Specific methods include: using rotating scatterers, vibrating screens, vibrating scatterers with Hadamard graphics, high-frequency vibration fibers, etc. The above methods require mechanical vibration, or even high-frequency or large-scale vibration, or integrate multiple light sources, resulting in complex structure, easy damage, high cost, and more importantly, poor speckle elimination effect. the
也有未借助机械振动的技术方案,例如:专利号为200820122639.7的中国专利公开了“一种基于散射的消相干匀场装置”,要求使用含有直径必须小于入射光波长的十分之一的颗粒的散射媒体,以实现对入射激光形成瑞利散射。专利中利用无机盐或有机醇水溶液(如NaCl、KCl、KNO3或ZnSO4水溶液) 作为散射媒质,基于无机盐或有机醇水溶液的存在形式是水合离子或大分子,相对于激光波长小很多,会对入射激光形成瑞利散射,以此实现入射激光分束,并在光导管内传导,以期降低入射激光的相干性来消除散斑,同时利用光导管的混光作用,将上述分束光进行匀化来匀场消相干。但按该申请所述技术方法进行试验,在室温下,利用长度仅为50mm、充满饱和NaCl水溶液的光导管消除散斑,结果如图1所示,其散斑对比度为70%,几乎没有起到降低散斑的作用。 There are also technical solutions that do not rely on mechanical vibration. For example, the Chinese patent No. 200820122639.7 discloses "a decoherent shimming device based on scattering", which requires the use of particles containing particles whose diameter must be smaller than one-tenth of the wavelength of the incident light. Scattering media to achieve Rayleigh scattering of incident laser light. In the patent, inorganic salt or organic alcohol aqueous solution (such as NaCl, KCl, KNO 3 or ZnSO 4 aqueous solution) is used as the scattering medium, based on the existence form of inorganic salt or organic alcohol aqueous solution is hydrated ion or macromolecule, which is much smaller than the laser wavelength. Rayleigh scattering will be formed on the incident laser light, so as to realize the beam splitting of the incident laser light, and conduct it in the light pipe, in order to reduce the coherence of the incident laser light to eliminate speckle Homogenize to shim decoherence. However, according to the technical method described in the application, at room temperature, using a light guide with a length of only 50 mm and filled with a saturated NaCl aqueous solution to eliminate speckles, the results are shown in Figure 1. The speckle contrast is 70%, and there is almost no effect. to reduce speckle.
发明内容 Contents of the invention
本发明为了解决现有散斑消除方法存在的消除散斑效果不佳、实现结构复杂、易损坏、成本高等问题,提供了一种基于场致形变类聚合物的散斑消除装置。 The present invention provides a speckle elimination device based on a field-induced deformation polymer in order to solve the problems of poor speckle elimination effect, complex structure, easy damage, and high cost existing in existing speckle elimination methods.
本发明是采用如下技术方案实现的:基于场致形变类聚合物的散斑消除装置,包括内壁为反射镜面的导光管、设置于导光管内的场致形变类聚合物(该类聚合物在相应外场驱动下,会发生形变,所述外场一般指电场和磁场)、用于产生驱动管内聚合物形变所需外场的致动装置;场致形变类聚合物与导光管内壁间留有空隙;所述致动装置包含至少两个设置于导光管内或管外的外场施加组件。 The present invention is achieved by adopting the following technical scheme: a speckle elimination device based on field-induced deformation polymers, including a light guide whose inner wall is a mirror surface, and a field-induced deformation polymer (this type of polymer) arranged in the light guide Driven by the corresponding external field, deformation will occur, the external field generally refers to electric field and magnetic field), an actuating device for generating the external field required to drive the deformation of the polymer in the tube; there is a gap between the field-induced deformation polymer and the inner wall of the light guide tube Gap; the actuating device includes at least two external field applying components arranged inside or outside the light pipe.
所述场致形变类聚合物为电致形变类聚合物,相应致动装置为电场发生装置,电场发生装置的外场施加组件-成对设置的电极板设置于导光管内或管外; The field-deformable polymer is an electro-deformable polymer, and the corresponding actuating device is an electric field generator, and the external field application component of the electric field generator-paired electrode plates are arranged inside or outside the light guide tube;
置于导光管内的电极板采用“镜面”电极板(即电极板表面具有高反射率特性,能“全反射”入射于导光管内的激光光束),沿导光管内壁固定设置; The electrode plate placed in the light guide adopts a "mirror" electrode plate (that is, the surface of the electrode plate has high reflectivity characteristics and can "totally reflect" the laser beam incident in the light guide), and is fixed along the inner wall of the light guide;
所述场致形变类聚合物为磁致形变类聚合物,相应致动装置为磁场发生装置,磁场发生器的外场施加组件-电磁铁设置于导光管外; The field-induced deformation type polymer is a magneto-induced deformation type polymer, and the corresponding actuating device is a magnetic field generating device, and the external field application component of the magnetic field generator-the electromagnet is arranged outside the light guide;
应用时,如图2、3所示,将激光光束经光学透镜扩束,并由导光管一端入射管内,部分透射聚合物,在导光管内壁反射,再入射聚合物;部分在聚合物表面内反射,分束成多束强度不等的光束,经多次反射、透射后,由导光管另一端出射;在激光光束于导光管内传输的过程中,由致动装置产生相应外场,并控制其外场施加组件产生外场的顺序和强度大小,驱动导光管内的场致形变类聚合物发生丰富多样的连续形变,进而改变入射激光分束后在导光管内的传播方向和路径,使出射光的相位分布、出射角分布随机变化。经投影后,不同相位分布、出射角分布的出射光分别会对应产生一个散斑图像;在人眼积分时间(50ms)内,多个散斑图像相叠加,就会得到一个光能分布均匀的图像,进而实现了消除散斑现象的目的。 In application, as shown in Figures 2 and 3, the laser beam is expanded by an optical lens, and incident into the tube from one end of the light guide tube, partly transmitted through the polymer, reflected on the inner wall of the light guide tube, and then incident on the polymer; The internal reflection on the surface splits the beam into multiple beams with different intensities, and after multiple reflections and transmissions, it emerges from the other end of the light guide; during the transmission of the laser beam in the light guide, the corresponding external field is generated by the actuator , and control the order and intensity of the external field generated by its external field application components, and drive the field-induced deformation polymer in the light pipe to undergo a variety of continuous deformations, thereby changing the propagation direction and path of the incident laser beam in the light pipe after splitting, The phase distribution and the distribution of the exit angle of the outgoing light are changed randomly. After projection, the outgoing light with different phase distributions and exit angle distributions will generate a speckle image respectively; within the integration time of the human eye (50ms), multiple speckle images are superimposed to obtain a uniform light energy distribution. image, thereby achieving the purpose of eliminating speckle phenomenon.
与现有技术相比,本发明以内置有场致形变类聚合物的导光管传输激光,以聚合物形变以及聚合物与导光管内壁间空隙的存在使得激光在传输过程中发生分束,并通过相应致动装置产生驱动场致形变类聚合物形变的外场,使场致形变类聚合物连续形变,引起场致形变类聚合物表面形状、及其与导光管内壁间空隙大小的变化,进而随机改变分束后的激光在导光管中的传播方向和路径,使得入射导光管的激光在不同时间以不同的相位分布和散射角分布出射;从而改变投影后产生散斑的空间分布,使多个散斑图像在人眼积分时间内相叠加,得到一个光能分布均匀的图像,进而有效消除散斑。且经试验测试,应用本发明所述装置后,图像的散斑对比度可低于4%,如图4所示,图像的散斑对比度已低至3.16%,散斑消除效果极好;并可以通过对致动装置的控制,来增大场致形变类聚合物的形变量、形变频率,来提高散斑消除效果;另外,因导光管内壁为反射镜面,具有高反射率,使得入射激光的总体光能损失甚微,保证了激光的高利用率,并在激光的传输过程中实现了匀光目的;本发明所述装置的各组成部分均为固态,不存在液体泄漏、悬浮液沉降等问题,性能稳定,安全可靠。此外,本发明所用导光管结构极为普通,场致形变类聚合物也极易获得,且对应致动装置也极易制作,因此具有低造价的优势。 Compared with the prior art, the present invention transmits laser light with a built-in light pipe of field-induced deformation polymer, and the laser beam is split during the transmission process due to the deformation of the polymer and the existence of the gap between the polymer and the inner wall of the light pipe , and generate an external field that drives the deformation of the field-induced deformation-like polymer through the corresponding actuator device, so that the field-induced deformation-like polymer is continuously deformed, causing the surface shape of the field-induced deformation-like polymer and the size of the gap between the inner wall of the light pipe Change, and then randomly change the propagation direction and path of the beam-splitting laser in the light guide, so that the laser incident into the light guide exits with different phase distributions and scattering angle distributions at different times; thus changing the speckle after projection Spatial distribution, so that multiple speckle images are superimposed within the integration time of the human eye to obtain an image with uniform light energy distribution, thereby effectively eliminating speckle. And after testing, after using the device of the present invention, the speckle contrast of the image can be lower than 4%, as shown in Figure 4, the speckle contrast of the image has been as low as 3.16%, and the speckle elimination effect is excellent; and can By controlling the actuating device, the deformation amount and deformation frequency of the field-induced deformation polymer can be increased to improve the effect of speckle elimination; in addition, because the inner wall of the light guide is a mirror surface with high reflectivity, the incident laser The overall light energy loss is very small, which ensures the high utilization rate of the laser, and achieves the purpose of uniform light during the transmission of the laser; each component of the device in the present invention is solid, and there is no liquid leakage or suspension settlement And other issues, stable performance, safe and reliable. In addition, the structure of the light pipe used in the present invention is very common, the field-induced deformation polymer is also very easy to obtain, and the corresponding actuating device is also very easy to manufacture, so it has the advantage of low manufacturing cost.
本发明结构合理、紧凑,散斑消除效果好,易实现,造价低,激光利用率高,性能稳定,安全可靠,并具有匀光功能。 The present invention has reasonable and compact structure, good speckle elimination effect, easy realization, low cost, high laser utilization rate, stable performance, safety and reliability, and has light uniformity function.
附图说明 Description of drawings
图1为本发明的一具体结构示意图; Fig. 1 is a concrete structural representation of the present invention;
图2为场致形变类聚合物未发生形变时本发明所述装置内光束的传输状态示意图; Fig. 2 is a schematic diagram of the transmission state of the light beam in the device of the present invention when the field-induced deformation polymer is not deformed;
图3为场致形变类聚合物发生形变时本发明所述装置内光束的传输状态示意图; Fig. 3 is a schematic diagram of the transmission state of the light beam in the device of the present invention when the field-induced deformation polymer is deformed;
图4为利用本发明所述装置消除散斑获得的测试结果图; Fig. 4 is a diagram of test results obtained by using the device of the present invention to eliminate speckles;
图5为利用一现有技术消除散斑获得的测试结果图; Fig. 5 is a test result diagram obtained by using a prior art to eliminate speckles;
图6为本发明所述装置在点扫描显示系统中的应用示意图; 6 is a schematic diagram of the application of the device of the present invention in a point scanning display system;
图7为本发明所述装置在全帧显示系统中的应用示意图; FIG. 7 is a schematic diagram of the application of the device of the present invention in a full-frame display system;
图中:101-入射激光; In the figure: 101-incident laser;
200-外场施加组件; 200-external field application component;
300-散斑消除装置;301-导光管;302-空隙;303-扩散透镜;304、305、306-散斑消除装置; 300-speckle elimination device; 301-light pipe; 302-gap; 303-diffusion lens; 304, 305, 306-speckle elimination device;
400-场致形变类聚合物; 400-field-induced deformation polymer;
501、502、503-激光器;504、505、506-镜子; 501, 502, 503-lasers; 504, 505, 506-mirrors;
601、602、603-信号源; 601, 602, 603-signal source;
700-透镜;701-中继透镜;702-光调制器DLP;703-TIR棱镜; 704-中继透镜;705-TIR棱镜;706-光调制器DLP;707-中继透镜;708-平面镜;709-TIR棱镜;710-光调制器DLP;711-棱镜;712-微扫描镜;713、714、715-扩散透镜; 700-lens; 701-relay lens; 702-light modulator DLP; 703-TIR prism; 704-relay lens; 705-TIR prism; 706-light modulator DLP; 707-relay lens; 708-plane mirror; 709-TIR prism; 710-light modulator DLP; 711-prism; 712-micro scanning mirror; 713, 714, 715-diffusion lens;
800-屏幕。 800-screen.
具体实施方式 Detailed ways
如图1所示,基于场致形变类聚合物的散斑消除装置,包括内壁为反射镜面的导光管301、设置于导光管301内的场致形变类聚合物400(该类聚合物在相应外场驱动下,会发生形变,所述外场一般指电场和磁场)、用于产生驱动管内聚合物形变所需外场的致动装置;场致形变类聚合物400与导光管301内壁间留有空隙302;所述致动装置包含至少两个设置于导光管301内或管外的外场施加组件200。
As shown in Figure 1, the speckle elimination device based on field-induced deformation polymers includes a
所述场致形变类聚合物400为电致形变类聚合物,相应致动装置为电场发生装置,电场发生装置的外场施加组件200-成对设置的电极板设置于导光管301内或管外;所述电极板采用ITO电极、或者金属电极、或者以MEMS技术加工获得的格栅式致动电极。
The field-
置于导光管301内的电极板采用“镜面”电极板(即电极板表面具有高反射率特性,能“全反射”入射于导光管内的激光光束),沿导光管内壁固定设置。
The electrode plate placed in the
所述场致形变类聚合物400为磁致形变类聚合物,相应致动装置为磁场发生装置,磁场发生器的外场施加组件200-电磁铁设置于导光管外。
The field-
具体实施时,所述场致形变类聚合物400应选择对入射激光波段没有吸收的高分子聚合物,例如:PDMS(polydimethylsiloxane)凝胶。为有效降低激光散斑对比度,提高激光散斑消除效果,可以在所述场致形变类聚合物中掺杂增强其形变能力的颗粒,例如:掺杂有二氧化钛粒子的PDMS凝胶—用作电致形变类聚合物,掺杂有二氧化硅磁性微球、或者聚苯乙烯磁性微球、或者四氧化三铁磁性微球、或者三氧化二铁磁性微球的PDMS凝胶—用作磁致形变类聚合物;此外,掺杂颗粒的另一好处:如掺杂颗粒的线度能引起入射激光发生米氏散射,进行散射分束,散射光束同样因外场对场致形变类聚合物的影响,而随机改变其在导光管中的传播方向和路径,使散射光出射时的相位分布、出射角分布随机变化,更利于消除散斑现象。
During specific implementation, the field-
本发明所述散斑消除装置能应用于激光投影显示技术中,例如:可应用于点扫描投影(Raster-Scanned Displays)系统,如图6所示。信号源601、602、603根据二维图像上每个像素的信息分别调制三基色激光器501、502、503输出功率。三基色激光光束经镜子504、505、506和扩散透镜303同时耦合入射本发明所述散斑消除装置300,经调制后于投射出射面导出,通过透镜700和微扫描镜(Scan Mirror)712投影到屏幕800。在电信号的驱动下,微扫描镜712根据二维图像逐像素扫描到屏幕800上。本应用实例适用于点扫描的激光投影仪和激光电视显示。
The speckle elimination device of the present invention can be applied to laser projection display technology, for example, it can be applied to a point-scanning projection (Raster-Scanned Displays) system, as shown in FIG. 6 . The
如图7所示,可应用于全帧显示投影(Full-Frame Displays)系统,三基色激光器501、502、503输出恒定功率激光光束,分别经扩散透镜714、713、715耦合导入本发明所述散斑消除装置305、306、304。经调制后,由中继透镜701、704、707,平面镜 708及TIR棱镜703、705、709汇聚到光调制器DLP 702、706、710。DLP 702、706、710根据每帧2维图像信息调制生成单色图像。三基色图像经棱镜711融和,由透镜700投影至屏幕800。本应用实例适用于基于DMD、LCOS 等光调制器件的激光投影仪和激光电视显示。
As shown in Figure 7, it can be applied to a full-frame display projection (Full-Frame Displays) system. The three
Claims (8)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201110031555 CN102053384B (en) | 2011-01-29 | 2011-01-29 | Speckle elimination device based on field emission deformation polymer |
PCT/CN2012/000040 WO2012100641A1 (en) | 2011-01-29 | 2012-01-10 | Speckle removal device based on polymer of field-induced deformation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201110031555 CN102053384B (en) | 2011-01-29 | 2011-01-29 | Speckle elimination device based on field emission deformation polymer |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102053384A CN102053384A (en) | 2011-05-11 |
CN102053384B true CN102053384B (en) | 2012-07-25 |
Family
ID=43957884
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201110031555 Active CN102053384B (en) | 2011-01-29 | 2011-01-29 | Speckle elimination device based on field emission deformation polymer |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN102053384B (en) |
WO (1) | WO2012100641A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102053384B (en) * | 2011-01-29 | 2012-07-25 | 中北大学 | Speckle elimination device based on field emission deformation polymer |
CN111323933A (en) * | 2018-12-14 | 2020-06-23 | 青岛海信激光显示股份有限公司 | Speckle eliminating device and method and projection display equipment |
JP2022076489A (en) * | 2019-03-26 | 2022-05-20 | 昭和電工マテリアルズ株式会社 | Speckle noise reduction optical system |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101903821A (en) * | 2007-12-19 | 2010-12-01 | 欧普蒂卡有限公司 | An optical system and method |
CN101950087A (en) * | 2010-08-20 | 2011-01-19 | 福州高意通讯有限公司 | Method for eliminating laser speckle effect |
CN202075500U (en) * | 2011-01-29 | 2011-12-14 | 中北大学 | Speckle eliminating device based on field deformation polymer |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4288784B2 (en) * | 1999-09-28 | 2009-07-01 | 凸版印刷株式会社 | Image projection screen |
US20060238743A1 (en) * | 2005-04-21 | 2006-10-26 | Lizotte Todd E | Speckle reduction optical mount device |
EP2322957A1 (en) * | 2009-11-12 | 2011-05-18 | poLight AS | A method, device and system for reducing speckle contrast |
CN102053384B (en) * | 2011-01-29 | 2012-07-25 | 中北大学 | Speckle elimination device based on field emission deformation polymer |
-
2011
- 2011-01-29 CN CN 201110031555 patent/CN102053384B/en active Active
-
2012
- 2012-01-10 WO PCT/CN2012/000040 patent/WO2012100641A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101903821A (en) * | 2007-12-19 | 2010-12-01 | 欧普蒂卡有限公司 | An optical system and method |
CN101950087A (en) * | 2010-08-20 | 2011-01-19 | 福州高意通讯有限公司 | Method for eliminating laser speckle effect |
CN202075500U (en) * | 2011-01-29 | 2011-12-14 | 中北大学 | Speckle eliminating device based on field deformation polymer |
Non-Patent Citations (1)
Title |
---|
郝丽 等.激光显示中散斑的抑制.《激光与红外》.2006,第36卷(第10期),全文. * |
Also Published As
Publication number | Publication date |
---|---|
WO2012100641A1 (en) | 2012-08-02 |
CN102053384A (en) | 2011-05-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11418764B2 (en) | Image and wave field projection through diffusive media | |
JP5763214B2 (en) | Speckle reduction device based on Mie scattering and perturbation drive | |
WO2020093727A1 (en) | Structured light generation device and method based on beam shaping | |
CN106353891A (en) | MOEMS (micro optical electronic mechanical system) laser scanning micromirror array speckle suppression device | |
CN102073146B (en) | Mie scattering and field-induced deformation polymers-based speckle eliminating device | |
CN102122081B (en) | Dodging shaping and facula-dispersing device for laser beam | |
CN102053384B (en) | Speckle elimination device based on field emission deformation polymer | |
CN102073145A (en) | Speckle elimination device based on Mie scattering and Brownian motion | |
JP2024519298A (en) | Air ionization display device and control method thereof | |
CN102053386A (en) | Speckle suppression device for laser light source in laser display technology | |
CN202075495U (en) | Speckle eliminating device based on Mie scatter and optical element | |
CN102053382B (en) | Speckle elimination device based on Mie scattering and optical device | |
CN202075500U (en) | Speckle eliminating device based on field deformation polymer | |
CN102053385A (en) | Speckle restraining device for laser light source based on MEMS (micro-electromechanical systems) technology | |
CN109557680B (en) | Static laser speckle suppression system incorporating multimode optical waveguide and diffractive optics | |
CN202075499U (en) | Speckle eliminating device based on Mie scatter and magnetic control particle movement | |
CN202075498U (en) | Speckle eliminating device based on Mie scattering and perturbation driving | |
CN202075497U (en) | Speckle eliminating device based on Mie scatter and field deformation polymers | |
CN202075496U (en) | Eckle eliminating device based on Mie scattering and Brownian movement | |
CN110806639A (en) | A miniature projection scanning system | |
CN205643891U (en) | Low spot multimode fiber coupled laser that looses | |
CN102062953A (en) | Speckle eliminator based on Mie scattering and magnetic control particle motion | |
CN201845994U (en) | Laser device | |
CN102468598A (en) | Laser device | |
CN113655628B (en) | Method for realizing imaging in air by using shock wave effect |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20110511 Assignee: Shanxi Aowei Guangshi Photoelectric Technology Co., Ltd. Assignor: Zhongbei Univ Contract record no.: 2013990000547 Denomination of invention: Speckle elimination device based on field emission deformation polymer Granted publication date: 20120725 License type: Exclusive License Record date: 20130904 |
|
LICC | Enforcement, change and cancellation of record of contracts on the licence for exploitation of a patent or utility model | ||
ASS | Succession or assignment of patent right |
Owner name: SHANXI AOWEI GUANGSHI PHOTOELECTRIC TECHNOLOGY CO. Free format text: FORMER OWNER: ZHONGBEI UNIV Effective date: 20141009 |
|
C41 | Transfer of patent application or patent right or utility model | ||
COR | Change of bibliographic data |
Free format text: CORRECT: ADDRESS; FROM: 030051 TAIYUAN, SHAANXI PROVINCE TO: 030006 TAIYUAN, SHAANXI PROVINCE |
|
TR01 | Transfer of patent right |
Effective date of registration: 20141009 Address after: 401, room 226, 030006 Changzhi Road, Taiyuan hi tech Zone, Shanxi, China Patentee after: Shanxi Aowei Guangshi Photoelectric Technology Co., Ltd. Address before: 030051 Xueyuan Road City, Shanxi Province, pointed lawn area, No., No. 3 Patentee before: Zhongbei Univ |
|
C41 | Transfer of patent application or patent right or utility model | ||
TR01 | Transfer of patent right |
Effective date of registration: 20160401 Address after: 030006, No. 5, No. 8, block A,, hi tech International Building, No. 227, Changzhi Road, Shanxi, Taiyuan Patentee after: JINMEI LASERTEC CORP., LTD. Address before: 401, room 226, 030006 Changzhi Road, Taiyuan hi tech Zone, Shanxi, China Patentee before: Shanxi Aowei Guangshi Photoelectric Technology Co., Ltd. |
|
CP03 | Change of name, title or address |
Address after: 030032 No. 51 Zhengyang Street, Xiaodian District, Taiyuan City, Shanxi Province Patentee after: Shanxi Hanwei laser Polytron Technologies Inc Address before: 030006 No. 8, 5th floor, Block A, High-tech International Building, 227 Changzhi Road, Taiyuan City, Shanxi Province Patentee before: JINMEI LASERTEC CORP., LTD. |
|
CP03 | Change of name, title or address |