[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN102054691A - Preparation method of nano-fluid transistor - Google Patents

Preparation method of nano-fluid transistor Download PDF

Info

Publication number
CN102054691A
CN102054691A CN2009102370962A CN200910237096A CN102054691A CN 102054691 A CN102054691 A CN 102054691A CN 2009102370962 A CN2009102370962 A CN 2009102370962A CN 200910237096 A CN200910237096 A CN 200910237096A CN 102054691 A CN102054691 A CN 102054691A
Authority
CN
China
Prior art keywords
material layer
corrosion
nanofluid
insulating material
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2009102370962A
Other languages
Chinese (zh)
Other versions
CN102054691B (en
Inventor
张加勇
王晓峰
王晓东
杨富华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Semiconductors of CAS
Original Assignee
Institute of Semiconductors of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Semiconductors of CAS filed Critical Institute of Semiconductors of CAS
Priority to CN2009102370962A priority Critical patent/CN102054691B/en
Publication of CN102054691A publication Critical patent/CN102054691A/en
Application granted granted Critical
Publication of CN102054691B publication Critical patent/CN102054691B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Thin Film Transistor (AREA)

Abstract

一种纳流体晶体管的制备方法,包括:在衬底上生长一层电热绝缘材料层和基底材料层;用光刻和干法刻蚀的方法去除基底材料层的四边,形成制备侧墙的基底;在该电热绝缘材料层的上面和基底材料层的表面及侧面淀积侧墙材料层;去除基底材料层上表面的和电热绝缘材料层表面的侧墙材料层,形成高和宽均为纳米尺寸的侧墙;去除基底材料层;在该侧墙材料层的一条边上搭上一条制作纳流管道的抗腐蚀绝缘材料层;再在抗腐蚀绝缘材料层上搭上一条制作栅电极的抗腐蚀的金属层;去除侧墙材料层,保留抗腐蚀绝缘材料层和抗腐蚀的金属层,形成一纳流管道,并注入纳流体;钝化并在管道两端和金属层上方开孔,引出三端电极即形成纳流体晶体管。

A method for preparing a nanofluid transistor, comprising: growing a layer of electrothermal insulating material and a base material layer on a substrate; removing four sides of the base material layer by photolithography and dry etching to form a base for preparing side walls Deposit a side wall material layer on the surface and side surfaces of the electric thermal insulating material layer and the base material layer; remove the upper surface of the base material layer and the side wall material layer on the surface of the electric thermal insulating material layer, forming a height and a width that are all nanometers The size of the side wall; remove the base material layer; on one side of the side wall material layer, put a layer of anti-corrosion insulating material for making nano flow pipeline; then put an anti-corrosion insulating material layer for making gate electrode Corroded metal layer; remove the side wall material layer, retain the anti-corrosion insulating material layer and anti-corrosion metal layer, form a nano-flow pipe, and inject the nano-fluid; passivate and open holes at both ends of the pipe and above the metal layer, and lead out The three-terminal electrodes form a nanofluid transistor.

Description

纳流体晶体管的制备方法 Preparation method of nanofluid transistor

技术领域technical field

本发明涉及微纳电子技术领域,特别涉及一种纳流体晶体管的制备方法。本发明提出了一种采用侧墙工艺和湿法腐蚀方法制备纳流体晶体管的方法。该方法尽量避免使用电子束曝光的成本高、周期长的不足,在突破光刻分辨率限制及提高纳流体晶体管制备效率等方面具有很大的优越性。The invention relates to the technical field of micro-nano electronics, in particular to a preparation method of a nanofluid transistor. The invention provides a method for preparing a nanofluid transistor by adopting a sidewall process and a wet etching method. This method avoids the disadvantages of high cost and long period of electron beam exposure as far as possible, and has great advantages in breaking through the limitation of lithography resolution and improving the preparation efficiency of nanofluid transistors.

背景技术Background technique

近年来,半导体产业和微电子产业随着摩尔定律飞速的发展,但是随着量子尺寸效应等的引入,晶体管的尺寸几乎已经达到了极限。为了寻找新的途径,推进微电子产业的进一步发展。很多科学家致力于新的电子元件的开发,如:单电子晶体管,碳纳米管晶体管,纳流体晶体管等等。因此,制备纳米级的纳流体晶体管成为我们重要的研究方向。In recent years, the semiconductor industry and the microelectronics industry have developed rapidly with Moore's Law, but with the introduction of quantum size effects, etc., the size of transistors has almost reached the limit. In order to find new ways to promote the further development of the microelectronics industry. Many scientists are committed to the development of new electronic components, such as: single-electron transistors, carbon nanotube transistors, nanofluid transistors and so on. Therefore, the preparation of nano-scale nanofluidic transistors has become an important research direction for us.

目前,纳米结构的制备方法主要有:光刻、电子束刻蚀、聚焦离子束刻蚀、微接触印刷、电化学方法和电迁移方法等。但是,光学光刻方法受到光波波长限制,刻蚀的极限在微米量级,难以达到纳米量级;微接触印刷、电子束刻蚀和聚焦离子束刻蚀的方法周期长成本高;电化学和电迁移方法工艺可靠性较低,可能导致与CMOS工艺的不兼容。为了突破光刻分辨率限制及提高器件与CMOS工艺的兼容性,寻找简单而低成本的制备纳米级的纳流体晶体管的方法,我们提出本发明构思。At present, the preparation methods of nanostructures mainly include: photolithography, electron beam etching, focused ion beam etching, microcontact printing, electrochemical methods, and electromigration methods. However, the optical lithography method is limited by the wavelength of light, and the etching limit is at the micron level, which is difficult to reach the nanometer level; the methods of microcontact printing, electron beam etching and focused ion beam etching have long cycle times and high costs; electrochemical and The process reliability of the electromigration method is low, which may cause incompatibility with the CMOS process. In order to break through the limitation of lithographic resolution and improve the compatibility of devices and CMOS technology, and find a simple and low-cost method for preparing nano-scale nanofluid transistors, we propose the concept of the present invention.

发明内容Contents of the invention

本发明的主要目的在于提供一种制备纳流体晶体管的方法,以寻找到一种纳流体晶体管的制备方法,并且制备方法简单且成本低廉,能够突破光刻分辨率限制,并提高纳流体晶体管的制备效率。The main purpose of the present invention is to provide a method for preparing a nanofluid transistor, to find a method for preparing a nanofluid transistor, and the preparation method is simple and low in cost, can break through the limitation of photolithography resolution, and improve the nanofluid transistor. Preparation efficiency.

为达到上述目的,本发明提供一种纳流体晶体管的制备方法,包括如下步骤:In order to achieve the above object, the present invention provides a method for preparing a nanofluid transistor, comprising the steps of:

步骤1:在衬底上生长一层抗腐蚀的电热绝缘材料层和基底材料层;Step 1: growing a layer of anti-corrosion electric thermal insulation material layer and base material layer on the substrate;

步骤2:用光刻和干法刻蚀的方法去除基底材料层的四边,形成图形作为制备侧墙的基底;Step 2: remove the four sides of the base material layer by photolithography and dry etching, and form a pattern as the base for preparing side walls;

步骤3:在该电热绝缘材料层的上面和基底材料层的表面及侧面淀积侧墙材料层;Step 3: Depositing a side wall material layer on the upper surface of the electrothermal insulating material layer and the surface and side of the base material layer;

步骤4:采用干法回刻,去除基底材料层上表面的和电热绝缘材料层表面的侧墙材料层,将形成高和宽均为纳米尺寸的侧墙;Step 4: using a dry method to etch back, remove the side wall material layer on the upper surface of the base material layer and the surface of the electrothermal insulation material layer, and form a side wall with a height and a width of nanometer size;

步骤5:用湿法腐蚀的方法去除基底材料层,只保留纳米尺寸的侧墙;Step 5: Remove the base material layer by wet etching, leaving only the nano-sized sidewalls;

步骤6:采用薄膜淀积+光刻+干法刻蚀工艺在该侧墙材料层的一条边上搭上一条制作纳流管道的抗腐蚀绝缘材料层;Step 6: using thin film deposition + photolithography + dry etching process to build a corrosion-resistant insulating material layer on one side of the side wall material layer for making nano flow pipes;

步骤7:再用光刻或电子束光刻+薄膜淀积+剥离工艺在抗腐蚀绝缘材料层上搭上一条制作栅电极的抗腐蚀的金属层;Step 7: use photolithography or electron beam lithography + thin film deposition + stripping process to build a corrosion-resistant metal layer for making gate electrodes on the corrosion-resistant insulating material layer;

步骤8:然后用湿法腐蚀的方法去除侧墙材料层,保留抗腐蚀绝缘材料层和抗腐蚀的金属层,形成一纳流管道,在管道中注入纳流体;Step 8: Then use wet etching to remove the sidewall material layer, retain the corrosion-resistant insulating material layer and the corrosion-resistant metal layer to form a nanoflow pipeline, and inject nanofluid into the pipeline;

步骤9:钝化并在管道两端和金属层上方开孔,引出三端电极即形成纳流体晶体管,完成纳流体晶体管的制备。Step 9: passivating and opening holes at both ends of the pipe and above the metal layer, leading out three-terminal electrodes to form a nanofluid transistor, and completing the preparation of the nanofluid transistor.

本发明另一技术方案一种纳流体晶体管的制备方法,包括如下步骤:Another technical solution of the present invention is a method for preparing a nanofluid transistor, comprising the following steps:

步骤1:在衬底上生长一层抗腐蚀的电热绝缘材料层和基底材料层;Step 1: growing a layer of anti-corrosion electric thermal insulation material layer and base material layer on the substrate;

步骤2:用光刻和干法刻蚀的方法去除基底材料层的四边,形成图形作为制备侧墙的基底;Step 2: remove the four sides of the base material layer by photolithography and dry etching, and form a pattern as the base for preparing side walls;

步骤3:在该电热绝缘材料层的上面和基底材料层的表面及侧面淀积侧墙材料层;Step 3: Depositing a side wall material layer on the upper surface of the electrothermal insulating material layer and the surface and side of the base material layer;

步骤4:采用干法回刻,去除基底材料层上表面的和电热绝缘材料层表面的侧墙材料层,将形成高和宽均为纳米尺寸的侧墙;Step 4: using a dry method to etch back, remove the side wall material layer on the upper surface of the base material layer and the surface of the electrothermal insulation material layer, and form a side wall with a height and a width of nanometer size;

步骤5:用湿法腐蚀的方法去除基底材料层,只保留纳米尺寸的侧墙;Step 5: Remove the base material layer by wet etching, leaving only the nano-sized sidewalls;

步骤6:采用薄膜淀积+光刻+干法刻蚀工艺在该侧墙材料层的一条边上搭上一条制作纳流管道的抗腐蚀绝缘材料层;Step 6: using thin film deposition + photolithography + dry etching process to build a corrosion-resistant insulating material layer on one side of the side wall material layer for making nano flow pipes;

步骤7:再用光刻或电子束光刻+薄膜淀积+剥离工艺在抗腐蚀绝缘材料层上搭上一条制作栅电极的抗腐蚀的金属层;Step 7: use photolithography or electron beam lithography + thin film deposition + stripping process to build a corrosion-resistant metal layer for making gate electrodes on the corrosion-resistant insulating material layer;

步骤8:然后用湿法腐蚀的方法去除侧墙材料层,保留抗腐蚀绝缘材料层和抗腐蚀的金属层,形成一纳流管道,在管道中注入纳流体;Step 8: Then use wet etching to remove the sidewall material layer, retain the corrosion-resistant insulating material layer and the corrosion-resistant metal layer to form a nanoflow pipeline, and inject nanofluid into the pipeline;

步骤9:钝化并在管道两端和金属层上方开孔,引出三端电极即形成纳流体晶体管,完成纳流体晶体管的制备。Step 9: passivating and opening holes at both ends of the pipe and above the metal layer, leading out three-terminal electrodes to form a nanofluid transistor, and completing the preparation of the nanofluid transistor.

从上述技术方案可以看出,本发明具有以下有益效果:As can be seen from the foregoing technical solutions, the present invention has the following beneficial effects:

本发明提供的这种纳流体晶体管的制备方法,采用薄膜工艺、光刻剥离工艺、光刻干法刻蚀工艺、湿法刻蚀工艺和侧墙工艺制备了纳流体晶体管。这种纳流体晶体管的制备方法的特点在于:结构简单,制备方便,沟道尺寸小,尽量避免使用电子束曝光(EBL),聚焦离子束曝光(FIB)等技术,大大降低了成本,集成度大幅度的提高,同时突破光刻分辨率限制及提高了制备纳流体晶体管的效率等。The preparation method of the nanofluid transistor provided by the present invention adopts a thin film process, a photolithography stripping process, a photolithography dry etching process, a wet etching process and a sidewall process to prepare the nanofluid transistor. The characteristics of the preparation method of this nanofluid transistor are: simple structure, convenient preparation, small channel size, avoiding the use of electron beam exposure (EBL), focused ion beam exposure (FIB) and other technologies, greatly reducing the cost and integration It has been greatly improved, and at the same time, it has broken through the limitation of lithography resolution and improved the efficiency of preparing nanofluid transistors.

附图说明Description of drawings

为进一步描述本发明的具体技术内容,以下结合实施例及附图详细说明如后,其中:In order to further describe the specific technical content of the present invention, the following detailed description is as follows in conjunction with the embodiments and accompanying drawings, wherein:

图1是本发明提供的制备纳流体晶体管的方法方案一的流程图;Fig. 1 is the flow chart of the method scheme 1 of preparing nanofluid transistor provided by the present invention;

图2-图8是方案一制备纳流体晶体管的结构示意图。2-8 are structural schematic diagrams of preparing nanofluidic transistors in Scheme 1.

图9是本发明提供的制备纳流体晶体管的方法方案二的流程图;Fig. 9 is a flowchart of the second method of preparing a nanofluid transistor provided by the present invention;

图10-图16是方案二制备纳流体晶体管的结构示意图。10-16 are structural schematic diagrams of preparing nanofluidic transistors in Scheme 2.

具体实施方式Detailed ways

实施例一Embodiment one

请参阅图1至图8所示,本发明一种纳流体晶体管的制备方法,包括如下步骤:Please refer to Fig. 1 to Fig. 8, a preparation method of a nanofluid transistor of the present invention comprises the following steps:

步骤1:在衬底101上生长一层抗腐蚀的电热绝缘材料层102和基底材料层103;所述的电热绝缘材料102,可以是氧化物、氮化物、硫化物或者是由氧化物、氮化物、硫化物中的至少两种构成的混合物中的任一种;所述在衬底上生长一层电热绝缘材料102,可以是采用溅射法、蒸发法、等离子体辅助淀积法、化学气相淀积法、金属有机物热分解法、激光辅助淀积法和热氧化方法中的一种实现的;所述电热绝缘材料102,对于步骤5中湿法去除基底材料层103和步骤8中湿法去除侧墙材料层104时使用的腐蚀液均具抗腐蚀性;其中所述的基底材料层103,可以是氧化物、氮化物、硫化物或者是由氧化物、氮化物、硫化物中的至少两种构成的混合物中的任一种;所述淀积一层基底材料层103,可以是采用溅射法、蒸发法、等离子体辅助淀积法、化学气相淀积法、金属有机物热分解法、激光辅助淀积法和热氧化方法中的一种实现的(图2a及图2b);Step 1: grow a corrosion-resistant electrothermal insulating material layer 102 and base material layer 103 on the substrate 101; the electrothermal insulating material 102 can be oxide, nitride, sulfide or be made of oxide, nitrogen any one of mixtures of at least two of compound and sulfide; the growth of a layer of electrothermal insulating material 102 on the substrate can be by sputtering, evaporation, plasma-assisted deposition, chemical One of vapor deposition method, metal-organic thermal decomposition method, laser-assisted deposition method and thermal oxidation method is realized; the electric thermal insulation material 102, for the wet removal of the base material layer 103 in step 5 and the wet removal method in step 8 The etchant used when removing the side wall material layer 104 by the method has corrosion resistance; wherein the base material layer 103 can be oxide, nitride, sulfide or be made of oxide, nitride, sulfide Any one of at least two kinds of mixtures; the deposition of a layer of base material layer 103 may be by sputtering, evaporation, plasma-assisted deposition, chemical vapor deposition, metal-organic thermal decomposition (Fig. 2a and Fig. 2b);

步骤2:用光刻和干法刻蚀的方法去除基底材料层103的四边,形成图形作为制备侧墙的基底(图2a及图2b);Step 2: remove the four sides of the base material layer 103 by photolithography and dry etching, and form a pattern as the base for preparing sidewalls (Fig. 2a and Fig. 2b);

步骤3:在该电热绝缘材料层102的上面和基底材料层103的表面淀积侧墙材料层104;其中所述的侧墙材料层104,可以是氧化物、氮化物、硫化物或者是由氧化物、氮化物、硫化物中的至少两种构成的混合物中的任一种;所述淀积一层侧墙材料层104,可以是采用溅射法、蒸发法、等离子体辅助淀积法、化学气相淀积法、金属有机物热分解法、激光辅助淀积法和热氧化方法中的一种实现的;所述的侧墙材料层104,对于步骤5中去除基底材料层103时使用的腐蚀液具有抗腐蚀性(图3a及图3b);Step 3: Deposit a sidewall material layer 104 on the surface of the electrothermal insulation material layer 102 and the base material layer 103; wherein the sidewall material layer 104 can be oxide, nitride, sulfide or made of Any one of a mixture of at least two of oxides, nitrides, and sulfides; the deposition of a layer of sidewall material layer 104 may be by sputtering, evaporation, or plasma-assisted deposition , chemical vapor deposition, metal-organic thermal decomposition, laser-assisted deposition and thermal oxidation; the sidewall material layer 104 is used when removing the base material layer 103 in step 5 Corrosive solution has corrosion resistance (Figure 3a and Figure 3b);

步骤4:采用干法回刻,去除基底材料层103上表面的和电热绝缘材料层102表面的侧墙材料层104,将形成高和宽均为纳米尺寸的侧墙(图4a及图4b);Step 4: Using dry etching back, remove the upper surface of the base material layer 103 and the sidewall material layer 104 on the surface of the electrical insulation material layer 102, and form a sidewall with a height and a width of nanometer size (Figure 4a and Figure 4b) ;

步骤5:用湿法腐蚀的方法去除基底材料层103,只保留纳米尺寸的侧墙;其中的腐蚀液可以是HF酸、TMAH溶液、热浓磷酸等中的一种(图5a及图5b)。Step 5: The base material layer 103 is removed by wet etching, and only nanometer-sized sidewalls are retained; the etching solution can be one of HF acid, TMAH solution, hot concentrated phosphoric acid, etc. (Fig. 5a and Fig. 5b) .

步骤6:采用薄膜淀积+光刻+干法刻蚀工艺在该侧墙材料层104的一条边上搭上一条制作纳流管道的抗腐蚀绝缘材料层106;所述的抗腐蚀材料层106,对于步骤8中去除侧墙材料层104时使用的腐蚀液具有抗腐蚀性;所述抗腐蚀材料层106,可以是金属或氧化物、氮化物、硫化物或者是由氧化物、氮化物、硫化物中的至少两种构成的混合物中的任一种;所述淀积抗腐蚀材料层106,可以是采用溅射法、蒸发法、等离子体辅助淀积法、化学气相淀积法、金属有机物热分解法、激光辅助淀积法和热氧化方法中的一种实现的(图6a及图6b);Step 6: using thin film deposition + photolithography + dry etching process to build a corrosion-resistant insulating material layer 106 on one side of the sidewall material layer 104 for making nano-flow pipes; the corrosion-resistant material layer 106 , the etching solution used when removing the sidewall material layer 104 in step 8 has corrosion resistance; the corrosion-resistant material layer 106 can be metal or oxide, nitride, sulfide or be made of oxide, nitride, Any one of the mixture of at least two kinds of sulfides; the deposition of the anti-corrosion material layer 106 can be by sputtering, evaporation, plasma-assisted deposition, chemical vapor deposition, metal Realized by one of organic thermal decomposition method, laser assisted deposition method and thermal oxidation method (Figure 6a and Figure 6b);

步骤7:再用光刻或电子束光刻+薄膜淀积+剥离工艺在抗腐蚀绝缘材料层106上搭上一条制作栅电极的抗腐蚀的金属层105;所述的抗腐蚀的金属层105,对于步骤8中去除侧墙材料层104时使用的腐蚀液具有抗腐蚀性;所述抗腐蚀的金属层105,可以是钨、镍、铜、银、金或铂中的任一种;所述抗腐蚀的金属层105,可以是采用溅射法、蒸发法和化学气相淀积法中的一种制备的(图7a及图7b);Step 7: use photolithography or electron beam lithography+film deposition+stripping process to build a corrosion-resistant metal layer 105 for gate electrode on the corrosion-resistant insulating material layer 106; the corrosion-resistant metal layer 105 , the corrosion solution used when removing the sidewall material layer 104 in step 8 has corrosion resistance; the corrosion-resistant metal layer 105 can be any one of tungsten, nickel, copper, silver, gold or platinum; The anti-corrosion metal layer 105 can be prepared by one of sputtering, evaporation and chemical vapor deposition (Fig. 7a and Fig. 7b);

步骤8:最后用湿法腐蚀的方法去除侧墙材料层104,保留抗腐蚀绝缘材料层106和抗腐蚀的金属层105,形成一纳流管道,在管道中注入纳流体;其中的腐蚀液可以是HF酸、TMAH溶液、热浓磷酸等中的一种(图8a及图8b);Step 8: Finally, the side wall material layer 104 is removed by wet etching, and the anti-corrosion insulating material layer 106 and the anti-corrosion metal layer 105 are retained to form a nanoflow pipeline, and the nanofluid is injected into the pipeline; the corrosive solution therein can be It is one of HF acid, TMAH solution, hot concentrated phosphoric acid, etc. (Figure 8a and Figure 8b);

步骤9:在管道两端引出电极即形成纳流体晶体管,完成纳流体晶体管的制备(图8a及图8b)。Step 9: Lead out the electrodes at both ends of the pipe to form a nanofluid transistor, and complete the preparation of the nanofluid transistor (FIG. 8a and FIG. 8b).

本发明提供的纳流体晶体管的制备方法,基于侧墙工艺和湿法腐蚀工艺,从而突破光刻分辨率限制并提高纳流体晶体管的制备效率。以下为具体实施例。The preparation method of the nanofluid transistor provided by the present invention is based on a sidewall process and a wet etching process, so as to break through the limitation of photolithographic resolution and improve the preparation efficiency of the nanofluid transistor. The following are specific examples.

实施例:Example:

1、采用单晶硅片、SOI片等半导体或者绝缘材料作为衬底101;1. Using semiconductor or insulating materials such as monocrystalline silicon wafers and SOI wafers as the substrate 101;

2、采用薄膜制备工艺,在衬底上制备氮化硅作为电热绝缘层102和多晶硅作为基底材料层103;2. Using a thin film preparation process, silicon nitride is prepared on the substrate as the electrothermal insulation layer 102 and polysilicon is used as the base material layer 103;

3、用光刻和干法刻蚀的方法去除基底材料层103的四边,形成图形作为制备侧墙的基底;3. Remove the four sides of the base material layer 103 by photolithography and dry etching to form a pattern as the base for preparing side walls;

4、在该电热绝缘材料层102的上面和基底材料层103的表面及侧面淀积SiO2作为侧墙材料层104;4. Deposit SiO 2 on the surface and side surfaces of the electrothermal insulating material layer 102 and the base material layer 103 as the side wall material layer 104;

5、采用干法回刻,去除基底材料层103上表面的和电热绝缘材料层102表面的侧墙材料层104,将形成高和宽均为纳米尺寸的SiO2侧墙;5. Use dry method to etch back, remove the side wall material layer 104 on the upper surface of the base material layer 103 and the surface of the electric thermal insulation material layer 102, and form a SiO2 side wall with a height and a width of nanometer size;

6、用恒温TMAH溶液漂去侧墙基底103(恒温TMAH溶液对衬底氮化硅和侧墙二氧化硅的刻蚀选择比很高),TMAH溶液的温度恒定在50-90℃中的某一值,只保留纳米尺寸的侧墙;6. Rinse off the side wall substrate 103 with a constant temperature TMAH solution (the constant temperature TMAH solution has a high etching selectivity ratio to the substrate silicon nitride and side wall silicon dioxide), and the temperature of the TMAH solution is constant at a certain temperature in the range of 50-90°C. One value, only nano-sized sidewalls are kept;

7、采用薄膜淀积+光刻+干法刻蚀工艺在该侧墙材料层104的一条边上搭上一条制作纳流管道的氮化硅106;7. Using thin film deposition + photolithography + dry etching process to build a silicon nitride 106 on one side of the sidewall material layer 104 to make a nanoflow channel;

8、再用光刻或电子束光刻+薄膜淀积+剥离工艺在氮化硅纳流管道106上搭上一条制作栅电极的钨金属105;8. Put a tungsten metal 105 for gate electrode on the silicon nitride nanoflow pipeline 106 by photolithography or electron beam lithography+film deposition+lift-off process;

9、然后用稀释的氢氟酸去除SiO2侧墙材料层104,保留氮化硅纳流管道106和钨金属层105,形成一纳流管道,在管道中注入纳流体;9. Then use diluted hydrofluoric acid to remove the SiO2 side wall material layer 104, retain the silicon nitride nano-flow pipeline 106 and the tungsten metal layer 105, form a nano-flow pipeline, and inject the nano-fluid into the pipeline;

10、钝化并在管道两端和钨金属层105上方开孔,引出三端电极即形成纳流体晶体管,完成纳流体晶体管的制备。10. Passivate and open holes at both ends of the pipe and above the tungsten metal layer 105, and lead out three-terminal electrodes to form a nanofluid transistor, and complete the preparation of the nanofluid transistor.

实施例二Embodiment two

请参阅图9至图16所示,本发明一种纳流体晶体管的制备方法,包括如下步骤:Please refer to FIG. 9 to FIG. 16, a method for preparing a nanofluid transistor of the present invention includes the following steps:

步骤1’:在衬底101’上生长一层抗腐蚀的电热绝缘材料层102’和基底材料层103’;所述的电热绝缘材料102’,可以是氧化物、氮化物、硫化物或者是由氧化物、氮化物、硫化物中的至少两种构成的混合物中的任一种;所述在衬底上生长一层电热绝缘材料102’,可以是采用溅射法、蒸发法、等离子体辅助淀积法、化学气相淀积法、金属有机物热分解法、激光辅助淀积法和热氧化方法中的一种实现的;所述电热绝缘材料102’,对于步骤5’中湿法去除基底材料层103’和步骤8’中湿法去除侧墙材料层104’时使用的腐蚀液均具抗腐蚀性;其中所述的基底材料层103’,可以是氧化物、氮化物、硫化物或者是由氧化物、氮化物、硫化物中的至少两种构成的混合物中的任一种;所述淀积一层基底材料层103’,可以是采用溅射法、蒸发法、等离子体辅助淀积法、化学气相淀积法、金属有机物热分解法、激光辅助淀积法和热氧化方法中的一种实现的(图10a及图10b);Step 1': growing a layer of corrosion-resistant electrical and thermal insulation material layer 102' and base material layer 103' on the substrate 101'; the electrical and thermal insulation material 102' can be oxide, nitride, sulfide or Any one of mixtures composed of at least two of oxides, nitrides, and sulfides; the growth of a layer of electrothermal insulating material 102' on the substrate can be done by sputtering, evaporation, or plasma It is realized by one of assisted deposition method, chemical vapor deposition method, metal organic compound thermal decomposition method, laser assisted deposition method and thermal oxidation method; the electrothermal insulating material 102' is used for removing the substrate by wet method in step 5' The material layer 103' and the etching solution used for wet removal of the side wall material layer 104' in step 8' are all corrosion-resistant; wherein the base material layer 103' can be oxide, nitride, sulfide or It is any one of mixtures composed of at least two of oxides, nitrides, and sulfides; the deposition of a layer of base material layer 103' can be done by sputtering, evaporation, or plasma-assisted deposition. One of deposition method, chemical vapor deposition method, metal organic compound thermal decomposition method, laser assisted deposition method and thermal oxidation method is realized (Fig. 10a and Fig. 10b);

步骤2’:用光刻和于法刻蚀的方法去除基底材料层103’的四边,形成图形作为制备侧墙的基底(图10a及图10b);Step 2': remove the four sides of the base material layer 103' by photolithography and etching, and form a pattern as the base for preparing sidewalls (Figure 10a and Figure 10b);

步骤3’:在该电热绝缘材料层102’的上面和基底材料层103’的表面淀积侧墙材料层104’;其中所述的侧墙材料层104’,可以是氧化物、氮化物、硫化物或者是由氧化物、氮化物、硫化物中的至少两种构成的混合物中的任一种;所述淀积一层侧墙材料层104’,可以是采用溅射法、蒸发法、等离子体辅助淀积法、化学气相淀积法、金属有机物热分解法、激光辅助淀积法和热氧化方法中的一种实现的;所述的侧墙材料层104’,对于步骤5’中去除基底材料层103’时使用的腐蚀液具有抗腐蚀性(图11a及图11b);Step 3': Deposit a sidewall material layer 104' on the surface of the electrothermal insulating material layer 102' and the surface of the base material layer 103'; wherein the sidewall material layer 104' can be oxide, nitride, Sulfide or any one of a mixture of at least two of oxides, nitrides, and sulfides; the deposition of a layer of sidewall material layer 104' can be done by sputtering, evaporation, Realized by one of the plasma-assisted deposition method, chemical vapor deposition method, metal-organic thermal decomposition method, laser-assisted deposition method and thermal oxidation method; the side wall material layer 104', for step 5' The etchant used when removing the base material layer 103' has corrosion resistance (Fig. 11a and Fig. 11b);

步骤4’:采用干法回刻,去除基底材料层103’上表面的和电热绝缘材料层102’表面的侧墙材料层104’,将形成高和宽均为纳米尺寸的侧墙(图12a及图12b);Step 4': use dry method to etch back, remove the side wall material layer 104' on the upper surface of the base material layer 103' and the surface of the electric insulation material layer 102', and form a side wall with a height and a width of nanometer size (Fig. 12a and Figure 12b);

步骤5’:用湿法腐蚀的方法去除基底材料层103’,只保留纳米尺寸的侧墙;其中的腐蚀液可以是HF酸、TMAH溶液、热浓磷酸等中的一种(图13a及图13b);Step 5': remove the base material layer 103' by wet etching, and only keep the nanometer-sized side walls; the etching solution can be one of HF acid, TMAH solution, hot concentrated phosphoric acid, etc. (Figure 13a and 13b);

步骤6’:采用薄膜淀积+光刻+干法刻蚀工艺在该侧墙材料层104’的一条边上搭上一条制作纳流管道的抗腐蚀绝缘材料层106’;所述的抗腐蚀材料层106’,对于步骤7’中去除侧墙材料层104’时使用的腐蚀液具有抗腐蚀性;所述抗腐蚀材料层106’,可以是金属或氧化物、氮化物、硫化物或者是由氧化物、氮化物、硫化物中的至少两种构成的混合物中的任一种;所述淀积抗腐蚀材料层106’,可以是采用溅射法、蒸发法、等离子体辅助淀积法、化学气相淀积法、金属有机物热分解法、激光辅助淀积法和热氧化方法中的一种实现的(图14a及图14b);Step 6': use thin film deposition + photolithography + dry etching process to build a corrosion-resistant insulating material layer 106' on one side of the side wall material layer 104'; The material layer 106' has corrosion resistance to the corrosion solution used when removing the sidewall material layer 104' in step 7'; the corrosion-resistant material layer 106' can be metal or oxide, nitride, sulfide or Any one of mixtures composed of at least two of oxides, nitrides, and sulfides; the deposition of the anti-corrosion material layer 106' may be by sputtering, evaporation, or plasma-assisted deposition , chemical vapor deposition, metal-organic compound thermal decomposition, laser-assisted deposition and thermal oxidation (Fig. 14a and Fig. 14b);

步骤7’:用湿法腐蚀的方法去除侧墙材料层104’,保留抗腐蚀绝缘材料层106’,形成一纳流管道;其中的腐蚀液可以是HF酸、TMAH溶液、热浓磷酸等中的一种(图15a及图15b)。Step 7': Remove the sidewall material layer 104' by wet etching, retain the corrosion-resistant insulating material layer 106', and form a nanoflow pipeline; the etching solution can be HF acid, TMAH solution, hot concentrated phosphoric acid, etc. A kind of (Fig. 15a and Fig. 15b).

步骤8’:然后再用光刻或电子束光刻+薄膜淀积+剥离工艺在抗腐蚀绝缘材料层106’上搭上一条制作栅电极的抗腐蚀的金属层105’,并在管道中注入纳流体;所述抗腐蚀的金属层105’,可以是钨、镍、铜、银、金或铂中的任一种;所述抗腐蚀的金属层105’,可以是采用溅射法、蒸发法和化学气相淀积法中的一种制备的(图16a及图16b);Step 8': Then use photolithography or electron beam lithography + thin film deposition + stripping process to build a corrosion-resistant metal layer 105' for gate electrode on the corrosion-resistant insulating material layer 106', and inject it into the pipeline Nanofluid; the anti-corrosion metal layer 105' can be any one of tungsten, nickel, copper, silver, gold or platinum; the anti-corrosion metal layer 105' can be sputtering, evaporation prepared by one of method and chemical vapor deposition method (Fig. 16a and Fig. 16b);

步骤9’:在管道两端引出电极即形成纳流体晶体管,完成纳流体晶体管的制备(图16a及图16b)。Step 9': Lead out the electrodes at both ends of the pipeline to form a nanofluid transistor, and complete the preparation of the nanofluid transistor (Fig. 16a and Fig. 16b).

本发明提供的纳流体晶体管的制备方法,基于侧墙工艺和湿法腐蚀工艺,从而突破光刻分辨率限制并提高纳流体晶体管的制备效率。以下为实施例二的具体实施例。The preparation method of the nanofluid transistor provided by the present invention is based on a sidewall process and a wet etching process, so as to break through the limitation of photolithographic resolution and improve the preparation efficiency of the nanofluid transistor. The following is the specific embodiment of the second embodiment.

实施例:Example:

1、采用单晶硅片、SOI片等半导体或者绝缘材料作为衬底101’;1. Use semiconductor or insulating materials such as monocrystalline silicon wafers and SOI wafers as the substrate 101';

2、采用薄膜制备工艺,在衬底上制备氮化硅作为电热绝缘层102’和多晶硅作为基底材料层103’;2. Using a thin film preparation process, silicon nitride is prepared on the substrate as the electrothermal insulation layer 102' and polysilicon is used as the base material layer 103';

3、用光刻和干法刻蚀的方法去除基底材料层103’的四边,形成图形作为制备侧墙的基底;3. Remove the four sides of the base material layer 103' by photolithography and dry etching to form a pattern as the base for preparing side walls;

4、在该电热绝缘材料层102’的上面和基底材料层103’的表面及侧面淀积SiO2作为侧墙材料层104’;4. Deposit SiO 2 on the surface and side surfaces of the electrical insulation material layer 102' and the base material layer 103' as the sidewall material layer 104';

5、采用干法回刻,去除基底材料层103’上表面的和电热绝缘材料层102’表面的侧墙材料层104’,将形成高和宽均为纳米尺寸的SiO2侧墙;5. Using dry etching back, remove the upper surface of the base material layer 103' and the sidewall material layer 104' on the surface of the electrothermal insulation material layer 102', and form SiO2 sidewalls with nanometer dimensions in both height and width;

6、用恒温TMAH溶液漂去侧墙基底103’(恒温TMAH溶液对衬底氮化硅和侧墙二氧化硅的刻蚀选择比很高),TMAH溶液的温度恒定在50-90℃中的某一值,只保留纳米尺寸的侧墙;6. Rinse off the side wall substrate 103' with a constant temperature TMAH solution (the constant temperature TMAH solution has a high etching selectivity ratio to substrate silicon nitride and side wall silicon dioxide), and the temperature of the TMAH solution is kept constant at 50-90°C A certain value, only nano-sized sidewalls are kept;

7、采用薄膜淀积+光刻+干法刻蚀工艺在该侧墙材料层104’的一条边上搭上一条制作纳流管道的氮化硅106’;7. Using thin film deposition + photolithography + dry etching process to build a silicon nitride 106' for making a nanoflow channel on one side of the sidewall material layer 104';

8、再用稀释的氢氟酸去除SiO2侧墙材料层104’,保留氮化硅纳流管道106’,形成一纳流管道;8. Removing the SiO2 side wall material layer 104' with diluted hydrofluoric acid, and retaining the silicon nitride nanoflow pipe 106' to form a nanoflow pipe;

9、然后用光刻或电子束光刻+薄膜淀积+剥离工艺在氮化硅纳流管道106’上搭上一条制作栅电极的钨金属105’,在管道中注入纳流体;9. Then use photolithography or electron beam lithography + thin film deposition + stripping process to put a tungsten metal 105' for gate electrode on the silicon nitride nanoflow pipeline 106', and inject nanofluid into the pipeline;

10、钝化并在管道两端和钨金属层105’上方开孔,引出三端电极即形成纳流体晶体管,完成纳流体晶体管的制备。10. Passivate and open holes at both ends of the pipe and above the tungsten metal layer 105', and lead out the three-terminal electrodes to form a nanofluid transistor, and complete the preparation of the nanofluid transistor.

以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在发明的保护范围之内。The specific embodiments described above have further described the purpose, technical solutions and beneficial effects of the present invention in detail. It should be understood that the above descriptions are only specific embodiments of the present invention and are not intended to limit the present invention. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present invention shall be included in the protection scope of the invention.

Claims (14)

1.一种纳流体晶体管的制备方法,包括如下步骤:1. A method for preparing a nanofluid transistor, comprising the steps of: 步骤1:在衬底上生长一层抗腐蚀的电热绝缘材料层和基底材料层;Step 1: growing a layer of anti-corrosion electric thermal insulation material layer and base material layer on the substrate; 步骤2:用光刻和干法刻蚀的方法去除基底材料层的四边,形成图形作为制备侧墙的基底;Step 2: remove the four sides of the base material layer by photolithography and dry etching, and form a pattern as the base for preparing side walls; 步骤3:在该电热绝缘材料层的上面和基底材料层的表面及侧面淀积侧墙材料层;Step 3: Depositing a side wall material layer on the upper surface of the electrothermal insulating material layer and the surface and side of the base material layer; 步骤4:采用干法回刻,去除基底材料层上表面的和电热绝缘材料层表面的侧墙材料层,将形成高和宽均为纳米尺寸的侧墙;Step 4: using a dry method to etch back, remove the side wall material layer on the upper surface of the base material layer and the surface of the electrothermal insulation material layer, and form a side wall with a height and a width of nanometer size; 步骤5:用湿法腐蚀的方法去除基底材料层,只保留纳米尺寸的侧墙;Step 5: Remove the base material layer by wet etching, leaving only the nano-sized sidewalls; 步骤6:采用薄膜淀积+光刻+干法刻蚀工艺在该侧墙材料层的一条边上搭上一条制作纳流管道的抗腐蚀绝缘材料层;Step 6: using thin film deposition + photolithography + dry etching process to build a corrosion-resistant insulating material layer on one side of the side wall material layer for making nano flow pipes; 步骤7:再用光刻或电子束光刻+薄膜淀积+剥离工艺在抗腐蚀绝缘材料层上搭上一条制作栅电极的抗腐蚀的金属层;Step 7: use photolithography or electron beam lithography + thin film deposition + stripping process to build a corrosion-resistant metal layer for making gate electrodes on the corrosion-resistant insulating material layer; 步骤8:然后用湿法腐蚀的方法去除侧墙材料层,保留抗腐蚀绝缘材料层和抗腐蚀的金属层,形成一纳流管道,在管道中注入纳流体;Step 8: Then use wet etching to remove the sidewall material layer, retain the corrosion-resistant insulating material layer and the corrosion-resistant metal layer to form a nanoflow pipeline, and inject nanofluid into the pipeline; 步骤9:钝化并在管道两端和金属层上方开孔,引出三端电极即形成纳流体晶体管,完成纳流体晶体管的制备。Step 9: passivating and opening holes at both ends of the pipe and above the metal layer, leading out three-terminal electrodes to form a nanofluid transistor, and completing the preparation of the nanofluid transistor. 2.根据权利要求1所述的纳流体晶体管的制备方法,其中所述电热绝缘材料层是氮化硅或SiO2;所述基底材料层是SiO2、氮化硅或多晶硅;所述侧墙材料层是SiO2、氮化硅或多晶硅;所述抗腐蚀金属层是钨、镍、铜、银、金或铂,所述抗腐蚀绝缘材料层是SiO2或氮化硅。2. the preparation method of nanofluid transistor according to claim 1, wherein said electrothermal insulating material layer is silicon nitride or SiO 2 ; Described base material layer is SiO 2 , silicon nitride or polycrystalline silicon; Described side wall The material layer is SiO 2 , silicon nitride or polysilicon; the corrosion-resistant metal layer is tungsten, nickel, copper, silver, gold or platinum, and the corrosion-resistant insulating material layer is SiO 2 or silicon nitride. 3.根据权利要求1所述的纳流体晶体管的制备方法,其中步骤1中所述衬底是半导体材料衬底或绝缘材料衬底。3. The method for preparing a nanofluid transistor according to claim 1, wherein the substrate in step 1 is a semiconductor material substrate or an insulating material substrate. 4.根据权利要求3所述的纳流体晶体管的制备方法,其中所述半导体材料衬底是硅片或SOI片,所述绝缘材料衬底是SiO2或玻璃。4. The method for preparing a nanofluid transistor according to claim 3, wherein the semiconductor material substrate is a silicon wafer or an SOI wafer, and the insulating material substrate is SiO 2 or glass. 5.根据权利要求1所述的纳流体晶体管的制备方法,其中所述基底材料层的厚度为20-2000nm。5. The method for preparing a nanofluidic transistor according to claim 1, wherein the thickness of the base material layer is 20-2000 nm. 6.根据权利要求1所述的纳流体晶体管的制备方法,其中所述侧墙材料层形成的侧墙的宽度为5-200nm。6 . The method for fabricating a nanofluidic transistor according to claim 1 , wherein the width of the sidewall formed by the sidewall material layer is 5-200 nm. 7.根据权利要求1所述的纳流体晶体管的制备方法,其中所述抗腐蚀材料层形成的纳米管道的宽度为5-200nm,高度为5-2000nm,长度为毫米量级。7 . The method for preparing a nanofluid transistor according to claim 1 , wherein the nanopipe formed by the anti-corrosion material layer has a width of 5-200 nm, a height of 5-2000 nm, and a length of the order of millimeters. 8.一种纳流体晶体管的制备方法,包括如下步骤:8. A method for preparing a nanofluid transistor, comprising the steps of: 步骤1:在衬底上生长一层抗腐蚀的电热绝缘材料层和基底材料层;Step 1: growing a layer of anti-corrosion electric thermal insulation material layer and base material layer on the substrate; 步骤2:用光刻和干法刻蚀的方法去除基底材料层的四边,形成图形作为制备侧墙的基底;Step 2: remove the four sides of the base material layer by photolithography and dry etching, and form a pattern as the base for preparing side walls; 步骤3:在该电热绝缘材料层的上面和基底材料层的表面及侧面淀积侧墙材料层;Step 3: Depositing a side wall material layer on the upper surface of the electrothermal insulating material layer and the surface and side of the base material layer; 步骤4:采用干法回刻,去除基底材料层上表面的和电热绝缘材料层表面的侧墙材料层,将形成高和宽均为纳米尺寸的侧墙;Step 4: using a dry method to etch back, remove the side wall material layer on the upper surface of the base material layer and the surface of the electrothermal insulation material layer, and form a side wall with a height and a width of nanometer size; 步骤5:用湿法腐蚀的方法去除基底材料层,只保留纳米尺寸的侧墙;Step 5: Remove the base material layer by wet etching, leaving only the nano-sized sidewalls; 步骤6:采用薄膜淀积+光刻+干法刻蚀工艺在该侧墙材料层的一条边上搭上一条制作纳流管道的抗腐蚀绝缘材料层;Step 6: using thin film deposition + photolithography + dry etching process to build a corrosion-resistant insulating material layer on one side of the side wall material layer for making nano flow pipes; 步骤7:用湿法腐蚀的方法去除侧墙材料层,保留抗腐蚀绝缘材料层,形成一纳流管道;Step 7: Remove the side wall material layer by wet etching, retain the anti-corrosion insulating material layer, and form a nanoflow pipe; 步骤8:然后再用光刻或电子束光刻+薄膜淀积+剥离工艺在抗腐蚀绝缘材料层上搭上一条制作栅电极的抗腐蚀的金属层,并在管道中注入纳流体;Step 8: Then use photolithography or electron beam lithography + thin film deposition + stripping process to build a corrosion-resistant metal layer for making gate electrodes on the corrosion-resistant insulating material layer, and inject sodium fluid into the pipeline; 步骤9:钝化并在管道两端和金属层上方开孔,引出三端电极即形成纳流体晶体管,完成纳流体晶体管的制备。Step 9: passivating and opening holes at both ends of the pipe and above the metal layer, leading out three-terminal electrodes to form a nanofluid transistor, and completing the preparation of the nanofluid transistor. 9.根据权利要求8所述的纳流体晶体管的制备方法,其中所述电热绝缘材料层是氮化硅或Si02;所述基底材料层是SiO2、氮化硅或多晶硅;所述侧墙材料层是SiO2、氮化硅或多晶硅;所述抗腐蚀金属层是钨、镍、铜、银、金或铂,所述抗腐蚀绝缘材料层是SiO2或氮化硅。9. The preparation method of nanofluidic transistor according to claim 8, wherein said electrothermal insulating material layer is silicon nitride or SiO 2 ; The base material layer is SiO 2 , silicon nitride or polysilicon; The material layer is SiO 2 , silicon nitride or polysilicon; the corrosion-resistant metal layer is tungsten, nickel, copper, silver, gold or platinum, and the corrosion-resistant insulating material layer is SiO 2 or silicon nitride. 10.根据权利要求8所述的纳流体晶体管的制备方法,其中步骤1中所述衬底是半导体材料衬底或绝缘材料衬底。10. The method for preparing a nanofluid transistor according to claim 8, wherein the substrate in step 1 is a semiconductor material substrate or an insulating material substrate. 11.根据权利要求10所述的纳流体晶体管的制备方法,其中所述半导体材料衬底是硅片或SOI片,所述绝缘材料衬底是SiO2或玻璃。11. The method for preparing a nanofluid transistor according to claim 10, wherein the semiconductor material substrate is a silicon wafer or an SOI wafer, and the insulating material substrate is SiO 2 or glass. 12.根据权利要求8所述的纳流体晶体管的制备方法,其中所述基底材料层的厚度为20-2000nm。12. The method for preparing a nanofluidic transistor according to claim 8, wherein the thickness of the base material layer is 20-2000 nm. 13.根据权利要求8所述的纳流体晶体管的制备方法,其中所述侧墙材料层形成的侧墙的宽度为5-200nm。13. The method for fabricating a nanofluidic transistor according to claim 8, wherein the width of the sidewall formed by the sidewall material layer is 5-200 nm. 14.根据权利要求8所述的纳流体晶体管的制备方法,其中所述抗腐蚀材料层形成的纳米管道的宽度为5-200nm,高度为5-2000nm,长度为毫米量级。14. The method for preparing a nanofluid transistor according to claim 8, wherein the nanopipe formed by the corrosion-resistant material layer has a width of 5-200 nm, a height of 5-2000 nm, and a length of the order of millimeters.
CN2009102370962A 2009-11-04 2009-11-04 Preparation method of nanofluid transistor Expired - Fee Related CN102054691B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009102370962A CN102054691B (en) 2009-11-04 2009-11-04 Preparation method of nanofluid transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2009102370962A CN102054691B (en) 2009-11-04 2009-11-04 Preparation method of nanofluid transistor

Publications (2)

Publication Number Publication Date
CN102054691A true CN102054691A (en) 2011-05-11
CN102054691B CN102054691B (en) 2012-02-22

Family

ID=43958886

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009102370962A Expired - Fee Related CN102054691B (en) 2009-11-04 2009-11-04 Preparation method of nanofluid transistor

Country Status (1)

Country Link
CN (1) CN102054691B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104190484A (en) * 2014-09-16 2014-12-10 山东华芯半导体有限公司 Preparation method of chip unit suitable for biomolecule detection
CN104190483A (en) * 2014-09-16 2014-12-10 山东华芯半导体有限公司 Preparation method of chip unit for biomolecular detection

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1341546A (en) * 2001-09-07 2002-03-27 清华大学 Graphic-arts technique method of metal layer on wafer with thick layer structure
CN101183690B (en) * 2007-12-13 2012-10-10 上海集成电路研发中心有限公司 Infrared detector and method of producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104190484A (en) * 2014-09-16 2014-12-10 山东华芯半导体有限公司 Preparation method of chip unit suitable for biomolecule detection
CN104190483A (en) * 2014-09-16 2014-12-10 山东华芯半导体有限公司 Preparation method of chip unit for biomolecular detection
CN104190483B (en) * 2014-09-16 2015-12-30 山东华芯半导体有限公司 A kind of preparation method of the chip unit for biomolecule detection

Also Published As

Publication number Publication date
CN102054691B (en) 2012-02-22

Similar Documents

Publication Publication Date Title
CN100580876C (en) A method for selectively etching silicon nanowires
US8071983B2 (en) Semiconductor device structures and methods of forming semiconductor structures
CN102214586B (en) A kind of preparation method of silicon nanowire field effect transistor
CN101920932A (en) Method for making electrodes with nanometer-sized spacing
CN102315831B (en) Preparation method for nano-electromechanical resonator based on graphene
US20120107562A1 (en) Methods for graphene-assisted fabrication of micro-and nanoscale structures and devices featuring the same
CN102086024B (en) Preparation method of silicon nanowire
CN102034745A (en) Display device and method of manufacturing the same
CN112259609B (en) Method for manufacturing carbon nanotube transistor device by corrosion self-alignment process
CN102447061A (en) Preparation method of high-speed low-power-consumption phase change memory
CN101499406B (en) A method for fabricating silicide nanostructures on an insulating substrate
CN101452963A (en) Metal nanocrystal floating gate non-volatile memory and manufacturing method thereof
CN100517065C (en) A kind of wet etching solution for making phase change memory and its wet etching process
CN105006482B (en) A kind of preparation method of graphene field effect transistor
CN100474522C (en) Silicon chip surface pattern etching method and silicon chip thereof
CN101764195B (en) Method for manufacturing nano-sized phase change memory
CN102054691A (en) Preparation method of nano-fluid transistor
CN102050427B (en) Preparation method of nano-fluid testing device
Yoon et al. Facile and clean release of vertical Si nanowires by wet chemical etching based on alkali hydroxides
CN101723312A (en) Method for preparing tri-dimension-limited crystal-facet-dependent silicon nanostructures
CN102623307B (en) A general self-alignment preparation method of fully confined quantum dots among various materials
CN102593356B (en) Preparation method of horizontal phase change storage irrelevant to photoetching resolution ratio
CN102229421B (en) The preparation method of nano thread structure
CN103489754B (en) Preparation method of small-size silver nanoparticles
CN101764197B (en) Method for manufacturing nano-sized phase change memory

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120222

Termination date: 20121104