CN102010297A - Method for chiral synthesis of levorotatory menthol - Google Patents
Method for chiral synthesis of levorotatory menthol Download PDFInfo
- Publication number
- CN102010297A CN102010297A CN2010105549074A CN201010554907A CN102010297A CN 102010297 A CN102010297 A CN 102010297A CN 2010105549074 A CN2010105549074 A CN 2010105549074A CN 201010554907 A CN201010554907 A CN 201010554907A CN 102010297 A CN102010297 A CN 102010297A
- Authority
- CN
- China
- Prior art keywords
- handed
- menthol
- chirality
- synthetic
- catalyst
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- NOOLISFMXDJSKH-UHFFFAOYSA-N DL-menthol Natural products CC(C)C1CCC(C)CC1O NOOLISFMXDJSKH-UHFFFAOYSA-N 0.000 title claims abstract description 67
- 229940041616 menthol Drugs 0.000 title claims abstract description 64
- 238000000034 method Methods 0.000 title claims abstract description 29
- NOOLISFMXDJSKH-UTLUCORTSA-N (+)-Neomenthol Chemical compound CC(C)[C@@H]1CC[C@@H](C)C[C@@H]1O NOOLISFMXDJSKH-UTLUCORTSA-N 0.000 title claims abstract 20
- 238000003786 synthesis reaction Methods 0.000 title abstract description 8
- 230000015572 biosynthetic process Effects 0.000 title abstract description 6
- 239000003054 catalyst Substances 0.000 claims abstract description 44
- 239000010948 rhodium Substances 0.000 claims abstract description 44
- NZGWDASTMWDZIW-MRVPVSSYSA-N (+)-pulegone Chemical compound C[C@@H]1CCC(=C(C)C)C(=O)C1 NZGWDASTMWDZIW-MRVPVSSYSA-N 0.000 claims abstract description 18
- NZGWDASTMWDZIW-UHFFFAOYSA-N Pulegone Natural products CC1CCC(=C(C)C)C(=O)C1 NZGWDASTMWDZIW-UHFFFAOYSA-N 0.000 claims abstract description 17
- USMNOWBWPHYOEA-UHFFFAOYSA-N alpha-thujone Natural products CC1C(=O)CC2(C(C)C)C1C2 USMNOWBWPHYOEA-UHFFFAOYSA-N 0.000 claims abstract description 17
- 229930007459 p-menth-8-en-3-one Natural products 0.000 claims abstract description 17
- 229910052703 rhodium Inorganic materials 0.000 claims abstract description 17
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 claims abstract description 17
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 claims abstract description 16
- 229910052707 ruthenium Inorganic materials 0.000 claims abstract description 16
- 238000009903 catalytic hydrogenation reaction Methods 0.000 claims abstract description 12
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical group C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 claims description 66
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 claims description 33
- YSTPAHQEHQSRJD-UHFFFAOYSA-N 3-Carvomenthenone Chemical compound CC(C)C1CCC(C)=CC1=O YSTPAHQEHQSRJD-UHFFFAOYSA-N 0.000 claims description 23
- KMPWYEUPVWOPIM-UHFFFAOYSA-N cinchonidine Natural products C1=CC=C2C(C(C3N4CCC(C(C4)C=C)C3)O)=CC=NC2=C1 KMPWYEUPVWOPIM-UHFFFAOYSA-N 0.000 claims description 23
- 229930006968 piperitone Natural products 0.000 claims description 23
- IOPQYDKQISFMJI-UHFFFAOYSA-N [1-[2-bis(4-methylphenyl)phosphanylnaphthalen-1-yl]naphthalen-2-yl]-bis(4-methylphenyl)phosphane Chemical compound C1=CC(C)=CC=C1P(C=1C(=C2C=CC=CC2=CC=1)C=1C2=CC=CC=C2C=CC=1P(C=1C=CC(C)=CC=1)C=1C=CC(C)=CC=1)C1=CC=C(C)C=C1 IOPQYDKQISFMJI-UHFFFAOYSA-N 0.000 claims description 19
- WDYGPMAMBXJESZ-SFHVURJKSA-N (2s)-1,1-bis(4-methoxyphenyl)-3-methylbutane-1,2-diamine Chemical compound C1=CC(OC)=CC=C1C(N)([C@@H](N)C(C)C)C1=CC=C(OC)C=C1 WDYGPMAMBXJESZ-SFHVURJKSA-N 0.000 claims description 16
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 16
- ZGKACHAOHYORST-UHFFFAOYSA-N [1-[2-bis(2,6-dimethylphenyl)phosphanylnaphthalen-1-yl]naphthalen-2-yl]-bis(2,6-dimethylphenyl)phosphane Chemical compound CC1=CC=CC(C)=C1P(C=1C(=CC=CC=1C)C)C1=CC=C(C=CC=C2)C2=C1C1=C(P(C=2C(=CC=CC=2C)C)C=2C(=CC=CC=2C)C)C=CC2=CC=CC=C12 ZGKACHAOHYORST-UHFFFAOYSA-N 0.000 claims description 15
- MUALRAIOVNYAIW-UHFFFAOYSA-N binap Chemical compound C1=CC=CC=C1P(C=1C(=C2C=CC=CC2=CC=1)C=1C2=CC=CC=C2C=CC=1P(C=1C=CC=CC=1)C=1C=CC=CC=1)C1=CC=CC=C1 MUALRAIOVNYAIW-UHFFFAOYSA-N 0.000 claims description 15
- 229910015892 BF 4 Inorganic materials 0.000 claims description 14
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 14
- 229910052739 hydrogen Inorganic materials 0.000 claims description 14
- 239000001257 hydrogen Substances 0.000 claims description 14
- 239000003446 ligand Substances 0.000 claims description 13
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 12
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 claims description 11
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 8
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 claims description 7
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 claims description 6
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 claims description 6
- 230000003197 catalytic effect Effects 0.000 claims description 6
- 239000002994 raw material Substances 0.000 claims description 6
- 125000000590 4-methylphenyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1*)C([H])([H])[H] 0.000 claims description 5
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 claims description 5
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Substances [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 claims description 5
- 229910020366 ClO 4 Inorganic materials 0.000 claims description 4
- 150000001412 amines Chemical class 0.000 claims description 4
- 229910052736 halogen Inorganic materials 0.000 claims description 4
- 150000002367 halogens Chemical class 0.000 claims description 4
- 239000012429 reaction media Substances 0.000 claims description 4
- 229910021115 PF 6 Inorganic materials 0.000 claims description 3
- 239000005922 Phosphane Substances 0.000 claims description 3
- 229910018286 SbF 6 Inorganic materials 0.000 claims description 3
- 229910052794 bromium Inorganic materials 0.000 claims description 3
- 150000004985 diamines Chemical class 0.000 claims description 3
- 229910000064 phosphane Inorganic materials 0.000 claims description 3
- 235000015320 potassium carbonate Nutrition 0.000 claims description 3
- LPNYRYFBWFDTMA-UHFFFAOYSA-N potassium tert-butoxide Chemical compound [K+].CC(C)(C)[O-] LPNYRYFBWFDTMA-UHFFFAOYSA-N 0.000 claims description 3
- WQKGAJDYBZOFSR-UHFFFAOYSA-N potassium;propan-2-olate Chemical compound [K+].CC(C)[O-] WQKGAJDYBZOFSR-UHFFFAOYSA-N 0.000 claims description 3
- 229910052801 chlorine Inorganic materials 0.000 claims description 2
- 229910052731 fluorine Inorganic materials 0.000 claims description 2
- 229910052740 iodine Inorganic materials 0.000 claims description 2
- 150000002500 ions Chemical class 0.000 claims description 2
- NFLGAXVYCFJBMK-RKDXNWHRSA-N (+)-isomenthone Natural products CC(C)[C@H]1CC[C@@H](C)CC1=O NFLGAXVYCFJBMK-RKDXNWHRSA-N 0.000 abstract description 8
- 238000005516 engineering process Methods 0.000 abstract description 8
- 230000000694 effects Effects 0.000 abstract description 7
- 238000011914 asymmetric synthesis Methods 0.000 abstract description 4
- 230000008569 process Effects 0.000 abstract description 4
- 230000002194 synthesizing effect Effects 0.000 abstract description 2
- NFLGAXVYCFJBMK-UHFFFAOYSA-N Menthone Chemical compound CC(C)C1CCC(C)CC1=O NFLGAXVYCFJBMK-UHFFFAOYSA-N 0.000 abstract 4
- 229930007503 menthone Natural products 0.000 abstract 4
- 238000009776 industrial production Methods 0.000 abstract 1
- 239000007858 starting material Substances 0.000 abstract 1
- NOOLISFMXDJSKH-KXUCPTDWSA-N (-)-Menthol Chemical compound CC(C)[C@@H]1CC[C@@H](C)C[C@H]1O NOOLISFMXDJSKH-KXUCPTDWSA-N 0.000 description 50
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 38
- 238000006243 chemical reaction Methods 0.000 description 36
- 238000003756 stirring Methods 0.000 description 32
- 239000000243 solution Substances 0.000 description 27
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 26
- 239000000047 product Substances 0.000 description 25
- 229910052757 nitrogen Inorganic materials 0.000 description 18
- 238000007872 degassing Methods 0.000 description 15
- 238000002360 preparation method Methods 0.000 description 14
- 239000007787 solid Substances 0.000 description 13
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 12
- 238000001556 precipitation Methods 0.000 description 11
- 238000000967 suction filtration Methods 0.000 description 10
- 238000004821 distillation Methods 0.000 description 9
- 239000000203 mixture Substances 0.000 description 9
- 238000004587 chromatography analysis Methods 0.000 description 8
- 230000006837 decompression Effects 0.000 description 8
- 238000006073 displacement reaction Methods 0.000 description 8
- 239000007789 gas Substances 0.000 description 8
- 238000009876 asymmetric hydrogenation reaction Methods 0.000 description 7
- 238000005984 hydrogenation reaction Methods 0.000 description 6
- 238000006555 catalytic reaction Methods 0.000 description 5
- 239000000706 filtrate Substances 0.000 description 5
- 239000011259 mixed solution Substances 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 4
- 239000012018 catalyst precursor Substances 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- GBMDVOWEEQVZKZ-UHFFFAOYSA-N methanol;hydrate Chemical compound O.OC GBMDVOWEEQVZKZ-UHFFFAOYSA-N 0.000 description 4
- 239000003921 oil Substances 0.000 description 4
- 235000019198 oils Nutrition 0.000 description 4
- 238000010992 reflux Methods 0.000 description 4
- HSSMNYDDDSNUKH-UHFFFAOYSA-K trichlororhodium;hydrate Chemical compound O.Cl[Rh](Cl)Cl HSSMNYDDDSNUKH-UHFFFAOYSA-K 0.000 description 4
- 238000001291 vacuum drying Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- YSTPAHQEHQSRJD-SECBINFHSA-N (-)-piperitone Chemical compound CC(C)[C@H]1CCC(C)=CC1=O YSTPAHQEHQSRJD-SECBINFHSA-N 0.000 description 3
- 229930006950 (-)-piperitone Natural products 0.000 description 3
- SDTMFDGELKWGFT-UHFFFAOYSA-N 2-methylpropan-2-olate Chemical compound CC(C)(C)[O-] SDTMFDGELKWGFT-UHFFFAOYSA-N 0.000 description 3
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 230000036571 hydration Effects 0.000 description 3
- 238000006703 hydration reaction Methods 0.000 description 3
- 229910052700 potassium Inorganic materials 0.000 description 3
- 239000011591 potassium Substances 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- MFYSUUPKMDJYPF-UHFFFAOYSA-N 2-[(4-methyl-2-nitrophenyl)diazenyl]-3-oxo-n-phenylbutanamide Chemical group C=1C=CC=CC=1NC(=O)C(C(=O)C)N=NC1=CC=C(C)C=C1[N+]([O-])=O MFYSUUPKMDJYPF-UHFFFAOYSA-N 0.000 description 2
- VVJKKWFAADXIJK-UHFFFAOYSA-N Allylamine Chemical compound NCC=C VVJKKWFAADXIJK-UHFFFAOYSA-N 0.000 description 2
- 244000246386 Mentha pulegium Species 0.000 description 2
- 235000016257 Mentha pulegium Nutrition 0.000 description 2
- 235000004357 Mentha x piperita Nutrition 0.000 description 2
- UAHWPYUMFXYFJY-UHFFFAOYSA-N beta-myrcene Chemical compound CC(C)=CCCC(=C)C=C UAHWPYUMFXYFJY-UHFFFAOYSA-N 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 238000005194 fractionation Methods 0.000 description 2
- 235000001050 hortel pimenta Nutrition 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- NFLGAXVYCFJBMK-DTWKUNHWSA-N (+)-menthone Chemical compound CC(C)[C@H]1CC[C@H](C)CC1=O NFLGAXVYCFJBMK-DTWKUNHWSA-N 0.000 description 1
- 239000004367 Lipase Substances 0.000 description 1
- 102000004882 Lipase Human genes 0.000 description 1
- 108090001060 Lipase Proteins 0.000 description 1
- 229910020808 NaBF Inorganic materials 0.000 description 1
- 235000002637 Nicotiana tabacum Nutrition 0.000 description 1
- 244000061176 Nicotiana tabacum Species 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 206010040880 Skin irritation Diseases 0.000 description 1
- VYBREYKSZAROCT-UHFFFAOYSA-N alpha-myrcene Natural products CC(=C)CCCC(=C)C=C VYBREYKSZAROCT-UHFFFAOYSA-N 0.000 description 1
- 230000036592 analgesia Effects 0.000 description 1
- 230000003110 anti-inflammatory effect Effects 0.000 description 1
- 230000001139 anti-pruritic effect Effects 0.000 description 1
- 239000003908 antipruritic agent Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 235000009508 confectionery Nutrition 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- PONXTPCRRASWKW-KBPBESRZSA-N diphenylethylenediamine Chemical compound C1([C@H](N)[C@@H](N)C=2C=CC=CC=2)=CC=CC=C1 PONXTPCRRASWKW-KBPBESRZSA-N 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000009313 farming Methods 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 239000003205 fragrance Substances 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 125000001072 heteroaryl group Chemical group 0.000 description 1
- GNOIPBMMFNIUFM-UHFFFAOYSA-N hexamethylphosphoric triamide Chemical compound CN(C)P(=O)(N(C)C)N(C)C GNOIPBMMFNIUFM-UHFFFAOYSA-N 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000006317 isomerization reaction Methods 0.000 description 1
- 229960004873 levomenthol Drugs 0.000 description 1
- 235000019421 lipase Nutrition 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000001525 mentha piperita l. herb oil Substances 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 235000019477 peppermint oil Nutrition 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 239000000419 plant extract Substances 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 235000011181 potassium carbonates Nutrition 0.000 description 1
- 230000006340 racemization Effects 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 230000001932 seasonal effect Effects 0.000 description 1
- 210000000697 sensory organ Anatomy 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910001494 silver tetrafluoroborate Inorganic materials 0.000 description 1
- 230000036556 skin irritation Effects 0.000 description 1
- 231100000475 skin irritation Toxicity 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- 235000013599 spices Nutrition 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 238000010189 synthetic method Methods 0.000 description 1
- 239000000606 toothpaste Substances 0.000 description 1
- 229940034610 toothpaste Drugs 0.000 description 1
- 238000007039 two-step reaction Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 235000014101 wine Nutrition 0.000 description 1
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Catalysts (AREA)
Abstract
The invention discloses a method for chiral synthesis of levorotatory menthol. In the process, dextrorotatory pulegone is used as a starting material; catalytic hydrogenation is carried out on the dextrorotatory pulegone by a chiral rhodium catalyst to generate levorotatory menthone; and the catalytic hydrogenation is carried out on the levorotatory menthone by a chiral ruthenium catalyst to synthesize the levorotatory menthol. In the process for synthesizing the levorotatory menthol through an asymmetric synthesis technology, the yield of the levorotatory menthone is more than 90%, the ee value of the levorotatory menthone is more than 99%, the total yield of the levorotatory menthol is greater than 83%, the ee value of the levorotatory menthol is greater than 98%, and the specific rotation is from-49 degrees to -50 degrees. The synthetic process is simple and is suitable for industrial production of the levorotatory menthol in a large scale, and the prepared levorotatory menthol has the advantages of high yield, good selectivity, high catalyst activity and other characteristics, is simple to recover.
Description
Technical field
The invention belongs to organic chemistry chirality synthesis technical field, being specifically related to a kind of is the method for raw material through the synthetic left-handed menthol of two-step reaction chirality with the dextrorotation pulegone.
Background technology
Menthol (also claiming mentha camphor and Peppermint Oil) has special fragrance, pungent sense and cool sense, as one of the most salable spices in the world, is widely used in aspects such as foodstuffs industry, daily fine chemistry industry and medical and health.Perfuming as toothpaste, food, tobacco, wine, refreshment drink, makeup, perfumed soap; In pharmaceutically being widely used in wind dispelling, anticorrosion, anti-inflammatory, analgesia, antipruritic, medicine such as be good for the stomach.Left-handed menthol has three chiral centres, therefore, has 8 kinds of steric isomers, but in these 8 kinds of steric isomers, has only left-handed menthol (l-menthol) to have higher economic value.It has brisk sweet pungent odour, very strong refrigerant effect is arranged, cooling effect mechanism is the cold receptor on the skin irritation but does not cause actual temperature change, and other isomer have bigger influence to the cooling effect of left-handed menthol, the content purity of left-handed menthol has determined the quality of product.Present global menthol annual production estimates more than 19000 tons, and what exist on the market all is left-handed menthol basically.
Menthol is all from plant extract in history, and it is bigger that output is influenced by seasonal variation, cultivated area, bad farming etc., and main producing region the nations of China and India also is difficult to provide stable product to be supplied with, and the price volalility amplitude that causes is very big.And the plantation amount of natural peppermint also is difficult to satisfy the market requirement that enlarges day by day, and insufficient section then need synthesize menthol to be filled up.Synthetic menthol mouthfeel is stable, and natural menthol and synthetic menthol can exchange fully on the sense organ, and synthetic menthol does not contain the impurity that exists in the natural menthol, so its mouthfeel good taste, price is relatively cheap in addition, and special advantages is arranged, and is easier to be accepted by producer.
When falling sharply and the influence of factor such as labor cost rising of preceding destruction because of physical environment, cultivated area, the output of natural menthol is more and more lower, and the market requirement increases day by day in addition, has aggravated the rise of menthol price jointly.Therefore the synthetic menthol economic outlook of industry is wide, room for promotion is big.
The synthetic method of menthol can be divided into two kinds: (1) preparation racemization menthol, carry out chiral separation then and make left-handed menthol; (2) utilize the asymmetric synthesis technology, do not need fractionation directly to obtain left-handed menthol.
The shortcoming of first method is, splitting step is numerous and diverse, and productive rate is generally not high.The sixties in last century, the route of He Ke man of great strength company (Hercules) research and development of the U.S. is exactly through synthesizing left-handed menthol (Acharya, S.P. with Split Method; Brown, H.C.J.Am.Chem.Soc.1967,89,1925.Leffingwell, J.C.﹠amp; R.E.Shackelford, Laevo-Menthol syntheses and organoleptic properties, Cosmeticsand Perfumery, 1974,89 (6), 69-89), but fail to realize suitability for industrialized production so far.But the fragrant company of German moral relies on its superb hydrogenation technology and isomerization reformation technology (Kuhn, W.; Funk, H.; Senft, G.; Koerber, K.A.DE 10239274,2002[Chem.Abstr.2002,140,217823] .), with left-handed menthol success industrialization.The fragrant company of nearest German moral has invented the lipase disassemble technique a kind of, and the left-handed menthol ee value that obtains is near 100%, but cost is too high and fail industrial applications (Gatfield, I.; Hilmer, E.; Bornscheuer, U.; Schmidt, R.; Vorlova, S.EP 1223223,2002[Chem.Abstr.2002,137,78009] .).
Japan high sand company is that starting raw material synthesizes the left-handed menthol of preparation through five steps with the myrcene, and its core reaction is chirality rhodium catalyst [Rh ((S)-BINAP)
2] ClO
4(Synthesis 1996,665 for S.Otsuka, K.Tani in the asymmetric hydrogen migration reaction of catalysis allyl amine; EP 0068506,1982).Japan high sand company is that first utilizes the company of the synthetic left-handed menthol of asymmetric synthesis technology in the world.
Peppermint in southern Europe and the plantation of north African wide range of commercial, its main moiety pulegone (dextrorotation pulegone, pulegone, also claim pulegone), the cheaper raw material that can be used as the synthetic left-handed menthol of commercial chirality of price, the Bordas of Spain company is that starting raw material prepares left-handed menthol (Leffingwell, J.C.﹠amp through two step hydrogenations with it; R.E.Shackelford, Laevo-Menthol syntheses and organolepticproperties, Cosmetics and Perfumery, 89 (6), 69-89,1974), reaction formula is as follows:
d-pulegone d-isomenthone l-methone l-menthol
The route of this method is: at first the dextrorotation pulegone uses trichlorine silicon hydrogen at HMPA catalytic hydrogenation (Sugiura, M. down at 0 ℃; Sato, N.; Kotani, S.; Nakajima, M.Chem.Commun.2008,4309) obtain the mixture of left-handed piperitone, d-isomenthone and l-piperitone, productive rate 84% obtains the l-piperitone through fractionation by distillation; Last catalytic hydrogenation l-piperitone makes the l-menthol.But this route selection is bad, complex process is harsh, and overall yield is not high.
Summary of the invention
The purpose of this invention is to provide the method for the synthetic left-handed menthol of a kind of chirality, this method synthesis technique is simple, productive rate is high, selectivity good, the high recovery of catalyst activity is simple, is fit to the left-handed menthol of large-scale commercial production.
For reaching above-mentioned purpose, the method of the synthetic left-handed menthol of a kind of chirality provided by the invention is characterized in that, is starting raw material with the dextrorotation pulegone, earlier generate left-handed piperitone, again through the synthetic left-handed menthol of the left-handed piperitone of chirality ruthenium catalyst catalytic hydrogenation through chirality rhodium catalyst catalytic hydrogenation.Specifically comprise following two steps:
Step 1: selective hydration: dextrorotation pulegone selective hydration under the chirality rhodium catalyst generates left-handed piperitone, and reaction formula is as follows:
[Rh ((S)-Ligand) wherein
2] X has following structure:
(S)-BINAP:Ar=C
6H
5
(S)-p-Tol-BINAP:Ar=4-CH
3C
6H
4
(S)-XylBINAP:Ar=3.5-(CH
3)
2C
6H
3
X=BF
4,SbF
6,PF
6,ClO
4,Cl
Rhodium catalyst [Rh ((S)-Ligand)
2] part of X is (S)-2,2 '-two [two (p-methylphenyl) phosphino-s]-1,1 '-dinaphthalene ((S)-p-Tol-BINAP), (S)-2,2 '-two (diphenylphosphino)-1,1 '-dinaphthalene ((S)-BINAP) or (S)-2,2 '-two [two (3, the 5-phenylbenzene) phosphino-]-1,1 '-((S)-XylBINAP) waits two phenyl or heteroaryl chiral ligand to dinaphthalene, preferred (S)-2,2 '-two [two (p-methylphenyl) phosphino-s]-1,1 '-dinaphthalene ((S)-p-Tol-BINAP); The negatively charged ion X of rhodium catalyst is BF
4, SbF
6, PF
6, ClO
4Or Cl etc., preferred BF
4The catalytic amount of rhodium catalyst is between 0.1~5mol%, and 0.5mol% is best catalytic amount.The reaction medium of rhodium catalyst is tetrahydrofuran (THF), methylene dichloride, ethanol, Virahol, N, dinethylformamide or acetone etc., preferred tetrahydrofuran (THF).Dextrorotation pulegone chirality rhodium catalyst catalytic hydrogenation generates left-handed piperitone and carries out under 1atm~100atm hydrogen pressure.
Step 2: asymmetric hydrogenation: left-handed piperitone asymmetric hydrogenation under the catalysis of ruthenium chiral catalyst generates left-handed menthol, and reaction formula is as follows:
[RuX wherein
2(phosphane) (diamine)] have following structure:
(S)-BINAP:Ar=C
6H
5 (S,S)-DPEN:R
1=R
4=C
6H
5;
(S)-p-Tol-BINAP:Ar=4-CH
3C
6H
4 R
2=R
3=H
(S)-XylBINAP:Ar=3,5-(CH
3)
2C
6H
3 (S)-DAIPEN:R
1=R
2=
X=Cl,Br,l,F 4-CH
3OC
6H
4;
R
3=H;R
4=(CH
3)
2CH
Ruthenium catalyst [RuX
2(phosphane) (diamine) part] comprises phosphine part, halogen ligands and two amine ligands, wherein the phosphine part is (S)-2,2 '-two [two (3, the 5-phenylbenzene) phosphino-]-1,1 '-dinaphthalene ((S)-XylBINAP), (S)-2,2 '-two (diphenylphosphino)-1,1 '-dinaphthalene ((S)-BINAP) or (S)-2,2 '-two [two (p-methylphenyl) phosphino-s]-1,1 '-dinaphthalene ((S)-p-Tol-BINAP), preferred (S)-2,2 '-two [two (3, the 5-phenylbenzene) phosphino-]-1,1 '-dinaphthalene ((S)-XylBINAP); Halogen ligands X is Cl, Br, I or F etc., preferred Cl; Two amine ligands are (S)-1,1-two (4-p-methoxy-phenyl)-3-sec.-propyl-1, the 2-diamines ((S)-DAIPEN) or (1S, 2S)-1,2-phenylbenzene-1, the 2-diamines ((S, S)-DPEN), preferred (S)-1,1-two (4-p-methoxy-phenyl)-3-sec.-propyl-1,2-diamines ((S)-DAIPEN).The catalytic amount of ruthenium catalyst is between 0.05~5mol%, and 0.1mol% is best catalytic amount.The hydrogen that adds dividing potential drop 1atm~80atm during the synthetic left-handed menthol of the left-handed piperitone of chiral ruthenium catalyst catalytic hydrogenation.The reaction medium of ruthenium catalyst is Virahol, N, dinethylformamide, ethanol, methyl alcohol, tetrahydrofuran (THF) or acetone etc., preferred Virahol.The alkaline system of ruthenium catalyst is salt of wormwood, potassium hydroxide, potassium tert.-butoxide (t-BuOK) or potassium isopropoxide (KOCH (CH
3)
2) etc., preferred potassium isopropoxide.
Method by the synthetic left-handed menthol of asymmetric synthesis technology provided by the present invention, left-handed piperitone yield is greater than 90%, the ee value is greater than 99%, the left-handed menthol total recovery of gained is greater than 83%, the ee value is greater than 98%, specific rotatory power-49 °~-50 ° has characteristics such as synthesis technique is simple, productive rate is high, selectivity is good, the high recovery of catalyst activity is simple, is fit to the left-handed menthol of large-scale commercial production.
Embodiment
Embodiment 1
1. Preparation of catalysts
(1) catalyst precursor [Rh (COD) Cl]
2Synthetic
In the 150mL three-necked flask, add three rhodium trichloride hydrate (2.0g; 7.6mmol); after putting into magnetic stir bar; ethanol (30mL), the water (12mL) and 1 of adding 95% under nitrogen protection; 5-cyclooctadiene (6mL; 49mmol), stirring and refluxing 24h generates orange-yellow precipitation; be cooled to room temperature; filter, product washs to remove unreacted 1 with cold methanol-water mixed liquid, the 5-cyclooctadiene; soak into solid with a little cold diethyl ether again; at 25 ℃ of following vacuum-drying 8h, remove and desolvate then, obtain orange-yellow crystal [Rh (COD) Cl]
2(1.593g, productive rate 85%) m.p.243 ℃.
(2) catalyzer [Rh ((S)-p-Tol-BINAP)
2] BF
4Preparation
Under the nitrogen protection, in the round-bottomed flask of 25mL, add 0.123g (0.25mmol) [Rh (COD) Cl]
2And 0.339g (0.5mmol) (S)-p-Tol-BINAP, add 5.0mL and newly steam CH
2Cl
2Dissolved solids is put into magnetic stir bar, and mixture at room temperature stirred 10 minutes.System is replaced as H
2Atmosphere, stirring at room 30 minutes, with mixed solution concentrate to do the red-brown solid.Be dissolved in 5mL and newly steam CH
2Cl
2After, add 70mg (0.5mmol) AgBF4, solution becomes tawny rapidly, and there is light-yellow precipitate to generate, stir after 30 minutes, the centrifugal precipitation of removing, in light red centrifugate, add 0.339g (0.5mmol) (S)-p-Tol-BINAP stirs and to obtain red solution [Rh ((S)-p-Tol-BINAP) in 10 minutes
2] BF
4(0.5mmol), TLC detects no free ligand and exists, and need not separate to be directly used in catalyzed reaction.
(3) catalyzer [RuCl
2(S)-XylBINAP (S)-DAIPEN] preparation
[the RuCl that in 50mL exsiccant round-bottomed flask, adds 1g (2mmol)
2(benzene)]
2And 2.940g (4mmol) (S)-XylBINAP, put into magnetic stir bar, logical nitrogen protection system.Add the N of the 15mL degassing with syringe, dinethylformamide, mixture generates red tan solution 100 ℃ of reactions 15 minutes down, system is chilled to room temperature after, add 1.258g (4mmol) (S)-DAIPEN and stirring reaction 12h.Reaction is chilled to room temperature after finishing, and removal of solvent under reduced pressure adds the dissolving of 40mL anhydrous diethyl ether in residuum, suction filtration removes the insolubles of black removal, and solution concentration to 3mL, is added the sherwood oil of the 3mL degassing again, separate out brown solid, suction filtration reject filtrate, the precipitation drying under reduced pressure gets 3.13g[RuCl
2(S)-and XylBINAP (S)-DAIPEN] (productive rate 63%) m.p.178.5 ℃.
2. selective hydrogenation
In the autoclave of 100mL, add 20mL anhydrous tetrahydro furan and 76.1g (0.5mol) dextrorotation pulegone, feed nitrogen, syringe slowly adds the above-mentioned catalyst solution [Rh ((S)-p-Tol-BINAP) with the dilution of 10mL tetrahydrofuran (THF)
2] BF
4(5mmol 0.1mol%), probably added in ten minutes, temperature to 70 ℃ behind the sealed high pressure reactor, H
2After the atmosphere displacement system 3 times, hydrogen pressure is risen to 100atm, the 23h reaction is finished.Inclining reaction solution, after air distillation removes and to desolvate, decompression steam the left-handed piperitone of product (70.13g, 0.495mol) productive rate 91%, it is 100% that chromatography of gases records product purity.
3. asymmetric hydrogenation
In the autoclave of 100mL, feed nitrogen, add the 20mL degassing Virahol, 6.9g (0.05mol) salt of wormwood and 610mg (0.5mmol, 0.1mol%) [RuCl
2(S)-and XylBINAP (S)-DAIPEN] title complex, add the left-handed piperitone of 77.1g (0.5mol) degassing with syringe, temperature to 35 ℃ behind the sealed high pressure reactor, H
2After the atmosphere displacement system 3 times, hydrogen pressure is risen to 80atm, the 24h reaction is finished.Inclining reaction solution, after air distillation removes and to desolvate, decompression steam the left-handed menthol of product (71.90g, 0.46mol) yield 92%, it is 99.6% that chromatography of gases records product purity.
Embodiment 2
1. Preparation of catalysts
(1) catalyst precursor [Rh (COD) Cl]
2Synthetic
In the 100mL three-necked flask, add three rhodium trichloride hydrate (1.0g; 3.8mmol) and Anhydrous potassium carbonate (0.55g; 4mmol); the ethanol (17mL) of adding 95% under nitrogen protection; water (8.5mL) and 1; (3mL 24.5mmol), puts into magnetic stir bar to the 5-cyclooctadiene; stirring and refluxing 24h; produce orange-yellow precipitation, be cooled to room temperature, filter; product washs to remove unreacted 1 with cold methanol-water mixed liquid; the 5-cyclooctadiene soaks into solid with a little cold diethyl ether, at last then at 25 ℃ of vacuum-drying 8h; remove and desolvate, obtain orange-yellow product [Rh (COD) Cl]
2(0.778g, productive rate 83%) m.p.242 ℃.
(2) catalyzer [Rh ((S)-BINAP)
2] BF
4Preparation
Under the nitrogen protection, in the round-bottomed flask of 10mL, add 0.15g (0.3mmol) [Rh (COD) Cl]
2, 3mL newly steams the 2.5mL HBF of tetrahydrofuran (THF) and 70%
4, add 1 with syringe, 5-cyclooctadiene (0.208g, 1.8mL) and the new mixed solution that steams tetrahydrofuran (THF) 3mL, put into magnetic stir bar, behind the stirring at room 15min, add 0.747g (12mmol) (S)-BINAP, mixture is replaced as H with system after at room temperature stirring 10 minutes
2Atmosphere, stirring at room 30 minutes, mixed solution is concentrated into 1mL has the red-brown solid to separate out, and suction filtration is used the cold methanol washing precipitation, obtains red solid [Rh ((S)-BINAP)
2] BF
4(0.72g, 0.5mmol, productive rate 83%) m.p.283 ℃.
(3) catalyzer [RuCl
2(S)-XylBINAP (S, S)-DPEN] preparation
[the RuCl that in 50mL exsiccant round-bottomed flask, adds 1g (2mmol)
2(benzene)]
2And (S)-XylBINAP of 2.94g (4mmol), put into magnetic stir bar after, logical nitrogen protection system.Add the N of the 15mL degassing with syringe, dinethylformamide, mixture generates red tan solution 100 ℃ of reactions 15 minutes down, say system is chilled to room temperature after, add 850mg (4mmol) (S, S)-DPEN and stirring reaction 12h.Reaction is chilled to room temperature after finishing, removal of solvent under reduced pressure, and residuum adds the dissolving of 40mL anhydrous diethyl ether, suction filtration removes the insolubles of black removal, and solution concentration to 3mL, is added the sherwood oil of the 3mL degassing again, separate out brown solid, suction filtration reject filtrate will be precipitated the dry 2.688g[RuCl of getting of pressurization
2(S)-and XylBINAP (S, S)-DPEN] (productive rate 60%) m.p.183.5 ℃.
2. selective hydrogenation
In the autoclave of 50mL, add 5mL anhydrous tetrahydro furan and 3.80g (0.025mol) dextrorotation pulegone, feed nitrogen, add with the above-mentioned catalyzer of 5mL tetrahydrofuran (THF) dissolved [Rh ((S)-BINAP) with syringe
2] BF
4(0.360g, 0.25mmol) solution probably added in ten minutes, and temperature to 70 ℃ behind the sealed high pressure reactor is used H
2After the atmosphere displacement system 3 times, hydrogen pressure is risen to 80atm, the 23h reaction is finished.Inclining reaction solution, after air distillation removes and to desolvate, decompression steam the left-handed piperitone of product (3.198g, 0.021mol) productive rate 83%, it is 88.5% that chromatography of gases records product purity.
3. asymmetric hydrogenation
In the autoclave of 50mL, feed nitrogen, add 10mL degassing Virahol, 1.0molL
-1Potassium tert.-butoxide/t-butanol solution (5ml, 0.08mmol) and 56mg (0.05mmol, 0.1mol%) [RuCl
2(S)-and XylBINAP (S, S)-DPEN] catalyzer and magnetic stir bar, add the left-handed piperitone of 7.707g (0.05mol) degassing with syringe, temperature to 35 ℃ behind the sealed high pressure reactor, H
2After the atmosphere displacement system 3 times, hydrogen pressure is risen to 4atm, the 24h reaction is finished.After air distillation removes and to desolvate, decompression steam the left-handed menthol of product (6.25g, 0.04mol) productive rate 80%, it is 87% that chromatography of gases records product purity.
Embodiment 3
1. Preparation of catalysts
(1) catalyst precursor [Rh (COD) Cl]
2Synthetic
In the 50mL three-necked flask, add three rhodium trichloride hydrate (0.5g, 1.9mmol), methyl alcohol (9mL), the water (4mL) and 1 of adding 95% under condition of nitrogen gas, 5-cyclooctadiene (0.14g, 122mmol), put into magnetic stir bar, stirring and refluxing 24h, produce orange-yellow precipitation, be cooled to room temperature, filter, product washs to remove unreacted 1 with cold methanol-water mixed liquid, the 5-cyclooctadiene, soak into solid with a little cold diethyl ether at last,, remove and desolvate then at 25 ℃ of vacuum-drying 8h, with methylene dichloride/ether recrystallization, obtain orange-yellow product [Rh (COD) Cl]
2(0.393g, productive rate 84%) m.p.243 ℃.
(2) catalyzer [Rh ((S)-XylBINAP)
2] BF
4Preparation
Under the nitrogen protection, in the round-bottomed flask of 10mL, add 0.47g (0.95mmol) [Rh (COD) Cl]
2Add 0.209g (1.9mmol) NaBF
4, put into magnetic stir bar, add 3mL tetrahydrofuran (THF) dissolving back and generate white precipitate rapidly, stir after 30 minutes, suction filtration is removed precipitation, washs with tetrahydrofuran (THF), in filtrate, add 1.396g (1.9mmol) (S)-XylBINAP, mixture at room temperature stirred 10 minutes, and system is replaced as H
2Atmosphere, stirring at room 30 minutes is concentrated into 1mL with mixed solution and gets brown-red solution, adds after 3mL newly steams tetrahydrofuran (THF), in light red solution, add 1.396g (19mmol) (S)-XylBINAP stirs and obtained red solution [Rh ((S)-XylBINAP) in 10 minutes
2] BF
4, need not separate to be directly used in catalyzed reaction.
(3) catalyzer [RuCl
2(S)-BINAP (S)-DAIPEN] preparation
[the RuCl that in 50mL exsiccant round-bottomed flask, adds 1g (2mmol)
2(benzene)]
2And 2.490g (4mmol) (S)-BINAP, put into magnetic stir bar, logical nitrogen protection system.Add the N of the 15mL degassing with syringe, dinethylformamide, mixture generates red tan solution 100 ℃ of reactions 15 minutes down, system is chilled to room temperature after, add 1.258g (4mmol) (S)-DAIPEN and stirring reaction 12h.Reaction is chilled to room temperature after finishing, and removal of solvent under reduced pressure adds the dissolving of 40mL anhydrous diethyl ether in residuum, suction filtration removes the insolubles of black removal, and solution concentration to 3mL, is added the sherwood oil of the 3mL degassing again, separate out brown solid, suction filtration reject filtrate, the precipitation drying under reduced pressure gets 2.750g[RuCl
2(S)-and BINAP (S)-DAIPEN] (productive rate 62%) m.p.188 ℃.
2. selective hydrogenation
In the autoclave of 50mL, add 10mL anhydrous tetrahydro furan and 30g (0.2mol) D-menthone, feed nitrogen, add the above-mentioned catalyzer [Rh (S)-XylBINAP) that dilutes with the 5mL tetrahydrofuran (THF) with syringe
2] BF
4(1.9mmol) solution probably added in ten minutes, and temperature to 70 ℃ behind the sealed high pressure reactor is used H
2After the atmosphere displacement system 3 times, hydrogen pressure is risen to 8atm, the 23h reaction is finished.Inclining reaction solution, after air distillation removes and to desolvate, decompression steam the left-handed piperitone of product (26.20g, 0.17mol) productive rate 85%, it is 92% that chromatography of gases records product purity.
3. asymmetric hydrogenation
In the autoclave of 50mL, feed nitrogen, add 20mL degassing Virahol, 1.0molL
-1Potassium tert.-butoxide/aqueous isopropanol (5ml, 0.08mmol) and 55mg (0.05mmol) [RuCl
2(S)-and BINAP (S)-DAIPEN] title complex, add the left-handed piperitone that 7.707g (0.05mol) outgases with syringe, probably in ten minutes, add, the sealed high pressure reactor is used H
2After the atmosphere displacement system 3 times, hydrogen pressure is risen to 10atm, the 23h reaction is finished.Inclining reaction solution, after air distillation removes and to desolvate, decompression steam the left-handed piperitone of product (6.641g, 0.0425mol) productive rate 85%, it is 92% that chromatography of gases records product purity.
Embodiment 4
1. Preparation of catalysts
(1) catalyst precursor [Rh (COD) Cl]
2Synthetic
In the 100mL three-necked flask, add three rhodium trichloride hydrate (1.0g, 3.8mmol), ethanol (17mL), the water (8.5mL) and 1 of adding 95% under condition of nitrogen gas, 5-cyclooctadiene (3mL, 24.5mmol), put into magnetic stir bar, stirring and refluxing 24h produces orange-yellow precipitation, be cooled to room temperature, filter, product washs to remove unreacted 1 with cold methanol-water mixed liquid, the 5-cyclooctadiene, soak into solid with a little cold diethyl ether again, at 25 ℃ of following vacuum-drying 8h, remove and desolvate then, obtain orange-yellow product [Rh (COD) Cl]
2(0.815g, productive rate 87%) m.p.243 ℃.
(2) catalyzer [Rh ((S)-p-Tol-BINAP) (COD)] BF
4Preparation
Under the nitrogen protection, in the round-bottomed flask of 50mL, add 0.235g (0.475mmol) [Rh (COD) Cl]
2And 645mg (0.95mmol) (S)-p-Tol-BINAP, add 10mL CH
2Cl
2Magnetic stir bar is put in dissolving, and mixture at room temperature stirred 10 minutes, and system is replaced as H
2Atmosphere, stirring at room 30 minutes, with mixed solution concentrate the red-brown solid, be dissolved in 5mL and newly steam CH
2Cl
2After, add 0.185g (9.5mmol) AgBF
4, solution becomes tawny rapidly, and has light-yellow precipitate to generate, and stirs after 30 minutes, and the centrifugal precipitation of removing obtains light red centrifugate (need not separate and can be directly used in catalyzed reaction).
(3) catalyzer [RuCl
2(S)-p-Tol-BINAP) (S)-DAIPEN] preparation
[the RuCl that in 50mL exsiccant round-bottomed flask, adds 1g (2mmol)
2(benzene)]
2And 2.715g (4mmol) (S)-p-Tol-BINAP, put into magnetic stir bar, logical nitrogen protection system.Add the N of the 15mL degassing with syringe, dinethylformamide, mixture generates red tan solution 100 ℃ of reactions 15 minutes down, system is chilled to room temperature after, add 1.258g (4mmol) (S)-DAIPEN and stirring reaction 12h.Reaction is chilled to room temperature after finishing, and removal of solvent under reduced pressure adds the dissolving of 40mL anhydrous diethyl ether in residuum, suction filtration removes the insolubles of black removal, and solution concentration to 3mL, is added the sherwood oil of the 3mL degassing again, separate out brown solid, suction filtration reject filtrate, the precipitation drying under reduced pressure gets 3.000g[RuCl
2(S)-and p-Tol-BINAP (S)-DAIPEN] (productive rate 65%) m.p.181.5 ℃.
2. selective hydrogenation
In the autoclave of 50mL, add 10mL anhydrous tetrahydro furan and 30g (0.2mol) dextrorotation pulegone, feed nitrogen, add above-mentioned catalyst solution with the dilution of 5mL tetrahydrofuran (THF) [Rh ((S)-p-Tol-BINAP) (COD)] BF with syringe
4(0.95mmol), probably add in half an hour, temperature to 70 ℃ behind the sealed high pressure reactor is used H
2After the atmosphere displacement system 3 times, hydrogen pressure is risen to 80atm, the 48h reaction is finished.Inclining reaction solution, after air distillation removes and to desolvate, decompression steam the left-handed piperitone of product (17.3g, 0.112mol) productive rate 56%, it is 99.7% that chromatography of gases records product purity.
3. asymmetric hydrogenation
In the autoclave of 50mL, feed nitrogen, add 20mL degassing Virahol, 1.0molL
-1Potassium tert.-butoxide/t-butanol solution (5ml, 0.08mmol) and 58mg (0.05mmol) [RuCl
2(S)-p-Tol-BINAP) (S)-DAIPEN] title complex, add the left-handed piperitone of 7.707g (0.05mol) degassing with syringe, probably in half an hour, add, the sealed high pressure reactor is used H
2After the atmosphere displacement system 3 times, hydrogen pressure is risen to 10atm, the 24h reaction is finished.Inclining reaction solution, after air distillation removes and to desolvate, decompression steam the left-handed menthol of product (6.40g, 0.041mol) productive rate 82%, it is 98.5% that chromatography of gases records product purity.
In addition to the implementation, also can employing table one and the described material of table two and parameter prepare left-handed menthol (concrete grammar can with reference to the foregoing description).
Table one rhodium catalyst selective hydration dextrorotation pulegone generates left-handed piperitone
Reaction?were?carried?out?in?THF?at?70℃?for?23?hrs?except?special?notice.undr?H
2?atmospherewith?the?ratio?of?substrate?to?catalyst?of?200.
The left-handed piperitone of table two ruthenium catalyst asymmetric hydrogenation generates left-handed menthol
Reaction?was?carried?out?in?solvent?at?35℃?undr?H
2,[substrate?2]/[catalyst]=1000,for?24?hrs.
Scope of the present invention is not subjected to the restriction of described specific embodiments, and described embodiment is only desired also to comprise method and component that function is equal in the scope of the invention as the single example of illustrating all respects of the present invention.In fact, except that content as herein described, the technology scientific and technical personnel of this area can be easy to grasp multinomial improvement of the present invention with reference to above description and reaction formula and chart, and many reactions steps transposes can obtain the ideal effect equally.Described improvement also falls in the scope of claims.Every piece of reference mentioned above is listed this paper reference all in full in.
Claims (10)
1. the method for the synthetic left-handed menthol of chirality is characterized in that, is starting raw material with the dextrorotation pulegone, generates left-handed piperitone through chirality rhodium catalyst catalytic hydrogenation earlier, again through the synthetic left-handed menthol of the left-handed piperitone of chirality ruthenium catalyst catalytic hydrogenation.
2. the method for the synthetic left-handed menthol of chirality according to claim 1 is characterized in that described rhodium catalyst is [Rh ((S)-Ligand)
2] X, the part of rhodium catalyst is (S)-2,2 '-two [two (p-methylphenyl) phosphino-s]-1,1 '-dinaphthalene ((S)-p-Tol-BINAP), (S)-2,2 '-two (diphenylphosphino)-1,1 '-dinaphthalene ((S)-BINAP) or (S)-2,2 '-two [two (3, the 5-phenylbenzene) phosphino-]-1,1 '-dinaphthalene ((S)-XylBINAP); The negatively charged ion X of rhodium catalyst is BF
4, SbF
6, PF
6, ClO
4Or Cl.
3. the method for the synthetic left-handed menthol of chirality according to claim 1 is characterized in that described ruthenium catalyst is [RuX
2(phosphane) (diamine)], the part of ruthenium catalyst comprises phosphine part, halogen ligands and two amine ligands, wherein the phosphine part is (S)-2,2 '-two [two (3, the 5-phenylbenzene) phosphino-s]-1,1 '-dinaphthalene ((S)-XylBINAP), (S)-2,2 '-two (diphenylphosphino)-1,1 '-dinaphthalene ((S)-BINAP) or (S)-2,2 '-two [two (p-methylphenyl) phosphino-s]-1,1 '-dinaphthalene ((S)-p-Tol-BINAP); Halogen ligands X is Cl, Br, I or F; Two amine ligands are (S)-1,1-two (4-p-methoxy-phenyl)-3-sec.-propyl-1, the 2-diamines ((S)-DAIPEN) or (1S, 2S)-1,2-phenylbenzene-1, the 2-diamines (S, S)-DPEN).
4. the method for the synthetic left-handed menthol of chirality according to claim 2 is characterized in that the catalytic amount of described rhodium catalyst is between 0.1~5mol%.
5. the method for the synthetic left-handed menthol of chirality according to claim 2 is characterized in that the reaction medium of described rhodium catalyst is tetrahydrofuran (THF), methylene dichloride, ethanol, Virahol, N, dinethylformamide or acetone.
6. the method for the synthetic left-handed menthol of chirality according to claim 3 is characterized in that the catalytic amount of described ruthenium catalyst is between 0.05~5mol%.
7. the method for the synthetic left-handed menthol of chirality according to claim 1 is characterized in that described dextrorotation pulegone chirality rhodium catalyst catalytic hydrogenation generates left-handed piperitone and carries out under 1atm~100atm hydrogen pressure.
8. the method for the synthetic left-handed menthol of chirality according to claim 1 is characterized in that, adds the hydrogen of dividing potential drop 1atm~80atm during the synthetic left-handed menthol of the left-handed piperitone of described chiral ruthenium catalyst catalytic hydrogenation.
9. the method for the synthetic left-handed menthol of chirality according to claim 3 is characterized in that the reaction medium of described ruthenium catalyst is Virahol, N, dinethylformamide, ethanol, methyl alcohol, tetrahydrofuran (THF) or acetone.
10. the method for the synthetic left-handed menthol of chirality according to claim 3 is characterized in that the alkaline system of described ruthenium catalyst is salt of wormwood, potassium hydroxide, potassium tert.-butoxide or potassium isopropoxide.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201010554907 CN102010297B (en) | 2010-11-23 | 2010-11-23 | Method for chiral synthesis of levorotatory menthol |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201010554907 CN102010297B (en) | 2010-11-23 | 2010-11-23 | Method for chiral synthesis of levorotatory menthol |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102010297A true CN102010297A (en) | 2011-04-13 |
CN102010297B CN102010297B (en) | 2013-06-12 |
Family
ID=43840655
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201010554907 Expired - Fee Related CN102010297B (en) | 2010-11-23 | 2010-11-23 | Method for chiral synthesis of levorotatory menthol |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102010297B (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104909992A (en) * | 2015-06-03 | 2015-09-16 | 黄山天香科技股份有限公司 | Method for preparing (1R,2S,5R)-2-isopropyl-5-methyl cyclohexanol from 2S-trans-5-methyl-2-(1-methylethyl)cyclohexanone |
CN106061933A (en) * | 2014-03-07 | 2016-10-26 | 巴斯夫欧洲公司 | Method for producing menthones from isopulegol in the gas phase |
CN106148431A (en) * | 2016-09-04 | 2016-11-23 | 安徽爱有澄生物科技有限公司 | The preparation method of pulegium ketone derivatives |
CN114011463A (en) * | 2021-11-24 | 2022-02-08 | 万华化学集团股份有限公司 | Catalyst and method for preparing high-purity L-menthol |
CN118239990A (en) * | 2024-05-28 | 2024-06-25 | 北京元延医药科技股份有限公司 | Complex of rare noble metal and chiral phosphine for asymmetric hydrogenation catalytic synthesis of medicine |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB325509A (en) * | 1928-11-19 | 1930-02-19 | Howards & Sons Ltd | Improvements relating to the manufacture of synthetic menthol |
US6342644B1 (en) * | 2000-05-10 | 2002-01-29 | Takasago International Corporation | Method for producing 1-menthol |
CN101065344A (en) * | 2004-11-26 | 2007-10-31 | 巴斯福股份公司 | Method for the production of menthol |
-
2010
- 2010-11-23 CN CN 201010554907 patent/CN102010297B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB325509A (en) * | 1928-11-19 | 1930-02-19 | Howards & Sons Ltd | Improvements relating to the manufacture of synthetic menthol |
US6342644B1 (en) * | 2000-05-10 | 2002-01-29 | Takasago International Corporation | Method for producing 1-menthol |
CN101065344A (en) * | 2004-11-26 | 2007-10-31 | 巴斯福股份公司 | Method for the production of menthol |
Non-Patent Citations (1)
Title |
---|
陈旭敏等: "左旋薄荷醇的合成现状及进展", 《有机化学》 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106061933A (en) * | 2014-03-07 | 2016-10-26 | 巴斯夫欧洲公司 | Method for producing menthones from isopulegol in the gas phase |
CN106061933B (en) * | 2014-03-07 | 2019-07-09 | 巴斯夫欧洲公司 | In the gas phase by the method for isopulegol production menthones |
CN104909992A (en) * | 2015-06-03 | 2015-09-16 | 黄山天香科技股份有限公司 | Method for preparing (1R,2S,5R)-2-isopropyl-5-methyl cyclohexanol from 2S-trans-5-methyl-2-(1-methylethyl)cyclohexanone |
CN106148431A (en) * | 2016-09-04 | 2016-11-23 | 安徽爱有澄生物科技有限公司 | The preparation method of pulegium ketone derivatives |
CN114011463A (en) * | 2021-11-24 | 2022-02-08 | 万华化学集团股份有限公司 | Catalyst and method for preparing high-purity L-menthol |
CN118239990A (en) * | 2024-05-28 | 2024-06-25 | 北京元延医药科技股份有限公司 | Complex of rare noble metal and chiral phosphine for asymmetric hydrogenation catalytic synthesis of medicine |
Also Published As
Publication number | Publication date |
---|---|
CN102010297B (en) | 2013-06-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102010297B (en) | Method for chiral synthesis of levorotatory menthol | |
CA1182462A (en) | Rhodium-phosphine chiral hydrogenation catalyst | |
JP5207445B2 (en) | Ruthenium complex with 2- (aminomethyl) pyridine and phosphine, process for its preparation and use as catalyst | |
CN110981707B (en) | Method for synthesizing chiral citronellal by isomerism of nerol or geraniol | |
JP2004502543A5 (en) | ||
US4695631A (en) | Process for the preparation of enamines or imines | |
CN103059064A (en) | Chiral diphosphine ligand and chiral catalyst, and preparation and application method thereof | |
CN109020911A (en) | It is used to prepare the intermediate and preparation method thereof of bictegravir | |
CN109180627A (en) | A kind of semisynthesis of diosmetin | |
CN110963902B (en) | Method for synthesizing R-citronellal by water-oil two-phase asymmetric hydrogenation and catalyst used in method | |
CN104418861B (en) | A kind of preparation method of Xi Gelieting midbody compound | |
JP6054108B2 (en) | Process for producing optically active 2,3-dihydrofarnesal | |
Chang et al. | Catalytic transfer hydrogenation and anticancer activity of arene–ruthenium compounds incorporating bi-dentate precursors | |
CN102380418B (en) | Catalyst for catalyzing and reducing asymmetric prochiral ketones to chiral alcohols, preparation method and application thereof | |
CN103254047B (en) | Method for preparing L-menthol intermediate d-citronellal | |
CN103012268A (en) | Novel preparation method for ivabradine | |
CN106242996B (en) | A kind of schiff bases magnesium metallo-organic compound and its preparation method and application | |
CN101190886B (en) | Method for synthesizing N-acylphenylglycine by amide carbonylation reaction | |
CN108794314A (en) | A kind of method of citral hydrogenation synthesis citronellal | |
Chan et al. | Preparation and structural characterization of bis (acetylacetonato) ruthenium (II)-BINAP: an efficient route to an effective asymmetric hydrogenation catalyst precursor | |
CN108250086A (en) | The improvement synthetic method of one kind (R) -1- aryl -2- propylamine | |
TW434207B (en) | Chiral ligand and method for preparing cyanohydrins from aldehydes | |
CN114573473B (en) | Preparation method of (R) -alpha-aryl alanine ester derivative | |
CN104353491B (en) | For the synthesis of a catalyst for chiral secondary alcohol, the chiral secondary alcohol synthetic method of its preparation method and this catalyst of employing | |
TWI830181B (en) | Methylcyclohexane as allyl alcohol hydroformylation solvent |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CP03 | Change of name, title or address |
Address after: 510308 No. 146 East Xingang Road, Guangzhou, Guangdong, Haizhuqu District Co-patentee after: SOUTH CHINA NORMAL University Patentee after: GUANGDONG FOOD INDUSTRY INSTITUTE CO.,LTD. Address before: 510308, No. 146 East Xingang Road, Guangzhou, Guangdong, Guangzhou Co-patentee before: South China Normal University Patentee before: Guangdong Food Industry Institute Co.,Ltd. |
|
CP03 | Change of name, title or address | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20130612 |