[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN101945060A - Channel estimation method based on pilot frequency signal in 3GPP LTE downlink system - Google Patents

Channel estimation method based on pilot frequency signal in 3GPP LTE downlink system Download PDF

Info

Publication number
CN101945060A
CN101945060A CN2010102723280A CN201010272328A CN101945060A CN 101945060 A CN101945060 A CN 101945060A CN 2010102723280 A CN2010102723280 A CN 2010102723280A CN 201010272328 A CN201010272328 A CN 201010272328A CN 101945060 A CN101945060 A CN 101945060A
Authority
CN
China
Prior art keywords
mrow
msub
msubsup
mover
lmmse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2010102723280A
Other languages
Chinese (zh)
Other versions
CN101945060B (en
Inventor
刘健
隆克平
侯锦峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN 201010272328 priority Critical patent/CN101945060B/en
Publication of CN101945060A publication Critical patent/CN101945060A/en
Application granted granted Critical
Publication of CN101945060B publication Critical patent/CN101945060B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Mobile Radio Communication Systems (AREA)

Abstract

The invention provides a channel estimation method based on the pilot frequency signal in a 3GPP LTE downlink system aiming at the 3GPP LTE downlink system, which is the channel estimation method using the frequency two dimension combining Weiner iterative filtering and based on the Linear Minimum Mean-square Error (LMMSE) algorithm. In the invention, the Weiner iterative filtering is performed in the frequency domain based on the LMMSE algorithm firstly, then the value estimated by the frequency domain is used to perform the first Weiner iterative filtering in the frequency domain. The experimental test indicates that the channel estimation method can effectively enhance the property of Bit Error Rate (BER), and is closer to the ideal channel estimation compared with the traditional methods. In addition, the method of the invention reduces the operation complexity of the algorithm through the Singular Value Decomposition (SVD) of the LMMSE algorithm, therefore the channel estimation method provided by the invention can not increase too much operation complexity.

Description

Channel estimation method based on pilot signal in 3GPP LTE downlink system
Technical Field
The present invention belongs to the technical field of channel estimation in a communication system, and more particularly, to a channel estimation method based on pilot signals in a 3GPP LTE downlink system.
Background
Lte (long Term evolution) is a "quasi 4G" technology developed on the basis of the technical reserve of the Beyond 3G (B3G) research over ten years in order to combat the market challenge of mobile broadband Access technologies such as World Interoperability for Microwave Access (WiMAX) under the trend of "mobile communication broadband" by the 3rd Generation partnership Project (3 GPP). In the air interface aspect, LTE uses Frequency Division Multiple Access (FDMA) instead of Code Division Multiple Access (CDMA) used by 3GPP for a long time as a Multiple Access technology, and largely adopts Multiple-input Multiple-output (MIMO) technology and adaptive technology to improve data rate and system performance, so that the transmission capability of the air interface reaches over 100 Mbit/s. The 3GPP LTE is favored by most operators in the world, and has been recognized as a mobile communication system capable of supporting the world telecommunication industry in 2010-2020.
Since the Orthogonal Frequency Division Multiplexing (OFDM) technology has high data transmission rate and spectral efficiency, and it can effectively resist multipath delay spread, the physical layer of the 3GPP LTE downlink system adopts the OFDM technology. Since a wireless channel in a broadband mobile communication system has frequency domain selectivity and time variability, it is necessary for a receiver to dynamically estimate and track a multipath fading channel before coherent demodulation of a high-speed OFDM signal. In OFDM technology, the most common channel estimation is based on pilot-assisted channel estimation methods.
In the pilot-aided channel estimation algorithm, a transmitting end inserts pilot signals known to both the transmitting end and the receiving end at fixed positions, and then the receiving end estimates a channel response of each OFDM symbol by processing the received signals at the positions. The channel estimation method based on pilot signals in the 3GPP LTE downlink system can be roughly divided into two types of methods, namely Least-Squares (LS) and Minimum Mean-Square Error (MMSE). The two methods are channel estimation on each subcarrier in a frequency domain, wherein the LS channel estimation method does not need channel information and is the simplest to realize; the MMSE channel estimation method utilizes the correlation among subcarriers, the signal-to-noise ratio and other channel statistical information, has better estimation performance, and is widely applied to the channel estimation of OFDM.
Disclosure of Invention
The invention aims to overcome the defects of the existing channel estimation method and provides a channel estimation method based on pilot signals in a 3GPP LTE downlink system with low error rate and low operation complexity.
In order to achieve the above object, the method for estimating a channel based on a pilot signal in a 3GPP LTE downlink system according to the present invention includes the following steps:
(1) frequency domain wiener iterative filtering
Firstly, obtaining a channel frequency domain response estimated value at a reference signal position on the same OFDM symbol:
<math><mrow><msubsup><mover><mi>H</mi><mo>^</mo></mover><mrow><mi>P</mi><mo>,</mo><mi>LMMSE</mi></mrow><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></msubsup><mo>=</mo><msub><mi>R</mi><mrow><msub><mi>H</mi><mi>P</mi></msub><msub><mi>H</mi><mi>P</mi></msub></mrow></msub><msup><mrow><mo>(</mo><msub><mi>R</mi><mrow><msub><mi>H</mi><mi>P</mi></msub><msub><mi>H</mi><mi>P</mi></msub></mrow></msub><mo>+</mo><mfrac><mi>&beta;</mi><mi>SNR</mi></mfrac><msub><mi>I</mi><mi>P</mi></msub><mo>)</mo></mrow><mrow><mo>-</mo><mn>1</mn></mrow></msup><msub><mover><mi>H</mi><mo>^</mo></mover><mrow><mi>P</mi><mo>,</mo><mi>LS</mi></mrow></msub><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></mrow></math>
in the formula (1), the reaction mixture is,
Figure BSA00000256540000022
representing the autocorrelation matrix of the subcarriers at the reference signal within the same OFDM symbol, beta being a constant determined by the signal constellation, SNR being the average signal-to-noise ratio, IPIs a unit array;
Figure BSA00000256540000023
for the channel frequency domain response H at the reference signal locationPLS estimate of (1), subscript (.)PIndicating the location of the transmitted reference signal.
Then toWiener iterative filtering based on LMMSE algorithm is carried out to reduce the influence of noise and interference on the channel frequency response estimation value on the reference signal position, the bit error rate performance is improved, and the channel frequency response estimation value on the reference signal position after the wiener iterative filtering
Figure BSA00000256540000025
<math><mrow><msubsup><mover><mi>H</mi><mo>^</mo></mover><mrow><mi>P</mi><mo>,</mo><mi>LMMSE</mi></mrow><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow></msubsup><mo>=</mo><msub><mi>R</mi><mrow><msub><mi>H</mi><mi>P</mi></msub><msub><mi>H</mi><mi>P</mi></msub></mrow></msub><msup><mrow><mo>(</mo><msub><mi>R</mi><mrow><msub><mi>H</mi><mi>P</mi></msub><msub><mi>H</mi><mi>P</mi></msub></mrow></msub><mo>+</mo><mfrac><mi>&beta;</mi><mi>SNR</mi></mfrac><msub><mi>I</mi><mi>P</mi></msub><mo>)</mo></mrow><mrow><mo>-</mo><mn>1</mn></mrow></msup><msubsup><mover><mi>H</mi><mo>^</mo></mover><mrow><mi>P</mi><mo>,</mo><mi>LMMSE</mi></mrow><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></msubsup><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow></mrow></math>
Finally, channel frequency domain response estimated value at the position of the reference signal after wiener iterative filtering is utilized
Figure BSA00000256540000027
Estimating the channel frequency domain response value of all subcarriers on the same OFDM symbol
Figure BSA00000256540000028
<math><mrow><msub><mover><mi>H</mi><mo>^</mo></mover><mrow><mi>F</mi><mo>,</mo><mi>LMMSE</mi></mrow></msub><mo>=</mo><msub><mi>R</mi><msub><mi>HH</mi><mi>P</mi></msub></msub><msup><mrow><mo>(</mo><msub><mi>R</mi><mrow><msub><mi>H</mi><mi>P</mi></msub><msub><mi>H</mi><mi>P</mi></msub></mrow></msub><mo>+</mo><mfrac><mi>&beta;</mi><mi>SNR</mi></mfrac><msub><mi>I</mi><mi>P</mi></msub><mo>)</mo></mrow><mrow><mo>-</mo><mn>1</mn></mrow></msup><msubsup><mover><mi>H</mi><mo>^</mo></mover><mrow><mi>P</mi><mo>,</mo><mi>LMMSE</mi></mrow><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow></msubsup><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow></mrow></math>
In the formula (3), the reaction mixture is,
Figure BSA000002565400000210
a cross-correlation matrix representing all subcarriers within the same OFDM symbol and subcarriers at the reference signal;
(2) time-domain wiener iterative filtering
Channel frequency domain response estimation value on nth sub-carrier
Figure BSA00000256540000031
And (2) performing wiener iterative filtering based on an LMMSE algorithm to reduce related residual noise and improve the bit error rate performance:
<math><mrow><msubsup><mover><mi>H</mi><mo>~</mo></mover><mrow><mi>F</mi><mo>,</mo><mi>LMMSE</mi></mrow><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></msubsup><mo>=</mo><msubsup><mi>R</mi><mrow><msub><mi>H</mi><mi>P</mi></msub><msub><mi>H</mi><mi>P</mi></msub></mrow><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></msubsup><msup><mrow><mo>(</mo><msubsup><mi>R</mi><mrow><msub><mi>H</mi><mi>P</mi></msub><msub><mi>H</mi><mi>P</mi></msub></mrow><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></msubsup><mo>+</mo><mfrac><mi>&beta;</mi><mi>SNR</mi></mfrac><msub><mi>I</mi><mi>L</mi></msub><mo>)</mo></mrow><mrow><mo>-</mo><mn>1</mn></mrow></msup><msubsup><mover><mi>H</mi><mo>^</mo></mover><mrow><mi>F</mi><mo>,</mo><mi>LMMSE</mi></mrow><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></msubsup><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>4</mn><mo>)</mo></mrow></mrow></math>
in the formula (4), the reaction mixture is,
Figure BSA00000256540000033
is the autocorrelation matrix between all OFDM symbols containing reference signals on the nth subcarrier in a subframe, ILIs an identity matrix, L represents the number of OFDM symbols containing reference signals in each subframe;
channel frequency response estimation after iterative filtering using wiener
Figure BSA00000256540000034
Estimating the channel frequency response value of the nth subcarrier of all OFDM symbols in each subframe
Figure BSA00000256540000035
<math><mrow><msubsup><mover><mi>H</mi><mo>^</mo></mover><mrow><mi>T</mi><mo>,</mo><mi>LMMSE</mi></mrow><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></msubsup><mo>=</mo><msubsup><mi>R</mi><msub><mi>HH</mi><mi>P</mi></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></msubsup><msup><mrow><mo>(</mo><msubsup><mi>R</mi><mrow><msub><mi>H</mi><mi>P</mi></msub><msub><mi>H</mi><mi>P</mi></msub></mrow><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></msubsup><mo>+</mo><mfrac><mi>&beta;</mi><mi>SNR</mi></mfrac><msub><mi>I</mi><mi>L</mi></msub><mo>)</mo></mrow><mrow><mo>-</mo><mn>1</mn></mrow></msup><msubsup><mover><mi>H</mi><mo>~</mo></mover><mrow><mi>F</mi><mo>,</mo><mi>LMMSE</mi></mrow><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></msubsup><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>5</mn><mo>)</mo></mrow></mrow></math>
Wherein,
Figure BSA00000256540000037
is the cross correlation matrix between all OFDM symbols on the nth subcarrier and the OFDM symbol containing the reference signal;
channel frequency domain response estimation on all subcarriers
Figure BSA00000256540000038
And performing the calculation, and finally obtaining channel transmission function values at all resource particles through wiener iterative filtering of a frequency domain and a time domain.
In the present invention, in the above algorithm description, there are pairs in wiener iterative filtering, whether in the frequency domain or the time domain:
<math><mrow><mo>(</mo><msub><mi>R</mi><mrow><msub><mi>H</mi><mi>P</mi></msub><msub><mi>H</mi><mi>P</mi></msub></mrow></msub><mo>+</mo><mfrac><mi>&beta;</mi><mi>SNR</mi></mfrac><mi>I</mi><mo>)</mo></mrow></math>
if the number of reference signals is large, the inversion operation becomes complicated.
To reduce the computation complexity of the channel estimation method proposed by the present invention, the autocorrelation matrix is processed
Figure BSA000002565400000310
Singular value decomposition is performed and then the inverse matrix is calculated
<math><mrow><msup><mrow><mo>(</mo><msub><mi>R</mi><mrow><msub><mi>H</mi><mi>P</mi></msub><msub><mi>H</mi><mi>P</mi></msub></mrow></msub><mo>+</mo><mfrac><mi>&beta;</mi><mi>SNR</mi></mfrac><mi>I</mi><mo>)</mo></mrow><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>;</mo></mrow></math>
The inverse matrix is decomposed into:
<math><mrow><msup><mrow><mo>(</mo><msub><mi>R</mi><mrow><msub><mi>H</mi><mi>P</mi></msub><msub><mi>H</mi><mi>P</mi></msub></mrow></msub><mo>+</mo><mfrac><mi>&beta;</mi><mi>SNR</mi></mfrac><mi>I</mi><mo>)</mo></mrow><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>=</mo><mfrac><mi>SNR</mi><mi>&beta;</mi></mfrac><mrow><mo>(</mo><mi>I</mi><mo>-</mo><mfrac><mi>SNR</mi><mi>&beta;</mi></mfrac><mo>&times;</mo><mi>U</mi><msup><mrow><mo>(</mo><msup><mi>&Lambda;</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>+</mo><mfrac><mi>SNR</mi><mi>&beta;</mi></mfrac><mi>I</mi><mo>)</mo></mrow><mrow><mo>-</mo><mn>1</mn></mrow></msup><msup><mi>U</mi><mi>H</mi></msup><mo>)</mo></mrow><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>6</mn><mo>)</mo></mrow></mrow></math>
where U is an orthogonal matrix column and Λ is a diagonal matrix.
Due to calculationThe matrix inversion is not needed, the calculation can be conveniently carried out, and meanwhile, in a 3GPP LTE downlink system, each subframe only has 14 OFDM symbols, and the OFDM symbols occupied by the reference signals only have 4, so that the autocorrelation matrix
Figure BSA00000256540000042
The singular value decomposition is relatively easy, so that the operation complexity of the algorithm is greatly simplified.
The invention provides a channel estimation method based on pilot signals in a 3GPP LTE downlink system, which aims at the 3GPP LTE downlink system, adopts a time-frequency two-dimensional joint wiener iterative filtering channel estimation method, and is based on a Linear Minimum Mean Square Error (LMMSE) algorithm. In the invention, firstly wiener iterative filtering based on an LMMSE algorithm is carried out in a frequency domain, and then wiener iterative filtering is carried out once in a time domain by utilizing a value estimated from the frequency domain. Experimental tests show that the signal estimation method can effectively improve Bit Error Rate (BER) performance, and is closer to ideal channel estimation compared with the traditional method. In addition, the invention reduces the operation complexity of the algorithm by performing Singular Value Decomposition (SVD) on the LMMSE algorithm, so that the channel estimation method provided by the invention does not increase too much operation complexity.
Drawings
Fig. 1 is a diagram of a 3GPP LTE downlink system model;
fig. 2 is a schematic diagram of distribution of reference signals in a resource block;
fig. 3 is a graph comparing the error rate performance of different channel estimation methods.
Detailed Description
The following description of the embodiments of the present invention is provided in order to better understand the present invention for those skilled in the art with reference to the accompanying drawings. It is to be expressly noted that in the following description, a detailed description of known functions and designs will be omitted when it may obscure the subject matter of the present invention.
Fig. 1 is a 3GPP LTE downlink system model diagram, as shown in fig. 1, at a transmitting end, input bits first enter a channel coding module, then the coded bits are scrambled and then modulated into complex modulation symbols, the complex modulation symbols are mapped onto transmission layers of one or more antenna ports, each layer is mapped onto resource particles of each antenna port after precoding, a reference signal is inserted at the same time, and finally, the symbols of each antenna port, including data and reference signals, are modulated into complex time domain OFDM signals and transmitted in a wireless multipath channel.
At the receiving end, in the ideal synchronization case, the receiving end signal Y after OFDM demodulation can be expressed as:
Y=XH+W (7)
where H and W represent a channel frequency domain response and additive white gaussian noise, respectively, and X and Y represent a transmission signal and a reception signal, respectively.
In order to recover the transmitted bits from the received signal, the channel estimation module needs to obtain an estimate of the parameter H. For this reason, the 3GPP LTE downlink system inserts reference signals at fixed time-frequency two-dimensional positions, and the receiving end signals at these positions can be represented as:
YP=XPHP+WP (8)
wherein XP、HPAnd WPIs a subset of the correlation matrix in equation (7), subscript (.)PIndicating the location of the transmitted reference signal.
The 3GPP LTE standard defines three downlink reference signals: a cell-specific reference signal, a Multicast Broadcast Single Frequency Network (MBSFN) reference signal, and a terminal-specific reference signal. In this embodiment, a cell-specific reference signal is used for the analysis.
Fig. 2 shows a scheme for allocating downlink cell-specific reference signals transmitted by a single antenna on a resource block. Visible, reference signal (R)0) 7 OFDM symbols are spaced on the same subcarrier in the time domain, and 6 subcarriers are spaced in the same OFDM symbol in the frequency domain.
The existing channel estimation algorithm:
by data Y at the position of the received reference signalPAnd the transmitted reference signal XPFrequency domain response H of the channel at the position of the reference signal in equation (8)PThe LS estimate of (a) can be expressed as:
H ^ P , LS = X P - 1 Y P - - - ( 9 )
then, linear interpolation is performed in time domain and frequency domain on the estimated value of the channel frequency domain response at the position of the reference signal, so as to obtain the channel transmission function of all the data resource elements in fig. 2. The channel estimation algorithm based on the LS criterion is simple in structure, but the correlation characteristics of the frequency domain and the time domain of a channel are not utilized in the LS estimation, and the influence of noise is ignored in the estimation, so that the channel estimation value is sensitive to the influence of the noise.
Another channel estimation method is MMSE algorithm, which is widely used in OFDM channel estimation, and this method utilizes Signal-to-Noise Ratio (SNR) and other channel statistical characteristic information, and the performance is superior to LS algorithm. The expression of the MMSE frequency domain channel estimation algorithm is as follows:
<math><mrow><msub><mi>H</mi><mi>LMMSE</mi></msub><mo>=</mo><msub><mi>R</mi><msub><mi>HH</mi><mi>P</mi></msub></msub><msup><mrow><mo>(</mo><msub><mi>R</mi><mrow><msub><mi>H</mi><mi>P</mi></msub><msub><mi>H</mi><mi>P</mi></msub></mrow></msub><mo>+</mo><msubsup><mi>&sigma;</mi><mi>W</mi><mn>2</mn></msubsup><msup><mrow><mo>(</mo><msup><mi>XX</mi><mi>H</mi></msup><mo>)</mo></mrow><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>)</mo></mrow><mrow><mo>-</mo><mn>1</mn></mrow></msup><msub><mover><mi>H</mi><mo>^</mo></mover><mrow><mi>P</mi><mo>,</mo><mi>LS</mi></mrow></msub><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>10</mn><mo>)</mo></mrow></mrow></math>
wherein,
Figure BSA00000256540000062
represents H in formula (9)PThe LS estimate of (a) is,
Figure BSA00000256540000063
is a cross-correlation matrix representing all subcarriers within the same OFDM symbol and the subcarriers at the reference signal,
Figure BSA00000256540000064
represents the autocorrelation matrix of the sub-carriers at the reference signal within the same OFDM symbol,
Figure BSA00000256540000065
is the variance of additive white Gaussian noise, superscript (. cndot.)HRepresenting a conjugate transpose. If the transmitted symbols are mapped to the same constellation,
then in equation (10)
Figure BSA00000256540000066
Can use its expectation
Figure BSA00000256540000067
To show that:
<math><mrow><msubsup><mi>&sigma;</mi><mi>W</mi><mn>2</mn></msubsup><msup><mrow><mo>(</mo><msup><mi>XX</mi><mi>H</mi></msup><mo>)</mo></mrow><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>=</mo><mi>E</mi><mo>{</mo><msubsup><mi>&sigma;</mi><mi>W</mi><mn>2</mn></msubsup><msup><mrow><mo>(</mo><msup><mi>XX</mi><mi>H</mi></msup><mo>)</mo></mrow><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>}</mo><mo>=</mo><mfrac><mi>&beta;</mi><mi>SNR</mi></mfrac><msub><mi>I</mi><mi>P</mi></msub><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>11</mn><mo>)</mo></mrow></mrow></math>
wherein,
Figure BSA00000256540000069
is a constant, X, determined by the signal constellationkIs the point on the constellation diagram, β -1 for QPSK, β -17/9 for 16QAM, SNR is the average signal-to-noise ratio, IPIs a unit array. Then equation (11) can be further simplified as:
<math><mrow><msub><mover><mi>H</mi><mo>^</mo></mover><mi>LMMSE</mi></msub><mo>=</mo><msub><mi>R</mi><msub><mi>HH</mi><mi>P</mi></msub></msub><msup><mrow><mo>(</mo><msub><mi>R</mi><mrow><msub><mi>H</mi><mi>P</mi></msub><msub><mi>H</mi><mi>P</mi></msub></mrow></msub><mo>+</mo><mfrac><mi>&beta;</mi><mi>SNR</mi></mfrac><msub><mi>I</mi><mi>P</mi></msub><mo>)</mo></mrow><mrow><mo>-</mo><mn>1</mn></mrow></msup><msub><mover><mi>H</mi><mo>^</mo></mover><mrow><mi>P</mi><mo>,</mo><mi>LS</mi></mrow></msub><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>12</mn><mo>)</mo></mrow></mrow></math>
and then, linear interpolation is carried out on the channel frequency domain response estimation value of the frequency domain in the time domain, and finally, the channel transmission functions of all the data resource particles in the figure 2 are obtained.
As can be seen from equation (12), the LMMSE channel estimation algorithm actually performs a filtering process on the LS channel estimation result according to the MMSE criterion, so as to eliminate the influence of partial noise. In order to further eliminate noise, improve the performance of the error rate of a system and simultaneously not increase too much operation complexity, considering that a 3GPP LTE downlink system inserts reference signals in two directions of a time domain and a frequency domain, the invention provides a time-frequency two-dimensional joint wiener iterative filtering channel estimation method suitable for the 3GPP LTE downlink system.
In this embodiment, performance of various channel estimation methods in a veha (vehicular a) channel environment of a 3GPP LTE downlink system is tested by taking a single-user single-input single-output (SUSISO) as an example. Testing environmental parameters: the bandwidth is 1.4M, QPSK modulation is performed, a cell special reference signal is adopted as a reference signal, the sampling frequency is 1.92MHz, the subcarrier interval is 15KHz, and the frequency is 1000 times.
Fig. 3 is a graph comparing the error rate performance of different channel estimation methods.
Fig. 3 shows the error rate performance of different channel estimation methods in a VehA channel of a 3GPP LTE downlink system, where "LS" represents the error rate performance of the LS channel estimation method, and "MMSE" represents the error rate performance of the MMSE channel estimation method, and the error rate performance curves of LS, MMSE, the present invention, and the ideal channel estimation method are sequentially from top to bottom. It can be seen from fig. 3 that the bit error rate performance of the time-frequency two-dimensional joint wiener iterative filtering channel estimation algorithm provided by the invention is superior to that of the LS and MMSE algorithms, and is closer to that of ideal channel estimation, and meanwhile, too much operation complexity is not increased.
The invention provides a time-frequency two-dimensional joint wiener iterative filtering channel estimation method with relatively low complexity for a 3GPP LTE downlink system. The method reduces the noise influence and improves the bit error rate performance by carrying out wiener iterative filtering in a frequency domain and a time domain. The test result shows that the channel estimation method provided by the invention has better performance than LS and MMSE channel estimation methods. Meanwhile, the method of the invention also carries out singular value decomposition on the autocorrelation matrix in the algorithm, thereby obviously reducing the operation complexity of the algorithm.
Although illustrative embodiments of the present invention have been described above to facilitate the understanding of the present invention by those skilled in the art, it should be understood that the present invention is not limited to the scope of the embodiments, and various changes may be made apparent to those skilled in the art as long as they are within the spirit and scope of the present invention as defined and defined by the appended claims, and all matters of the invention which utilize the inventive concepts are protected.

Claims (2)

1. A channel estimation method based on pilot signals in a 3GPP LTE downlink system is characterized by comprising the following steps:
(1) frequency domain wiener iterative filtering
Firstly, obtaining a channel frequency domain response estimated value at a reference signal position on the same OFDM symbol:
<math><mrow><msubsup><mover><mi>H</mi><mo>^</mo></mover><mrow><mi>P</mi><mo>,</mo><mi>LMMSE</mi></mrow><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></msubsup><mo>=</mo><msub><mi>R</mi><mrow><msub><mi>H</mi><mi>P</mi></msub><msub><mi>H</mi><mi>P</mi></msub></mrow></msub><msup><mrow><mo>(</mo><msub><mi>R</mi><mrow><msub><mi>H</mi><mi>P</mi></msub><msub><mi>H</mi><mi>P</mi></msub></mrow></msub><mo>+</mo><mfrac><mi>&beta;</mi><mi>SNR</mi></mfrac><msub><mi>I</mi><mi>P</mi></msub><mo>)</mo></mrow><mrow><mo>-</mo><mn>1</mn></mrow></msup><msub><mover><mi>H</mi><mo>^</mo></mover><mrow><mi>P</mi><mo>,</mo><mi>LS</mi></mrow></msub><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></mrow></math>
in the formula (1), the reaction mixture is,
Figure FSA00000256539900012
representing the autocorrelation matrix of the subcarriers at the reference signal within the same OFDM symbol, beta being a constant determined by the signal constellation, SNR being the average signal-to-noise ratio, IPIs a unit array;
Figure FSA00000256539900013
for the channel frequency domain response H at the reference signal locationPLS estimate of (1), subscript (.)PIndicating the location of the transmitted reference signal.
Then to
Figure FSA00000256539900014
Wiener iterative filtering based on LMMSE algorithm is carried out to reduce the influence of noise and interference on the channel frequency response estimation value on the reference signal position, the bit error rate performance is improved, and the channel frequency response estimation value on the reference signal position after the wiener iterative filtering
Figure FSA00000256539900015
<math><mrow><msubsup><mover><mi>H</mi><mo>^</mo></mover><mrow><mi>P</mi><mo>,</mo><mi>LMMSE</mi></mrow><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow></msubsup><mo>=</mo><msub><mi>R</mi><mrow><msub><mi>H</mi><mi>P</mi></msub><msub><mi>H</mi><mi>P</mi></msub></mrow></msub><msup><mrow><mo>(</mo><msub><mi>R</mi><mrow><msub><mi>H</mi><mi>P</mi></msub><msub><mi>H</mi><mi>P</mi></msub></mrow></msub><mo>+</mo><mfrac><mi>&beta;</mi><mi>SNR</mi></mfrac><msub><mi>I</mi><mi>P</mi></msub><mo>)</mo></mrow><mrow><mo>-</mo><mn>1</mn></mrow></msup><msubsup><mover><mi>H</mi><mo>^</mo></mover><mrow><mi>P</mi><mo>,</mo><mi>LMMSE</mi></mrow><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></msubsup><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow></mrow></math>
Finally, channel frequency domain response estimated value at the position of the reference signal after wiener iterative filtering is utilized
Figure FSA00000256539900017
Estimating the channel frequency domain response value of all subcarriers on the same OFDM symbol
Figure FSA00000256539900018
<math><mrow><msub><mover><mi>H</mi><mo>^</mo></mover><mrow><mi>F</mi><mo>,</mo><mi>LMMSE</mi></mrow></msub><mo>=</mo><msub><mi>R</mi><msub><mi>HH</mi><mi>P</mi></msub></msub><msup><mrow><mo>(</mo><msub><mi>R</mi><mrow><msub><mi>H</mi><mi>P</mi></msub><msub><mi>H</mi><mi>P</mi></msub></mrow></msub><mo>+</mo><mfrac><mi>&beta;</mi><mi>SNR</mi></mfrac><msub><mi>I</mi><mi>P</mi></msub><mo>)</mo></mrow><mrow><mo>-</mo><mn>1</mn></mrow></msup><msubsup><mover><mi>H</mi><mo>^</mo></mover><mrow><mi>P</mi><mo>,</mo><mi>LMMSE</mi></mrow><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow></msubsup><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow></mrow></math>
In the formula (3), the reaction mixture is,
Figure FSA000002565399000110
a cross-correlation matrix representing all subcarriers within the same OFDM symbol and subcarriers at the reference signal;
(2) time-domain wiener iterative filtering
Channel frequency domain response estimation value on nth sub-carrier
Figure FSA000002565399000111
And (2) performing wiener iterative filtering based on an LMMSE algorithm to reduce related residual noise and improve the bit error rate performance:
<math><mrow><msubsup><mover><mi>H</mi><mo>~</mo></mover><mrow><mi>F</mi><mo>,</mo><mi>LMMSE</mi></mrow><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></msubsup><mo>=</mo><msubsup><mi>R</mi><mrow><msub><mi>H</mi><mi>P</mi></msub><msub><mi>H</mi><mi>P</mi></msub></mrow><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></msubsup><msup><mrow><mo>(</mo><msubsup><mi>R</mi><mrow><msub><mi>H</mi><mi>P</mi></msub><msub><mi>H</mi><mi>P</mi></msub></mrow><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></msubsup><mo>+</mo><mfrac><mi>&beta;</mi><mi>SNR</mi></mfrac><msub><mi>I</mi><mi>L</mi></msub><mo>)</mo></mrow><mrow><mo>-</mo><mn>1</mn></mrow></msup><msubsup><mover><mi>H</mi><mo>^</mo></mover><mrow><mi>F</mi><mo>,</mo><mi>LMMSE</mi></mrow><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></msubsup><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>4</mn><mo>)</mo></mrow></mrow></math>
in the formula (4), the reaction mixture is,
Figure FSA000002565399000113
is the autocorrelation matrix between all OFDM symbols containing reference signals on the nth subcarrier in a subframe, ILIs an identity matrix, L represents the number of OFDM symbols containing reference signals in each subframe;
channel frequency response estimation after iterative filtering using wienerEstimating the channel frequency response value of the nth subcarrier of all OFDM symbols in each subframe
Figure FSA00000256539900022
<math><mrow><msubsup><mover><mi>H</mi><mo>^</mo></mover><mrow><mi>T</mi><mo>,</mo><mi>LMMSE</mi></mrow><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></msubsup><mo>=</mo><msubsup><mi>R</mi><msub><mi>HH</mi><mi>P</mi></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></msubsup><msup><mrow><mo>(</mo><msubsup><mi>R</mi><mrow><msub><mi>H</mi><mi>P</mi></msub><msub><mi>H</mi><mi>P</mi></msub></mrow><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></msubsup><mo>+</mo><mfrac><mi>&beta;</mi><mi>SNR</mi></mfrac><msub><mi>I</mi><mi>L</mi></msub><mo>)</mo></mrow><mrow><mo>-</mo><mn>1</mn></mrow></msup><msubsup><mover><mi>H</mi><mo>~</mo></mover><mrow><mi>F</mi><mo>,</mo><mi>LMMSE</mi></mrow><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></msubsup><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>5</mn><mo>)</mo></mrow></mrow></math>
Wherein,
Figure FSA00000256539900024
is the cross correlation matrix between all OFDM symbols on the nth subcarrier and the OFDM symbol containing the reference signal;
channel frequency domain response estimation on all subcarriers
Figure FSA00000256539900025
And performing the calculation, and finally obtaining channel transmission function values at all resource particles through wiener iterative filtering of a frequency domain and a time domain.
2. 3GPP LTE downlink system according to claim 1 based onMethod for channel estimation of pilot signals, characterized in that the autocorrelation matrices in steps (1) and (2) are first aligned
Figure FSA00000256539900026
Singular value decomposition is performed and then the inverse matrix is calculated
Figure FSA00000256539900027
The inverse matrix is decomposed into:
Figure FSA00000256539900028
wherein U is an orthogonal matrix column, Λ is a diagonal matrix, and I is I in steps (1) and (2)pOr IL
CN 201010272328 2010-09-03 2010-09-03 Channel estimation method based on pilot frequency signal in 3GPP LTE downlink system Expired - Fee Related CN101945060B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201010272328 CN101945060B (en) 2010-09-03 2010-09-03 Channel estimation method based on pilot frequency signal in 3GPP LTE downlink system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201010272328 CN101945060B (en) 2010-09-03 2010-09-03 Channel estimation method based on pilot frequency signal in 3GPP LTE downlink system

Publications (2)

Publication Number Publication Date
CN101945060A true CN101945060A (en) 2011-01-12
CN101945060B CN101945060B (en) 2013-01-23

Family

ID=43436840

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201010272328 Expired - Fee Related CN101945060B (en) 2010-09-03 2010-09-03 Channel estimation method based on pilot frequency signal in 3GPP LTE downlink system

Country Status (1)

Country Link
CN (1) CN101945060B (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102215193A (en) * 2011-05-26 2011-10-12 中兴通讯股份有限公司 Frequency domain balancing method and device
CN102638425A (en) * 2012-03-13 2012-08-15 京信通信系统(中国)有限公司 Method and device for estimating downlink channels in long-term evolution system
CN102664834A (en) * 2011-09-21 2012-09-12 清华大学 Channel estimation method based on two-dimensional interpolation in LTE system
CN102761502A (en) * 2011-04-29 2012-10-31 普天信息技术研究院有限公司 Channel estimation method of OFDM (orthogonal frequency division multiplexing) system
CN103051572A (en) * 2013-01-04 2013-04-17 北京北方烽火科技有限公司 Estimation method and device for LTE (long term evolution) channel
CN103227760A (en) * 2013-04-28 2013-07-31 中国铁路通信信号股份有限公司 Channel estimation method under high-speed mobile environment
CN103368876A (en) * 2012-03-31 2013-10-23 富士通株式会社 Channel estimation method and device
CN104994517A (en) * 2015-06-10 2015-10-21 哈尔滨工业大学 High-altitude platform MIMO communication system three-dimensional channel modeling method
CN102215193B (en) * 2011-05-26 2016-12-14 中兴通讯股份有限公司 Frequency-domain equilibrium method and device
CN108390837A (en) * 2018-02-08 2018-08-10 广州慧睿思通信息科技有限公司 A kind of LTE down channels method of estimation
CN110830396A (en) * 2019-10-29 2020-02-21 西安交通大学 Physical layer key-based IMSI privacy protection method and device
CN111385230A (en) * 2018-12-29 2020-07-07 中兴通讯股份有限公司 Channel estimation method and system based on wiener self-adaptation
CN109525521B (en) * 2018-11-22 2021-03-23 南京铁道职业技术学院 Channel estimation method
CN114531326A (en) * 2022-02-14 2022-05-24 Oppo广东移动通信有限公司 Filter coefficient determination method, filter coefficient determination device, computer equipment and storage medium
CN114697178A (en) * 2020-12-28 2022-07-01 广州慧睿思通科技股份有限公司 Method and device for estimating pilot frequency position channel, storage medium and electronic equipment

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10084581B2 (en) * 2014-07-11 2018-09-25 Qualcomm Incorporated Overlay unicast or MBSFN data transmission on top of MBSFN transmission
US9596102B2 (en) 2014-09-16 2017-03-14 Samsung Electronics Co., Ltd. Computing system with channel estimation mechanism and method of operation thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008099342A1 (en) * 2007-02-12 2008-08-21 Nokia Corporation Shared control channel data-assisted channel estimation
WO2009025376A1 (en) * 2007-08-17 2009-02-26 Nec Corporation Method and apparatus for channel estimation in ofdm
CN101567870A (en) * 2008-04-22 2009-10-28 普天信息技术研究院有限公司 Detection method and device of home position, peak position and final position of channel response
CN101692665A (en) * 2009-09-28 2010-04-07 中兴通讯股份有限公司 Demodulation method and demodulator of orthogonal frequency division multiplexing-multiple-input-multiple-output (OFDM-MIMO) system
CN101702696A (en) * 2009-11-25 2010-05-05 北京天碁科技有限公司 Implement method and device of channel estimation
CN101729456A (en) * 2009-12-14 2010-06-09 上海交通大学 Channel estimation method of orthogonal frequency division multiplexing (OFDM) communication system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008099342A1 (en) * 2007-02-12 2008-08-21 Nokia Corporation Shared control channel data-assisted channel estimation
WO2009025376A1 (en) * 2007-08-17 2009-02-26 Nec Corporation Method and apparatus for channel estimation in ofdm
CN101567870A (en) * 2008-04-22 2009-10-28 普天信息技术研究院有限公司 Detection method and device of home position, peak position and final position of channel response
CN101692665A (en) * 2009-09-28 2010-04-07 中兴通讯股份有限公司 Demodulation method and demodulator of orthogonal frequency division multiplexing-multiple-input-multiple-output (OFDM-MIMO) system
CN101702696A (en) * 2009-11-25 2010-05-05 北京天碁科技有限公司 Implement method and device of channel estimation
CN101729456A (en) * 2009-12-14 2010-06-09 上海交通大学 Channel estimation method of orthogonal frequency division multiplexing (OFDM) communication system

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102761502A (en) * 2011-04-29 2012-10-31 普天信息技术研究院有限公司 Channel estimation method of OFDM (orthogonal frequency division multiplexing) system
CN102761502B (en) * 2011-04-29 2015-02-11 普天信息技术研究院有限公司 Channel estimation method of OFDM (orthogonal frequency division multiplexing) system
CN102215193A (en) * 2011-05-26 2011-10-12 中兴通讯股份有限公司 Frequency domain balancing method and device
CN102215193B (en) * 2011-05-26 2016-12-14 中兴通讯股份有限公司 Frequency-domain equilibrium method and device
CN102664834A (en) * 2011-09-21 2012-09-12 清华大学 Channel estimation method based on two-dimensional interpolation in LTE system
CN102638425A (en) * 2012-03-13 2012-08-15 京信通信系统(中国)有限公司 Method and device for estimating downlink channels in long-term evolution system
CN102638425B (en) * 2012-03-13 2015-08-12 京信通信系统(中国)有限公司 The channel estimation methods of long term evolution downlink channel and device
CN103368876A (en) * 2012-03-31 2013-10-23 富士通株式会社 Channel estimation method and device
CN103051572A (en) * 2013-01-04 2013-04-17 北京北方烽火科技有限公司 Estimation method and device for LTE (long term evolution) channel
CN103227760B (en) * 2013-04-28 2016-03-16 中国铁路通信信号股份有限公司 Channel estimation methods under a kind of high-speed mobile environment
CN103227760A (en) * 2013-04-28 2013-07-31 中国铁路通信信号股份有限公司 Channel estimation method under high-speed mobile environment
CN104994517A (en) * 2015-06-10 2015-10-21 哈尔滨工业大学 High-altitude platform MIMO communication system three-dimensional channel modeling method
CN104994517B (en) * 2015-06-10 2019-04-09 哈尔滨工业大学 A kind of high altitude platform MIMO communication system three dimensional channel modeling method
CN108390837A (en) * 2018-02-08 2018-08-10 广州慧睿思通信息科技有限公司 A kind of LTE down channels method of estimation
CN108390837B (en) * 2018-02-08 2021-05-14 广州慧睿思通信息科技有限公司 LTE downlink channel estimation method
CN109525521B (en) * 2018-11-22 2021-03-23 南京铁道职业技术学院 Channel estimation method
CN111385230A (en) * 2018-12-29 2020-07-07 中兴通讯股份有限公司 Channel estimation method and system based on wiener self-adaptation
CN111385230B (en) * 2018-12-29 2023-03-14 中兴通讯股份有限公司 Channel estimation method and system based on wiener self-adaptation
CN110830396A (en) * 2019-10-29 2020-02-21 西安交通大学 Physical layer key-based IMSI privacy protection method and device
CN110830396B (en) * 2019-10-29 2021-05-28 西安交通大学 Physical layer key-based IMSI privacy protection method and device
CN114697178A (en) * 2020-12-28 2022-07-01 广州慧睿思通科技股份有限公司 Method and device for estimating pilot frequency position channel, storage medium and electronic equipment
CN114531326A (en) * 2022-02-14 2022-05-24 Oppo广东移动通信有限公司 Filter coefficient determination method, filter coefficient determination device, computer equipment and storage medium

Also Published As

Publication number Publication date
CN101945060B (en) 2013-01-23

Similar Documents

Publication Publication Date Title
CN101945060A (en) Channel estimation method based on pilot frequency signal in 3GPP LTE downlink system
Bagadi et al. MIMO-OFDM channel estimation using pilot carries
KR101212471B1 (en) Delay restricted channel estimation for multi-carrier systems
US8787508B2 (en) Channel estimation method and apparatus
CN102860064A (en) Channel estimation and data detection in a wireless communication system in the presence of inter-cell interference
CN101729456B (en) Channel estimation method of orthogonal frequency division multiplexing (OFDM) communication system
CN101534281B (en) Diversity channel estimate method for OFDM systems based on comb-type pilot frequency
CN102045285A (en) Channel estimation method and device and communication system
Weng et al. Channel estimation for the downlink of 3GPP-LTE systems
Eldemiry et al. Overview of the orthogonal time-frequency space for high mobility communication systems
Wu et al. Oversampled orthogonal frequency division multiplexing in doubly selective fading channels
EP3090501B1 (en) Improved receiver for wireless communications networks
Omri et al. Estimation of highly Selective Channels for Downlink LTE MIMO-OFDM System by a Robust Neural Network.
CN102006250B (en) Turbo enhancement method for MIMO-SCFDE wireless communication receiver
CN102035787B (en) Band sequencing Turbo enhancement method for multiple-input multiple-output-orthogonal frequency division multiplexing (MIMO-OFDM) wireless communication receiver
CN106059980B (en) It is a kind of based on fast frequency-hopped multi-carrier spread spectrum method
Hou et al. A novel channel estimation algorithm for 3GPP LTE downlink system using joint time-frequency two-dimensional iterative Wiener filter
CN102801662B (en) Superimposed-pilot-based channel estimation method and device for multi-band ultra-wideband system
KR20100070478A (en) A method for channel and interference estimation in a wireless communication system and an apparatus thereof
CN104348765B (en) Channel estimation methods
Chen et al. Sorted QR decomposition based detection for MU-MIMO LTE uplink
Chamkhia et al. Improvement of LTE System Performances by Using a New Pilot Structure
Khan et al. Pilot Spacing Adaptation in OFDM for a Flexible Next Generation Waveform
Rui et al. A noise variance optimization method for 2x1-Dimensional Wiener filtered channel estimation
Sun et al. A novel channel estimation scheme for MIMO-OFDM systems with virtual subcarriers

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130123

Termination date: 20150903

EXPY Termination of patent right or utility model