CN101925914B - Mark based on bioassay - Google Patents
Mark based on bioassay Download PDFInfo
- Publication number
- CN101925914B CN101925914B CN200780102256.1A CN200780102256A CN101925914B CN 101925914 B CN101925914 B CN 101925914B CN 200780102256 A CN200780102256 A CN 200780102256A CN 101925914 B CN101925914 B CN 101925914B
- Authority
- CN
- China
- Prior art keywords
- template
- biometric
- candidate
- biometric template
- threshold
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004166 bioassay Methods 0.000 title description 6
- 238000006073 displacement reaction Methods 0.000 claims abstract description 81
- 239000013598 vector Substances 0.000 claims abstract description 67
- 238000000034 method Methods 0.000 claims abstract description 60
- 238000000605 extraction Methods 0.000 claims description 7
- 230000002093 peripheral effect Effects 0.000 claims 1
- 238000004891 communication Methods 0.000 description 16
- 238000012545 processing Methods 0.000 description 9
- 238000001514 detection method Methods 0.000 description 8
- 238000013519 translation Methods 0.000 description 7
- 230000006870 function Effects 0.000 description 5
- 210000000554 iris Anatomy 0.000 description 5
- 238000013478 data encryption standard Methods 0.000 description 4
- 230000009466 transformation Effects 0.000 description 4
- 230000000295 complement effect Effects 0.000 description 3
- 230000001815 facial effect Effects 0.000 description 3
- 210000001525 retina Anatomy 0.000 description 3
- 238000012795 verification Methods 0.000 description 3
- VBMOHECZZWVLFJ-GXTUVTBFSA-N (2s)-2-[[(2s)-6-amino-2-[[(2s)-6-amino-2-[[(2s,3r)-2-[[(2s,3r)-2-[[(2s)-6-amino-2-[[(2s)-2-[[(2s)-6-amino-2-[[(2s)-2-[[(2s)-2-[[(2s)-2,6-diaminohexanoyl]amino]-5-(diaminomethylideneamino)pentanoyl]amino]propanoyl]amino]hexanoyl]amino]propanoyl]amino]hexan Chemical compound NC(N)=NCCC[C@@H](C(O)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CCCCN)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H]([C@H](O)C)NC(=O)[C@H](CCCCN)NC(=O)[C@H](C)NC(=O)[C@H](CCCCN)NC(=O)[C@H](C)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@@H](N)CCCCN VBMOHECZZWVLFJ-GXTUVTBFSA-N 0.000 description 2
- 238000003491 array Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 108010068904 lysyl-arginyl-alanyl-lysyl-alanyl-lysyl-threonyl-threonyl-lysyl-lysyl-arginine Proteins 0.000 description 2
- 238000010295 mobile communication Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 230000003542 behavioural effect Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000013139 quantization Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
Abstract
一种生物测定模板匹配方法,包括下列步骤:提供(200,201)参考生物测定模板和候选生物测定模板,每个模板包括各自的多个细节的位置数据和朝向数据;将来自候选模板的每个细节的朝向数据与来自参考模板的每个细节的朝向数据进行比较(212);当所选对的朝向数据相差不超过第一阈值时,确定(213)代表所选细节对的位置数据的差的位移矢量;确定(214)彼此之差小于第二阈值的位移矢量的最大数量;如果位移矢量的所述最大数量小于第三阈值(215),则返回不匹配(216),否则返回匹配(217)。还提供了基于生物测定的识别方法、设备和系统,以及具有处理器的便携式数据载体和安全电子系统。
A biometric template matching method, comprising the steps of: providing (200, 201) a reference biometric template and a candidate biometric template, each template including position data and orientation data of a respective plurality of details; The orientation data for each minutiae is compared (212) with the orientation data for each minutiae from the reference template; when the orientation data for the selected pair do not differ by more than a first threshold, determining (213) the position data representing the selected pair of minutiae Poor displacement vectors; determine (214) the maximum number of displacement vectors that differ from each other by less than a second threshold; if the maximum number of displacement vectors is less than a third threshold (215), return a mismatch (216), otherwise return a match (217). A biometric based identification method, device and system, as well as a portable data carrier and a secure electronic system with a processor are also provided.
Description
一般而言,本发明涉及基于生物测定的标识领域,具体来说,涉及生物测定模板匹配方法,基于生物测定的标识方法,设备和系统,以及带有处理器的便携式数据载体和安全电子系统。In general, the present invention relates to the field of biometric-based identification, and in particular, to a biometric template matching method, a biometric-based identification method, device and system, as well as a portable data carrier and a secure electronic system with a processor.
例如为了确保安全访问计算机以及计算机网络中的敏感数据或应用,为了确保安全访问受限制区域,为了保护交易的安全性,为了对电子文档进行数字签名等等,在允许或拒绝访问受保护的环境之前,唯一识别一个人的必要性越来越大。For example, in order to ensure safe access to sensitive data or applications in computers and computer networks, to ensure safe access to restricted areas, to protect the security of transactions, to digitally sign electronic documents, etc., when allowing or denying access to protected environments Before, there was a growing need to uniquely identify a person.
通过使用生物测定(“您是什么”)而进行的识别,即,使用对于每个人永久且唯一的身体或行为特征,已经变得越来越普及,因为其比通过令牌(“您有什么”)或密码之类(“您知道什么”)而进行的识别更能抵抗欺诈尝试。生物测定特征包括,例如,指纹、虹膜或视网膜,手或面部几何形状、话音、签名、笔迹,以及打字习惯。Identification through the use of biometrics (“what are you”), that is, using physical or behavioral characteristics that are permanent and unique to each individual, has become more popular ”) or passwords (“what do you know”) are more resistant to fraudulent attempts. Biometric characteristics include, for example, fingerprints, irises or retinas, hand or facial geometry, voice, signature, handwriting, and typing habits.
下面的讨论将专门针对指纹。然而,应该理解,本发明的基本原理也可以应用于其他生物测定特征,特别是诸如虹膜、视网膜、手和面部几何形状之类的几何特征。The following discussion will be devoted to fingerprints. However, it should be understood that the basic principles of the invention can also be applied to other biometric features, in particular geometric features such as iris, retina, hand and facial geometry.
为了利用指纹来进行识别,最初取得人的指纹的参考图像,并将其几个代表性的特征(称为细节)的所谓的登记模板存储起来,以便以后与来自每次从声称的人检测到的指纹的所谓的候选模板进行比较或匹配。For identification using fingerprints, a reference image of a person's fingerprint is initially taken and a so-called enrollment template of several representative features (called minutiae) of it is stored for later comparison with the The so-called candidate templates of the fingerprints are compared or matched.
为增大防止登记模板被复制后供盗用的安全性,并非维护来自受保护环境的注册用户的指纹的中央数据库,而是可以将登记模板存储在便携式数据载体中。To increase security against enrollment templates being copied for misappropriation, instead of maintaining a central database of fingerprints of enrolled users from a protected environment, enrollment templates may be stored in portable data carriers.
如此,要被识别的用户需要向识别设备呈现便携式数据载体以及他/她的手指,从而实现两因素识别。As such, the user to be identified needs to present the portable data carrier together with his/her finger to the identification device, thus enabling two-factor identification.
在“卡上匹配(Match-On-Card)”基于生物测定的识别系统中,登记模板和候选模板之间的比较是通过以带有微处理器的智能卡的形式存在的便携式数据载体本身来执行的。这进一步增强了识别系统的抵抗力,因为不需要智能卡释放登记模板。In "Match-On-Card" biometric-based identification systems, the comparison between enrollment and candidate templates is performed by the portable data carrier itself in the form of a smart card with a microprocessor of. This further increases the resistance of the identification system, as no smart card is required to release the enrollment template.
WO 03/007125公开了一种用于安全地与服务器进行通信的设备,包括生物测定传感器、处理器,以及智能卡,该智能卡包括匹配逻辑和包含存储的生物测定数据和诸如加密密钥之类的敏感数据的安全数据存储模块。通过智能卡匹配逻辑,将来自传感器的生物测定样本与所存储的生物测定数据进行比较。如果它们匹配,则处理器批准来自智能卡的敏感数据,并使用该敏感数据与服务器通信。WO03/007125一般依赖于已知的匹配方法,诸如统计方法、分段线性分类器,以及基于规则的方法。WO 03/007125 discloses a device for securely communicating with a server, comprising a biometric sensor, a processor, and a smart card including matching logic and containing stored biometric data and encryption keys such as encryption keys. Secure data storage module for sensitive data. The biometric sample from the sensor is compared to the stored biometric data via the smart card matching logic. If they match, the processor approves the sensitive data from the smart card and communicates with the server using that sensitive data. WO03/007125 generally relies on known matching methods such as statistical methods, piecewise linear classifiers, and rule-based methods.
生物测定特征是复杂的,并且因此通过大的电子表示(图像、语音信号等等)来表示,并且尽管保留了生物测定特征本身的唯一性,它们的检测仍然会有变化和错误。例如,在指纹的情况下,同一用户的手指几乎从不被按压在生物测定检测器上完全相同的位置。因此,对同一用户的手指的两次检测获取的两个生物测定模板可能不包含相同的细节,并且两个模板中存在的细节可能位置和方向不同。已知的匹配方法则通常涉及一个模板相对于另一个模板的旋转和平移,试图将两个模板叠加,就好像它们是在相同位置从手指获取的。这样的校准步骤后面是将来自两个模板的细节对进行比较。因而生物测定模板匹配一般需要大量的存储器和计算资源来执行校准步骤。Biometrics are complex and thus represented by large electronic representations (images, voice signals, etc.), and while preserving the uniqueness of the biometrics themselves, their detection is subject to variation and error. For example, in the case of fingerprints, the same user's finger is almost never pressed to the exact same location on the biometric detector. Therefore, two biometric templates acquired by two detections of the same user's finger may not contain the same minutiae, and minutiae present in the two templates may be in different positions and orientations. Known matching methods typically involve rotation and translation of one template relative to the other, attempting to superimpose the two templates as if they were taken from the finger at the same location. Such a calibration step is followed by a comparison of the minutiae pairs from the two templates. Biometric template matching thus typically requires substantial memory and computing resources to perform the calibration steps.
M.Osborne和N.K.Ratha在“A JC-BioAPI Compliant:Smart Card withBiometrics for Secure Access Control”,(J.Kittler和M.S.Nixon(Eds.):AVBPA 2203,LNCS 2688,pp.903-910,2003)中公开了一种基于指纹的“卡上匹配”应用。该文献中认识到,由于智能卡资源有限,特别是浮点协同处理器的不可用性,在智能卡上运行的匹配算法面临很大的约束。因此,匹配算法应该只能使用有限量的动态存储器和尽可能少的计算周期,并且应该在智能卡之外执行生物测定特征提取。根据该文献,由Java Card Forum(Java卡论坛)开发的JavaCard-BioAPI标准允许安全地在卡上注册参考生物测定,并且然后执行候选生物测定验证,而无需将参考数据暴露到卡以外。实际匹配算法留给行业中进行独立开发。M. Osborne and N.K. Ratha in "A JC-BioAPI Compliant: Smart Card with Biometrics for Secure Access Control", (J.Kittler and M.S. Nixon (Eds.): AVBPA 2203, LNCS 2688, pp.903-910, 2003) A fingerprint-based "match on card" application is disclosed. It is recognized in this literature that matching algorithms running on smart cards face significant constraints due to the limited resources of the smart card, especially the unavailability of floating-point co-processors. Therefore, the matching algorithm should only use a limited amount of dynamic memory and as few computation cycles as possible, and the biometric feature extraction should be performed outside of the smart card. According to this document, the JavaCard-BioAPI standard developed by the Java Card Forum allows secure registration of a reference biometric on a card and then performs candidate biometric verification without exposing the reference data outside the card. The actual matching algorithm is left to independent development in the industry.
Y.Gil等人在“Fingerprint Verification System Involving Smart Card”(P.J.Lee和C.H.Lim(Eds.):ICISC 2002,LNCS 2587,pp.510-524,2003,)中公开了一种使用多分辨率累加器阵列的“卡上匹配”系统,该系统被设计为满足智能卡的处理能力和存储器空间规范。该文献中的系统涉及,在验证阶段:图像预处理步骤,在该步骤中,对指纹图像进行细化,以防止从传感器中获取的图像失真;细节提取步骤,在该步骤中,创建模板文件,包括一些细节的位置、方向和类型;以及细节匹配步骤,在该步骤中,将输入指纹与注册的指纹进行比较。细节匹配步骤包括校准阶段,在该阶段,估计两个指纹之间的诸如平移和旋转之类的变换,并根据估计的参数对齐两个细节;以及匹配阶段,在该阶段,基于两个细节的位置,方向以及类型,将它们进行比较,并计算匹配分数。在校准阶段,建立离散化的变换,包括从输入的指纹图像的每一细节旋转和平移为注册的指纹图像的每一个细节,并统计每一变换的发生次数。为了降低算法的存储器空间要求以允许在智能卡中实现,该文献提出了从变换空间的较粗略的分辨率到较细的分辨率重复该校准阶段,以前面的迭代的最累积的变换为中心。这是以执行的指令数量更大为代价的,即,以执行时间更长为代价。此外,对变换的搜索还需要在标准智能卡中不可用的三角函数。Y.Gil et al. in "Fingerprint Verification System Involving Smart Card" (P.J.Lee and C.H.Lim (Eds.): ICISC 2002, LNCS 2587, pp.510-524, 2003, ) disclose a method using multi-resolution accumulation A "matching-on-card" system of processor arrays designed to meet the processing power and memory space specifications of smart cards. The system in this document involves, in the verification phase: an image preprocessing step, in which the fingerprint image is thinned to prevent distortion of the image acquired from the sensor; a minutiae extraction step, in which a template file is created , including the position, orientation and type of some minutiae; and a minutiae matching step, in which the input fingerprint is compared with the registered fingerprints. The minutiae matching step consists of a calibration phase, in which transformations such as translation and rotation between two fingerprints are estimated, and the two minutiae are aligned according to the estimated parameters; position, orientation, and type, compare them, and calculate a match score. In the calibration phase, a discretized transformation is established, including rotation and translation from each minutiae of the input fingerprint image to each minutiae of the registered fingerprint image, and the number of occurrences of each transformation is counted. In order to reduce the memory space requirement of the algorithm to allow implementation in a smart card, the document proposes to repeat this calibration phase from a coarser to a finer resolution of the transform space, centered on the most cumulative transform of the previous iterations. This comes at the cost of a larger number of instructions being executed, i.e., a longer execution time. In addition, the search for the transformation requires trigonometric functions that are not available in standard smart cards.
作为本发明的基础的技术问题是提供一种可以在诸如智能卡之类的资源受限环境中运行的匹配方法,以便实现高效的“卡上匹配”基于生物测定的识别系统和方法。The technical problem underlying the present invention is to provide a matching method that can operate in a resource-constrained environment such as a smart card in order to achieve an efficient "matching on card" biometric based identification system and method.
申请人已经觉察到,上面的问题可以通过减少为使两个生物测定模板被认为是匹配而所要进行的相互旋转,来加以解决。换言之,在识别期间,对用户被允许相对于用户的手指在登记时的位置旋转诸如他/她的手指之类的生物测定的位置的度数施加约束。Applicants have realized that the above problems can be solved by reducing the mutual rotation required for two biometric templates to be considered a match. In other words, during identification, a constraint is imposed on the degree the user is allowed to rotate the position of a biometric such as his/her finger relative to the position of the user's finger at the time of enrollment.
在第一方面,本发明涉及包括下列步骤的生物测定模板匹配方法:In a first aspect, the present invention relates to a method for template matching of biological assays comprising the steps of:
-提供参考生物测定模板和候选生物测定模板,每个模板包括各自的多个细节的位置数据和朝向数据,- providing a reference biometric template and a candidate biometric template, each template including position data and orientation data of respective multiple details,
-将来自候选生物测定模板的每个细节的朝向数据与来自参考生物测定模板的每个细节的朝向数据进行比较;- comparing the orientation data for each minutiae from the candidate bioassay template with the orientation data for each minutiae from the reference bioassay template;
-当来自候选生物测定模板的每个细节和来自参考生物测定模板的每个细节的所选对的朝向数据相差不超过第一阈值时,确定代表所选细节对的位置数据的差的位移矢量,- determining a displacement vector representing the difference of the position data of the selected pair of minutiae when the orientation data of each minutia from the candidate biometric template and each minutia from the reference biometric template differ by no more than a first threshold ,
-确定彼此相差小于第二阈值的位移矢量的最大数量,- determining the maximum number of displacement vectors that differ from each other by less than a second threshold,
-将位移矢量的所述最大数量与第三阈值进行比较,以及- comparing said maximum number of displacement vectors with a third threshold, and
-如果位移矢量的所述最大数量小于所述第三阈值,则返回不匹配,否则返回匹配。- If said maximum number of displacement vectors is smaller than said third threshold, return no match, otherwise return match.
通过首先执行细节之间的朝向比较,有益地避免了相对于一个模板旋转另一个模板的需求,特别是,避免了使用三角函数的需求。By first performing an orientation comparison between the minutiae, the need to rotate one template relative to another is advantageously avoided, and in particular, the need to use trigonometric functions is avoided.
在其另一方面,本发明涉及基于生物测定的识别方法,包括登记步骤,所述登记步骤包括提供用户的至少一个参考生物测定模板,以及识别步骤,所述识别步骤包括下列步骤:In another of its aspects, the invention relates to a biometric-based identification method comprising an enrollment step comprising providing at least one reference biometric template of a user, and an identification step comprising the steps of:
-获取代表声称的用户的至少一个生物测定特征的至少一个候选生物测定模板,- obtaining at least one candidate biometric template representing at least one biometric characteristic of the purported user,
-比较该至少一个参考模板和该至少一个候选模板,- comparing the at least one reference template with the at least one candidate template,
-在匹配的情况下,允许所述声称的用户访问受保护环境,以及- in case of a match, allow said purported user to access the protected environment, and
-在不匹配的情况下,拒绝所述声称的用户访问受保护环境,- in the case of a mismatch, deny said purported user access to the protected environment,
所述比较步骤包括上面的匹配方法。The comparing step includes the matching method above.
另一方面,本发明涉及具有处理器的便携式数据载体,包括适于执行上面的匹配方法的步骤的模块。In another aspect, the invention relates to a portable data carrier having a processor comprising modules adapted to perform the steps of the matching method above.
另一方面,本发明涉及基于生物测定的识别系统,包括适于执行上面的识别方法的步骤的基于生物测定的识别设备和至少一个具有处理器的便携式数据载体。In another aspect, the invention relates to a biometric based identification system comprising a biometric based identification device adapted to perform the steps of the above identification method and at least one portable data carrier provided with a processor.
另一方面,本发明涉及基于生物测定的识别方法,包括登记步骤,所述登记步骤包括在具有处理器的便携式数据载体中存储用户的至少一个参考生物测定模板,以及识别步骤,所述识别步骤包括下列步骤:In another aspect, the invention relates to a method of biometric-based identification comprising an enrollment step comprising storing at least one reference biometric template of a user in a portable data carrier having a processor, and an identification step comprising Include the following steps:
-将所述具有处理器的便携式数据载体与基于生物测定识别设备进行电子通信,- electronically communicating said portable data carrier with a processor with a biometric based identification device,
-向所述具有处理器的便携式数据载体提供声称的用户的候选生物测定模板,- providing said portable data carrier with a processor with a candidate biometric template of the purported user,
-在所述具有处理器的便携式数据载体内比较一个参考模板和所述候选模板,- comparing a reference template with said candidate template in said portable data carrier with processor,
-在匹配的情况下,将至少一个参考模板从所述具有处理器的便携式数据载体传送到所述基于生物测定的识别设备,以及,在所述基于生物测定的识别设备内,比较所述至少一个参考模板与至少一个候选生物测定模板,- in the case of a match, transferring at least one reference template from said portable data carrier with a processor to said biometric-based identification device, and, within said biometric-based identification device, comparing said at least a reference template and at least one candidate bioassay template,
-在匹配的情况下,允许所述声称的用户访问受保护环境,以及- in case of a match, allow said purported user to access the protected environment, and
-在不匹配的情况下,拒绝所述声称的用户访问受保护环境。- In case of a mismatch, deny said claimed user access to the protected environment.
通过参考附图只作为非限制性示例给出的对其某些优选实施例的下面的详细描述,本发明的进一步的特征和优点将变得更清楚,其中:Further characteristics and advantages of the present invention will become clearer from the following detailed description of some preferred embodiments thereof, given as non-limiting examples only, with reference to the accompanying drawings, in which:
-图1示出了根据本发明的基于生物测定的识别系统的优选实施例的框图,- Figure 1 shows a block diagram of a preferred embodiment of a biometric-based identification system according to the invention,
-图2示出了根据本发明的基于生物测定的识别方法的优选实施例的流程图,- Figure 2 shows a flow chart of a preferred embodiment of the biometric-based identification method according to the invention,
-图3示出了根据本发明的匹配方法的优选实施例的流程图,- Figure 3 shows a flow chart of a preferred embodiment of the matching method according to the invention,
-图4示出了图3的匹配方法的步骤的流程图,以及- Figure 4 shows a flow chart of the steps of the matching method of Figure 3, and
-图5和6是叠加在一起的登记模板和候选模板的示例性图示。- Figures 5 and 6 are exemplary illustrations of enrollment templates and candidate templates superimposed together.
在图1中,示出了根据本发明的基于生物测定的识别系统1的优选实施例的框图。In Fig. 1 a block diagram of a preferred embodiment of a biometric based identification system 1 according to the invention is shown.
系统1包括基于生物测定的识别设备2和诸如微处理器卡类型的智能卡,例如,SIM或USIM的带有处理器的至少一个便携式数据载体3,3′,3″...。为了简洁起见,下面,带有处理器的便携式数据载体3常常被称为智能卡3。智能卡3包括存储器4和处理器5。The system 1 comprises a biometric based identification device 2 and at least one portable data carrier 3, 3', 3"... with a processor, such as a smart card of the microprocessor card type, eg SIM or USIM. For the sake of brevity , hereinafter, a portable data carrier 3 with a processor is often referred to as a smart card 3. The smart card 3 includes a memory 4 and a processor 5.
基于生物测定的识别设备2是受保护环境E的一部分,或能够以电子方式与受保护环境E进行通信,以在通过基于生物测定的识别系统1进行识别时,允许或拒绝声称的用户对受保护环境E的访问。The biometric-based identification device 2 is part of, or is capable of electronically communicating with, the protected environment E to allow or deny the purported user's access to the protected environment E when identified by the biometric-based identification system 1 . Access to the protected environment E.
受保护环境E可以是各种环境中的任何一种,例如,包括诸如个人数据之类的敏感数据或诸如金融交易之类的敏感的应用,需要文档的电子签名的应用,诸如用于配置计算机或计算机网络或通信基站的管理应用的计算机或计算机网络,诸如移动电话或类似的产品的电子设备,自动取款机,诸如室验室或银行之类的受限制区域,以及类似区域。The protected environment E may be any of a variety of environments including, for example, sensitive data such as personal data or sensitive applications such as financial transactions, applications requiring electronic signatures of documents, such as for configuring computer Computers or computer networks for management applications or computer networks or communication base stations, electronic equipment such as mobile phones or similar products, automatic teller machines, restricted areas such as laboratories or banks, and similar areas.
基于生物测定的识别设备2能够通过智能卡读取器6,以电子方式与至少一个智能卡3进行通信,并且它包括存储器7和处理器8。The biometric based identification device 2 is able to communicate electronically with at least one smart card 3 via a smart card reader 6 and it comprises a memory 7 and a processor 8 .
此外,基于生物测定的识别设备2还包括至少一个生物测定检测器9,9′,9″...,或能够与它们进行电子通信。在一个简单实施例中,生物测定检测器9是指纹传感器。补充的生物测定检测器9′,9″...,如果提供的话,可以检测不同的生物测定特征。Furthermore, the biometric-based identification device 2 also comprises at least one biometric detector 9, 9', 9"..., or is able to communicate electronically with them. In a simple embodiment, the biometric detector 9 is a fingerprint Sensors. Complementary biometric detectors 9', 9"..., if provided, can detect different biometric features.
基于生物测定的识别设备2的处理器8包括适于驱动相应的生物测定检测器9,9′,9″...的至少一个模块10,10′,10″...,以便获取生物测定特征的相应的原始电子表示11,11′,11″...,并向识别设备2的存储器7提供原始电子表示11,11′,11″...。具体而言,当用户的手指按压在传感器9上时,获取指纹的原始电子图像11。原始电子图像11可以有益地是各种标准图像格式中的任何一种,如BMP、JPG、GIF和类似的格式。The processor 8 of the biometric-based identification device 2 comprises at least one module 10, 10', 10"... adapted to drive a corresponding biometric detector 9, 9', 9"... in order to obtain a biometric The corresponding raw electronic representations 11 , 11 ′, 11 ″ . . . of the features are provided to the memory 7 of the recognition device 2 . Specifically, when the user's finger presses on the sensor 9, the original electronic image 11 of the fingerprint is acquired. The original electronic image 11 may advantageously be in any of a variety of standard image formats, such as BMP, JPG, GIF and similar formats.
当指纹传感器9是与基于生物测定的识别设备2分离的单独的设备并具有其自己的驱动程序时,传感器驱动模块10可以是来自位于美国佛罗里达州墨尔本市的AuthenTec公司的模块AES4K,并可以,例如,通过Microsoft WindowsTM驱动程序子系统与指纹传感器9的驱动程序进行通信。When the fingerprint sensor 9 is a separate device from the biometric-based identification device 2 and has its own driver, the sensor driver module 10 may be a module AES4K from AuthenTec Corporation located in Melbourne, Florida, USA, and may, For example, the driver for the fingerprint sensor 9 communicates with the driver subsystem of Microsoft Windows ™ .
基于生物测定的识别设备2的处理器8进一步包括至少一个模块12,12′,12″...,它们适于处理相应的原始电子表示11,11′,11″...,并提供相应的候选生物测定模板13,13′,13″...。更具体地说,图像处理模块12适于执行图像增强或补充在指纹传感器9中执行的任何图像增强,诸如用于消除或过滤由于例如环境光、敏感表面上的灰尘、敏感表面不平坦等情况所造成的获取误差或噪声。图像处理模块12进一步适于从指纹中提取最重要的特征,如指纹脊线分叉、集中或中断的点,称为细节,并将候选生物测定模板13(这是包括每一个细节的代表性数据的数据结构)存储在识别设备2的存储器7中。The processor 8 of the biometric-based identification device 2 further comprises at least one module 12, 12', 12"... adapted to process a corresponding raw electronic representation 11, 11', 11"... and provide a corresponding Candidate biometric templates 13, 13', 13"... More specifically, the image processing module 12 is adapted to perform image enhancement or to supplement any image enhancement performed in the fingerprint sensor 9, such as for eliminating or filtering due to Such as acquisition errors or noise caused by ambient light, dust on the sensitive surface, unevenness of the sensitive surface, etc. The image processing module 12 is further adapted to extract the most important features from the fingerprint, such as fingerprint ridge bifurcation, concentration or interruption , called minutiae, and store candidate biometric templates 13 (this is a data structure comprising representative data for each minutiae) in the memory 7 of the recognition device 2 .
如下面进一步详细描述的,在本发明的优选实施例中,更具体地说,候选模板13包括以平面内正交坐标x,y的形式存在的位置数据和以相对于X轴的平面内角度的形式存在的朝向数据t。朝向数据t代表指纹脊线在细节点的环境中的一般方向,如NIST-国家标准与技术协会所规定的。As described in further detail below, in a preferred embodiment of the present invention, more specifically, candidate templates 13 include positional data in the form of in-plane orthogonal coordinates x, y and in-plane angles with respect to the x-axis The orientation data exists in the form of t. The orientation data t represents the general orientation of the fingerprint ridge in the context of the minutiae, as specified by NIST - National Institute of Standards and Technology.
图像处理模块12可以使用来自NIST的细节提取算法,并且它还可以包括模块MinDetect,这是一种在http://fingerprint.nist.gov/NFIS/index.html可获得的开放源代码程序(在本专利申请的申请日期时)。The image processing module 12 may use the detail extraction algorithm from NIST, and it may also include the module MinDetect, an open source program available at http://fingerprint.nist.gov/NFIS/index.html (at the filing date of this patent application).
补充的候选模板13′,13″...,如果提供的话,可以包括与候选模板13相同类型的数据,或者也可以包括代表从用户的不同生物测定获取的细节的不同类型数据,诸如虹膜、视网膜、手、脸,以及话音、签名、笔迹,以及打字习惯。例如,补充的候选模板13′,13″...可以包括面部模板的3D位置数据,或语音信号的峰值或频率的时间和时长。The supplementary candidate templates 13', 13"..., if provided, may comprise the same type of data as the candidate template 13, or may comprise a different type of data representing details obtained from different biometrics of the user, such as iris, Retina, hand, face, and voice, signature, handwriting, and typing habits. For example, supplementary candidate templates 13', 13"... may include 3D position data of facial templates, or time and duration.
智能卡3的存储器4适于安全地存储至少一个参考或登记模板14,14′,14″,...。登记模板14,14′,14″,...是类似于候选模板13,13′,13″,...当由监督受保护环境E的机构识别用户的身份时在初始化或登记步骤获得的。The memory 4 of the smart card 3 is adapted to securely store at least one reference or enrollment template 14, 14', 14", .... The enrollment template 14, 14', 14", ... is similar to the candidate template 13, 13' , 13″, ... Obtained at the initialization or registration step when the identity of the user is identified by the institution supervising the protected environment E.
登记模板14,14′,14″,...与候选模板13,13′,13″,...包括相同类型的数据和数据结构。更具体地说,登记模板14包括以平面内正交坐标x,y的形式存在的位置数据和以相对于X轴的(量化的)平面内角度的形式存在的朝向数据t。The enrollment templates 14, 14', 14", ... comprise the same type of data and data structures as the candidate templates 13, 13', 13", .... More specifically, the registration template 14 includes position data in the form of in-plane orthogonal coordinates x, y and orientation data t in the form of (quantified) in-plane angles with respect to the X-axis.
基于生物测定的识别系统1包括匹配模块15。由于下面将变得更清楚的理由,优选情况下,匹配模块15包括智能卡3的处理器5内的较粗略的匹配模块16和识别设备2的处理器8内的较精细的匹配模块17。The biometric based identification system 1 comprises a matching module 15 . For reasons that will become clearer below, the matching module 15 preferably comprises a coarser matching module 16 within the processor 5 of the smart card 3 and a finer matching module 17 within the processor 8 of the identification device 2 .
匹配模块15,具体而言,智能卡3的较粗略的匹配模块16,适于比较候选模板13与登记模板14。匹配模块15,具体而言,识别设备2中的较精细的匹配模块17,也适于比较补充的候选模板13′,13″,...与补充的登记模板14′,14″,...,和/或更加精细地比较候选模板13与登记模板14。The matching module 15 , in particular the coarser matching module 16 of the smart card 3 , is adapted to compare the candidate template 13 with the enrollment template 14 . The matching module 15, in particular the finer matching module 17 in the recognition device 2, is also adapted to compare the complementary candidate templates 13', 13", ... with the complementary enrollment templates 14', 14", .. ., and/or more finely compare the candidate template 13 with the enrollment template 14.
如下面更加清楚地描述的,当在识别设备2内提供了较精细的匹配模块17时,它可以在智能卡3的较粗略的匹配模块16返回匹配之后,只批准存储在智能卡3的存储器4中的登记模板14,14′,14″,...。As described more clearly below, when the finer matching module 17 is provided within the identification device 2, it may only approve storage in the memory 4 of the smart card 3 after the coarser matching module 16 of the smart card 3 returns a match. Registration templates 14, 14', 14", ....
也为此目的,基于生物测定的识别设备2的处理器8和智能卡3的处理器5各自包括彼此协作的安全信道子模块18,19,以在识别设备2和智能卡3之间建立安全通信信道20。Also for this purpose, the processor 8 of the biometric-based identification device 2 and the processor 5 of the smart card 3 each comprise a secure channel sub-module 18, 19 cooperating with each other to establish a secure communication channel between the identification device 2 and the smart card 3 20.
安全通信信道20实现加密,以对在识别设备2和智能卡3之间交换的数据进行加密,并确保识别设备2和智能卡3之间的每一个通信会话都是唯一的。交换的数据包括由智能卡3的较粗略的匹配模块16确定的匹配或不匹配,并可以包括登记模板14,14′,14″,...,以及存储在智能卡3的存储器4中的任何其他敏感数据21,如用户个人数据,数字证书,控制对受保护环境E的访问的用户忠诚度,以及类似的数据。The secure communication channel 20 implements encryption to encrypt data exchanged between the identification device 2 and the smart card 3 and to ensure that each communication session between the identification device 2 and the smart card 3 is unique. The data exchanged includes matches or non-matches determined by the coarser matching module 16 of the smart card 3, and may include enrollment templates 14, 14', 14", ..., and any other data stored in the memory 4 of the smart card 3 Sensitive data 21 such as user personal data, digital certificates, user loyalty controlling access to the protected environment E, and similar data.
识别设备2的安全信道子模块18可以实现Microsoft Cryptography ServiceProvider,而智能卡3的安全信道子模块19可以实现Java Cryptography Extension。它们可以通过使用PKCS-公钥加密标准来彼此进行协作。The secure channel submodule 18 of the identification device 2 can implement Microsoft Cryptography ServiceProvider, and the secure channel submodule 19 of the smart card 3 can implement Java Cryptography Extension. They can cooperate with each other by using PKCS - Public Key Cryptography Standard.
在优选实施例中,安全通信信道20包括非对称密钥加密子模块22,优选情况下,使用RSA标准,以及对称密钥加密子模块23,优选情况下,使用DES-数据加密标准。In a preferred embodiment, the secure communication channel 20 includes an asymmetric key encryption submodule 22, preferably using the RSA standard, and a symmetric key encryption submodule 23, preferably using the DES-Data Encryption Standard.
非对称密钥加密或RSA子模块被用来安全地交换对称密钥加密或DES子模块23的对称密钥24。The asymmetric key encryption or RSA submodule is used to securely exchange the symmetric key 24 of the symmetric key encryption or DES submodule 23 .
而对称密钥加密或DES子模块23又被用来在识别设备2和智能卡3之间安全地交换数据。In turn, the symmetric key encryption or DES submodule 23 is used to securely exchange data between the identification device 2 and the smart card 3 .
更具体地说,安全通信信道20,包括密钥容器25,该密钥容器可以是由MicrosoftWindows的CSP-密码服务提供程序所描述的密钥容器,或通常基于Unix的PKCS°11标准的任何其他组件。More specifically, the secure communication channel 20 includes a key container 25, which may be a key container as described by Microsoft Windows' CSP-Cryptographic Service Provider, or any other generally based on the Unix PKCS°11 standard components.
密钥容器25适于存储会话密钥24(它是DES子模块23的对称密钥24),识别设备2的私钥26和公钥27,可能还有智能卡3的私钥28和公钥29(它们是RSA子模块22的不对称密钥)。The key container 25 is adapted to store the session key 24 (which is the symmetric key 24 of the DES submodule 23), the private key 26 and the public key 27 of the identification device 2 and possibly the private key 28 and the public key 29 of the smart card 3 (They are the asymmetric keys of the RSA submodule 22).
最后,基于生物测定的识别设备2的处理器8包括高级别模块30,该模块适于与受保护环境E以及与智能卡3接口,并协调上文所描述的处理器8的各种模块。Finally, the processor 8 of the biometric-based identification device 2 comprises a high-level module 30 suitable for interfacing with the protected environment E and with the smart card 3 and coordinating the various modules of the processor 8 described above.
优选情况下,识别设备2的高级别模块30是作为动态库Win32来实现的。Preferably, the high-level module 30 of the identification device 2 is implemented as a dynamic library Win32.
类似地,智能卡3的处理器5包括高级别模块31,该模块适于与基于生物测定的识别设备2接口,协调上文所描述的处理器5的各种模块,以及锁定/解锁对其自己的文件系统和存储器4的访问。Similarly, the processor 5 of the smart card 3 includes a high-level module 31 adapted to interface with the biometric-based identification device 2, coordinate the various modules of the processor 5 described above, and lock/unlock itself file system and memory 4 access.
优选情况下,智能卡3的高级别模块31是作为Java Card OS的Java Card Applet来实现的,并提供用于与基于生物测定的识别设备2接口的多个APDU-应用协议数据单元。Preferably, the high level module 31 of the smart card 3 is implemented as a Java Card Applet of Java Card OS and provides a plurality of APDUs - Application Protocol Data Units - for interfacing with the biometric based identification device 2 .
上文所描述的基于生物测定的识别系统1特别适合于执行根据本发明的基于生物测定的识别方法,下面将参考图2描述优选实施例。The biometric-based identification system 1 described above is particularly suitable for carrying out the biometric-based identification method according to the invention, a preferred embodiment of which will be described below with reference to FIG. 2 .
在登记步骤100中,一个或多个生物测定参考或登记模板14,14′,14″,...从由管理受保护环境E的机构识别其身份的用户获得(步骤101),并被存储在智能卡3的存储器4内(步骤102)。智能卡3被移交给用户(步骤103)。In a registration step 100, one or more biometric reference or registration templates 14, 14', 14", ... are obtained (step 101) from a user whose identity is identified by the agency managing the protected environment E, and are stored In the memory 4 of the smart card 3 (step 102). The smart card 3 is handed over to the user (step 103).
此处没有全面地描述获取登记模板的步骤101,该步骤101可以以已知的许多方式来执行。在任何情况下,都可以对下面所描述的识别步骤104的类似步骤110-113进行参考。The step 101 of obtaining an enrollment template is not fully described here, and this step 101 can be performed in many known ways. In any case, reference may be made to similar steps 110-113 of the identification step 104 described below.
对于每一个用户/智能卡3,登记步骤100只执行一次。The registration step 100 is performed only once for each user/smart card 3 .
在登记步骤100之后,每当要识别声称的用户时,都执行识别步骤104,以便允许(步骤105)或拒绝(步骤106)他/她对受保护环境E的访问。下面将详细描述识别步骤104。After the registration step 100, whenever the purported user is to be identified, an identification step 104 is performed in order to allow (step 105) or deny (step 106) his/her access to the protected environment E. The identifying step 104 will be described in detail below.
在初始化步骤107中,通过将存储了模板14,14′,14″,...的带有处理器的便携式数据载体或智能卡3与基于生物测定的识别设备2进行电子通信,即,用户向读取器6呈现智能卡3建立基于生物测定的识别系统1(步骤108);以及识别系统1建立安全通信信道20(步骤109)。In an initialization step 107, a portable data carrier with a processor or a smart card 3 storing templates 14, 14', 14", ... is electronically communicated with the biometric based identification device 2, i.e. the user sends The reader 6 presents the smart card 3 establishing a biometric based identification system 1 (step 108); and the identification system 1 establishes a secure communication channel 20 (step 109).
建立安全通信信道20的步骤109不是强制性的,但是,优选情况下,应该这样做,因为优选情况下,在每一个会话中都生成会话密钥24、私钥26(28),以及公钥27(29)。在每一个会话中,安全通信信道20都初始化密钥容器25。The step 109 of establishing a secure communication channel 20 is not mandatory, however, it should be done if preferred, since a session key 24, a private key 26 (28), and a public key are preferably generated in each session 27(29). In each session, the secure communication channel 20 initializes the key container 25 .
识别设备2的安全信道子模块18生成其私钥26以及其公钥27,并将公钥27传送到智能卡3的安全信道子模块19。智能卡3的安全信道子模块19生成会话密钥24,利用识别设备公钥27对会话密钥24进行加密,并将经加密的会话密钥24′传送到识别设备2的安全信道子模块18。最后,识别设备2的安全信道子模块18通过使用其私钥26,从经加密的会话密钥24′中解密会话密钥24。The secure channel sub-module 18 of the identification device 2 generates its private key 26 and its public key 27 and transmits the public key 27 to the secure channel sub-module 19 of the smart card 3 . The secure channel sub-module 19 of the smart card 3 generates a session key 24, encrypts the session key 24 with the identification device public key 27, and transmits the encrypted session key 24' to the secure channel sub-module 18 of the identification device 2. Finally, the secure channel sub-module 18 of the identification device 2 decrypts the session key 24 from the encrypted session key 24 ′ by using its private key 26 .
智能卡3的安全信道子模块19还可以生成其私钥28以及其公钥29,并将公钥29传送到识别设备2的安全信道子模块18。The secure channel submodule 19 of the smart card 3 can also generate its private key 28 and its public key 29 , and transmit the public key 29 to the secure channel submodule 18 of the identification device 2 .
在生物测定检测步骤110中,由生物测定检测器9,9′,9″,...以及传感器驱动模块10,10′,10″检测受保护环境E的声称的用户的至少一个生物测定特征,并生成其11,11′,11″,...。此步骤可以包括声称的用户在指纹传感器9上按下他/她的手指,对着麦克风说话或类似的情况。In a biometric detection step 110 at least one biometric characteristic of the purported user of the protected environment E is detected by the biometric detectors 9, 9', 9", ... and the sensor driver modules 10, 10', 10". , and generate its 11, 11', 11", .... This step may include the purported user pressing his/her finger on the fingerprint sensor 9, speaking into a microphone or similar.
在处理步骤111中,由处理模块12,12′,12″,...处理原始电子表示11,11′,11″,...并生成至少一个候选模板13,13′,13″,...。处理步骤111可以包括图像增强步骤112,并包括细节提取步骤113。In a processing step 111, the raw electronic representations 11, 11', 11", ... are processed by processing modules 12, 12', 12", ... and at least one candidate template 13, 13', 13", . ... the processing step 111 may include an image enhancement step 112 and include a detail extraction step 113 .
其后,由匹配模块15在匹配步骤115中将候选模板13与登记模板14进行比较,优选情况下,使用下面将讨论的匹配或比较方法。Thereafter, the candidate template 13 is compared with the enrollment template 14 in a matching step 115 by the matching module 15, preferably using a matching or comparing method as will be discussed below.
优选情况下,至少部分地在智能卡3内由其匹配模块16执行匹配步骤115。因此,在这样的情况下,在前面的模板通信步骤114中,优选情况下,通过安全通信信道20,并利用会话密钥24进行加密,向智能卡3传送候选模板13。Preferably, the matching step 115 is performed at least partly within the smart card 3 by its matching module 16 . Therefore, in such a case, the candidate template 13 is transmitted to the smart card 3 in the previous template communication step 114 , preferably via the secure communication channel 20 and encrypted with the session key 24 .
作为次优选的替换方案,向识别设备2传送登记模板14,仍旧通过安全通信信道20传送,并利用会话密钥24对它进行加密,并且,匹配步骤115是在识别设备2内由其匹配模块17执行的。作为再一个次优选的替换方案,匹配由智能卡3或识别设备2中的一个执行的,直接访问智能卡3或识别设备2中的另一个的存储器,模板通信步骤114被省去。As a less preferred alternative, the enrollment template 14 is transmitted to the identification device 2, still via the secure communication channel 20, and it is encrypted with the session key 24, and the matching step 115 is performed within the identification device 2 by its matching module 17 performed. As yet another less preferred alternative, matching is performed by one of the smart card 3 or the identification device 2, directly accessing the memory of the other of the smart card 3 or the identification device 2, the template communication step 114 being omitted.
在匹配的情况下,可以立即允许对受保护环境E的访问(步骤105)。在不匹配的情况下,可以立即拒绝对受保护环境E的访问(步骤106)。可另选地,在不匹配的情况下,可以重复生物测定特征检测步骤110、处理步骤111、模板通信步骤114以及匹配步骤115,优选情况下,不超过所选次数,如将尝试的次数与阈值进行比较的步骤116所检验的。In the case of a match, access to the protected environment E may be allowed immediately (step 105). In case of a mismatch, access to the protected environment E may be denied immediately (step 106). Alternatively, in the case of a mismatch, the biometric feature detection step 110, the processing step 111, the template communication step 114 and the matching step 115 may be repeated, preferably no more than a selected number of times, e.g. by dividing the number of attempts with Thresholds are compared to those checked in step 116.
在匹配的情况下,可以提供解锁智能卡功能和应用的步骤117。智能卡应用可以包括数字签名应用、加密应用、移动通信应用,等等。In case of a match, a step 117 of unlocking smart card functions and applications may be provided. Smart card applications may include digital signature applications, encryption applications, mobile communication applications, and the like.
更具体地说,智能卡3的功能和应用可以包括,例如,符合标准802.11的验证功能,具体而言,EAP-可扩展验证协议,诸如当受保护环境E是GSM或移动通信网络时是EAP-SIM,或者,诸如当受保护环境E是计算机或计算机网络时是EAP-TLS(传输层安全性),而智能卡3用于交换数字证书,诸如,例如,用于保护电子邮件消息安全,用于保护对网络或计算机或计算机网络应用的访问的安全;当受保护环境E是受限制区域时,基于RFID-射频识别的非接触式验证应用等等。More specifically, the functions and applications of the smart card 3 may include, for example, an authentication function conforming to standard 802.11, in particular, EAP-Extensible Authentication Protocol, such as EAP-Extensible Authentication Protocol when the protected environment E is a GSM or mobile communication network. SIM, or, such as EAP-TLS (Transport Layer Security) when the protected environment E is a computer or a computer network, and a smart card 3 for exchanging digital certificates, such as, for example, for securing e-mail messages, for Securing access to networks or computers or computer network applications; when the protected environment E is a restricted area, non-contact authentication applications based on RFID-Radio Frequency Identification, etc.
访问允许步骤105可以包括将敏感数据21从智能卡3传送到识别设备2(步骤118),优选情况下,通过安全信道20进行,并利用会话密钥24对敏感数据21进行加密,并将敏感数据21从识别设备2转发到受保护环境E(步骤119)。Access allowing step 105 may include transferring sensitive data 21 from smart card 3 to identification device 2 (step 118), preferably over secure channel 20, encrypting sensitive data 21 with session key 24, and transferring the sensitive data to 21 is forwarded from the identification device 2 to the protected environment E (step 119).
在特别优选的实施例中,基于生物测定的识别方法包括生物测定模板的两个级别的比较。相应地,优选情况下由具有更加有限的存储器和计算资源的智能卡3的匹配模块16执行的匹配步骤115,是第一或较粗略的匹配步骤115。In a particularly preferred embodiment, the biometric-based identification method comprises two levels of comparison of biometric templates. Accordingly, the matching step 115 , which is preferably performed by the matching module 16 of the smart card 3 having more limited memory and computing resources, is the first or coarser matching step 115 .
在第一匹配步骤115中匹配的情况下,不立即据此执行允许访问步骤105。而是,作为第一或较粗略的解锁步骤执行解锁步骤117,其中,在智能卡3内只解锁数据和应用的有限的子集。In the case of a match in the first matching step 115, the granting access step 105 is not performed immediately accordingly. Instead, the unlocking step 117 is performed as a first or coarser unlocking step, wherein only a limited subset of data and applications are unlocked within the smart card 3 .
在第一或较粗略的匹配步骤115中匹配的情况下,由具有比较多的存储器和计算功能的识别设备2的匹配模块17执行第二或精细的匹配步骤121。精细匹配步骤121可以包括已经在较粗略的匹配步骤115中被智能卡3所使用的相同候选模板13和登记模板14之间的较细的比较,或者,也可以包括补充的登记模板14′,14″和候选模板13′,13″...的对,例如,诸如虹膜数据、语音数据等的比较复杂的生物测定数据的模板之间的一个或多个比较。In the case of a match in the first or coarser matching step 115 , a second or finer matching step 121 is carried out by the matching module 17 of the recognition device 2 having relatively large memory and computing power. The fine matching step 121 may include a finer comparison between the same candidate template 13 and enrollment template 14 already used by the smart card 3 in the coarser matching step 115, or may also include supplementary enrollment templates 14', 14 One or more comparisons between pairs of " and candidate templates 13', 13"..., eg, templates of more complex biometric data such as iris data, voice data, etc.
具体而言,在第一或较粗略的匹配步骤115的结果为匹配的情况下,智能卡3可以在步骤117中只解锁对其文件系统的访问,而如此识别设备2可以批准登记模板14和/或补充的登记模板14′,14″,...,或者,可以执行第二模板通信步骤120,其中,登记模板14或补充的登记模板14′,14″,...被从智能卡3传送到识别设备2,优选情况下这通过安全通信信道20进行,并利用会话密钥24加密。In particular, in the case of a match as a result of the first or coarser matching step 115, the smart card 3 may only unlock access to its file system in a step 117, and thus the identification device 2 may approve the enrollment template 14 and/or Or supplementary enrollment templates 14', 14", ..., alternatively, a second template communication step 120 may be performed, wherein the enrollment templates 14 or supplementary enrollment templates 14', 14", ... are transmitted from the smart card 3 To the identification device 2, this preferably takes place over a secure communication channel 20, encrypted with a session key 24.
在精细匹配步骤121的结果为匹配的情况下,完全地执行允许对受保护环境E的访问的步骤105,即,执行步骤118和119,此外,还可以执行第二或精细解锁步骤122,其中,解锁智能卡3的所有数据和应用。In case of a match as a result of the fine matching step 121, the step 105 of allowing access to the protected environment E is fully performed, i.e. steps 118 and 119 are performed, and in addition a second or fine unlocking step 122 may also be performed, in which , to unlock all data and applications on the smart card 3.
在精细匹配步骤121的结果为不匹配的情况下,可以执行锁定智能卡3的步骤123,并立即拒绝对受保护环境E的访问(步骤106),或者,返回生物测定特征检测步骤110,供进行进一步的识别尝试,优选情况下,不超过如步骤116检验的所选次数。In case the result of fine matching step 121 is no match, step 123 of locking smart card 3 may be performed and access to protected environment E is immediately denied (step 106), or return to biometric feature detection step 110 for further processing. Further identification attempts are preferably not to exceed a selected number of times as checked at step 116 .
现在将参考图3来描述根据本发明的用于比较参考或登记生物测定模板14和候选生物测定模板13的生物测定模板匹配方法的优选实施例。A preferred embodiment of a biometric template matching method for comparing a reference or enrollment biometric template 14 and a candidate biometric template 13 according to the present invention will now be described with reference to FIG. 3 .
由于匹配方法所需的有限的存储器和计算功能,优选情况下,当由智能卡3的匹配模块16实现时,它在匹配步骤115中使用,作为第一或较粗略的匹配步骤或作为基于生物测定的识别方法的单一匹配步骤。然而,该匹配方法还可以有益地供包括基于生物测定的识别设备2在内的资源不受限制的电子设备使用。Due to the limited memory and computing power required by the matching method, it is preferably used in the matching step 115 when implemented by the matching module 16 of the smart card 3, either as a first or coarser matching step or as a biometric based A single matching step for the identification method. However, the matching method can also be advantageously used by electronic devices with unlimited resources, including biometric-based identification devices 2 .
下面将参考指纹识别来描述该匹配方法。The matching method will be described below with reference to fingerprint recognition.
该匹配方法依赖于分别在步骤200和201中提供参考或登记生物测定模板14和候选生物测定模板13,带有特定数据结构。The matching method relies on providing a reference or enrollment biometric template 14 and a candidate biometric template 13 in steps 200 and 201 respectively, with a specific data structure.
如上面简要地提及的,每一个模板13,14的数据结构都包括:对于其每一个细节,以平面内正交坐标,如2D笛卡儿坐标x,y的形式存在的位置数据,以及以相对于X轴的平面内角度的形式存在的朝向数据t。As briefly mentioned above, the data structure of each template 13, 14 includes, for each of its details, positional data in the form of in-plane orthogonal coordinates, such as 2D Cartesian coordinates x, y, and Orientation data t in the form of an in-plane angle with respect to the X-axis.
更具体地说,每一个生物测定模板13(14)都可以是大小为3*M(3*N)的短类型的阵列,其中,M(N)是模板13(14)的细节的数量,并且其中,对于0<=i<M(0<=i<N):More specifically, each bioassay template 13(14) may be an array of short types of size 3*M(3*N), where M(N) is the number of minutiae of the template 13(14), And where, for 0<=i<M(0<=i<N):
-项目3*i+0是第i个细节的横坐标x,- item 3*i+0 is the abscissa x of the ith minutiae,
-项目3*i+1是第i个细节的纵坐标y,- item 3*i+1 is the ordinate y of the ith minutiae,
-项目3*i+2是第i个细节的朝向角t。- Item 3*i+2 is the orientation angle t of the ith minutiae.
位置数据坐标x,y可以用沿着X,Y轴的任何长度单位来表示,朝向数据t优选情况下被量化,即,朝向数据t用由一个周角的预先选定的比率所定义的单位角u来表示。优选情况下,周角的预先选定的比率是1/32,即,11.25°,如来自NIST的细节提取算法所规定的。The position data coordinates x, y can be expressed in any length unit along the X, Y axis, the orientation data t is preferably quantized, i.e. the orientation data t is in units defined by a preselected ratio of a circle angle Angle u to represent. Preferably, the preselected ratio of the circumference angles is 1/32, ie 11.25°, as specified by the minutiae extraction algorithm from NIST.
因为在从检测到的指纹提取细节期间(上文所概述的基于生物测定的识别方法的步骤113),每一个细节的朝向通常是从细节点附近的原始指纹图像的多个像素中获取的,使用这样的相对来说大单位角度u缩小了稍后在判断两个细节是否在朝向方面匹配的误差容限。实际上,相同细节,从而具有相同局部朝向,将在两个指纹中获得相同的量化角度,而不管由手指相对于生物测定检测器9的不同的朝向所引起的角度单元内的绝对朝向差别。Since during the extraction of minutiae from detected fingerprints (step 113 of the biometric-based identification method outlined above), the orientation of each minutiae is typically obtained from multiple pixels of the raw fingerprint image in the vicinity of the minutiae point, Using such a relatively large unit angle u narrows the error margin later on in determining whether two minutiae match in orientation. In fact, the same minutiae, and thus the same local orientation, will obtain the same quantized angle in both fingerprints, regardless of absolute orientation differences within angular units caused by different orientations of the finger relative to the biometric detector 9 .
相应地,如果候选模板13(登记模板14)的细节朝着与X轴形成角度α的方向,其朝向数据t将在量化步骤202(203)中被设置为Correspondingly, if the details of the candidate template 13 (enrolment template 14) are oriented in a direction forming an angle α with the X-axis, its orientation data t will be set in the quantization step 202 (203) as
其中,代表.的整数部分。in, Represents the integer part of .
然后,在初始化步骤204中提供用于下面全面地描述的匹配方法中的辅助数据结构,更具体地说,在步骤205中提供空白2D位移阵列L,在步骤206中提供第一阈值tlim、第二阈值Range和第三阈值Mlim。Then, auxiliary data structures for use in the matching method described fully below are provided in an initialization step 204, more specifically, an empty 2D displacement array L is provided in a step 205, and the first threshold tlim, the second The second threshold Range and the third threshold Mlim.
位移阵列L可以是大小为2*D的短类型的阵列,其中,D是来自根据下面所详细描述的相似性准则所选的候选模板13和登记模板14的细节对之间的位移矢量的数量,其中,对于0<=i<D:The displacement array L may be an array of type short of size 2*D, where D is the number of displacement vectors between minutiae pairs from candidate templates 13 and enrollment templates 14 selected according to the similarity criterion described in detail below , where, for 0<=i<D:
-项2*i+0是沿着下面用w表示的第i个细节对的横坐标x的位移Δx,- the term 2*i+0 is the displacement Δx along the abscissa x of the ith minutiae pair denoted by w below,
-项2*i+1是沿着下面用z表示的第i个细节对的纵坐标y的位移Δy。- The term 2*i+1 is the displacement Δy along the ordinate y of the ith minutiae pair denoted below by z.
位移阵列L的最大尺寸原则上是M*N,但是,它可以被限制于,例如,150,以便在诸如智能卡3的处理器5之类的资源受约束的环境中加快匹配方法的执行。The maximum size of the displacement array L is in principle M*N, however, it can be limited to, for example, 150 in order to speed up the execution of the matching method in a resource-constrained environment such as the processor 5 of the smart card 3 .
第一阈值tlim是单位角u的数量,优选情况下,设置为1。第二阈值Range是位移矢量空间W,Z中的长度。第三阈值Mlim是纯数Mlim<=M或Mlim<=min(M,N),其中,如上所述,M是登记模板14的细节的数量,而N是候选模板13的细节的数量。具体而言,可以将Mlim选为登记模板14的细节的数量M的百分比。The first threshold tlim is the number of unit angle u, preferably set to 1. The second threshold Range is the length in the displacement vector space W, Z. The third threshold Mlim is a pure number Mlim<=M or Mlim<=min(M, N), where M is the number of minutiae of the enrollment template 14 and N is the number of minutiae of the candidate template 13 as described above. In particular, Mlim may be chosen as a percentage of the number M of details of the enrollment template 14 .
在步骤207中,填充位移阵列L。In step 207, the displacement array L is filled.
在包括M次迭代的外循环中,如将指针与M比较的步骤208所图式化的,选择来自登记模板14的一个细节(步骤209),而在包括N次迭代的内循环中,如将指针与M比较的步骤210所图式化的,选择来自候选模板13的一个细节(步骤211)。In the outer loop comprising M iterations, a minutiae from the enrollment template 14 is selected (step 209) as illustrated by step 208 of comparing pointers to M, while in the inner loop comprising N iterations, as A minutiae from the candidate template 13 is selected (step 211) as illustrated by the step 210 of comparing pointers to M.
对于在步骤209和211中选定的每对细节m(xm,ym,tm),n(xn,yn,tn),执行朝向数据比较(步骤212),其中,检查两个细节的朝向数据tm,tn相差是否不超过第一阈值tlim,即,是否For each pair of minutiae m(xm, ym, tm), n(xn, yn, tn) selected in steps 209 and 211, an orientation data comparison (step 212) is performed, wherein the orientation data tm of the two minutiae are checked , whether the tn difference does not exceed the first threshold tlim, that is, whether
|tm-tn|<=tlim (2)|tm-tn|<=tlim (2)
其中,|.|代表.的绝对值。Among them, |.| represents the absolute value of .
应当注意,在朝向数据比较中使用阈值tlim是有利的,因为用于量化登记模板14和候选模板13的细节的朝向数据的单位角度u相对来说比较大。实际上,诸如相差只有一度的角度之类的几乎相等的角度可能通过上面的公式(1)舍入为用所选单位角u表示的不同的角度。一旦步骤212的比较作为等式检查来执行,两个细节将被视为不同。It should be noted that using the threshold tlim in the orientation data comparison is advantageous because the unit angle u of the orientation data used to quantify the details of the enrollment template 14 and the candidate template 13 is relatively large. In practice, nearly equal angles, such as angles differing by only one degree, may be rounded to different angles expressed by the chosen unit angle u by equation (1) above. Once the comparison of step 212 is performed as an equality check, the two details will be considered different.
作为示例,分别朝向112°和113°的两个细节将通过下列角度以生物测定模板14,13来表示:As an example, two minutiae towards 112° and 113° respectively would be represented in the biometric template 14, 13 by the following angles:
当朝向数据比较步骤212的结果是肯定时,在步骤213中将位移矢量V(w,z)附加到位移阵列L,其中When the result of the towards data comparison step 212 is affirmative, in step 213 the displacement vector V(w, z) is appended to the displacement array L, where
w=xm-xn (5)w=xm-xn (5)
z=ym-yn (6)z=ym-yn (6)
下面将给出填充位移阵列L的步骤207的一种实现方式的伪代码:A pseudocode of an implementation of step 207 of filling displacement array L will be given below:
for each minutia m(xm,ym,tm)of enrolment template 14for each minutia m(xm, ym, tm) of enrollment template 14
for each minutia n(xn,yn,tn)of candidate template 13for each minutia n(xn, yn, tn) of candidate template 13
if|tm-tn|<=tlim if|tm-tn|<=tlim
calculate V(xm-xn,ym-yn) calculate V(xm-xn, ym-yn)
append V to L append V to L
参考图5和6可以更好地理解上面的步骤以及该匹配方法中将要描述的步骤的意义。The significance of the above steps and the steps to be described in the matching method can be better understood with reference to FIGS. 5 and 6 .
在这些图中,登记模板14的M=8个细节m1到m8用实心形状来表示,而来自候选模板13的N=8个细节n1到n8用空心形状来表示。然而,应当注意,两个模板中的细节的数量M,N不一定总是相等的。In these figures, the M=8 minutiae m1 to m8 of the enrollment template 14 are represented by solid shapes, while the N=8 minutiae n1 to n8 from the candidate template 13 are represented by hollow shapes. However, it should be noted that the number M, N of minutiae in the two templates is not always equal.
类似的细节对之间位移矢量V1到V14和V21到V35,如在细节朝向比较步骤212中所评估的,以实线和虚线示出,以便更加清楚。在步骤213中,这些位移矢量V被附加到位移阵列L。相反,非类似的细节对之间的位移矢量,如图5中的细节n7和m8之间的点线所示出的示例性矢量V’既不被计算也不附加到位移阵列L。Displacement vectors V1 to V14 and V21 to V35 between similar pairs of minutiae, as evaluated in the minutiae orientation comparison step 212, are shown in solid and dashed lines for greater clarity. These displacement vectors V are appended to the displacement array L in step 213 . Conversely, displacement vectors between non-similar pairs of minutiae, the exemplary vector V' shown by the dotted line between minutiae n7 and m8 in Figure 5, are neither calculated nor appended to the displacement array L.
如此,尽管原则上存在来自两个模板13,14的细节对之间的M*N个位移矢量,但是,本发明的匹配方法通过首先执行细节朝向数据比较步骤212而减少了所考虑的位移矢量的数量。Thus, although in principle there are M*N displacement vectors between minutiae pairs from the two templates 13, 14, the matching method of the invention reduces the considered displacement vectors by first performing the minutiae orientation data comparison step 212 quantity.
为了便于说明,图5和6的两个模板13,14是完全匹配的模板,即,它们包括完全相同的细节。在图5中,候选模板13相对于登记模板14只是做了移动,而在图6中,候选模板13相对于同一个登记模板14只是围绕中心C旋转。For ease of illustration, the two templates 13, 14 of Figures 5 and 6 are exact matching templates, ie they include exactly the same details. In FIG. 5 , the candidate template 13 is only moved relative to the registration template 14 , while in FIG. 6 , the candidate template 13 is only rotated around the center C relative to the same registration template 14 .
来自两个模板13,14的实际对应的细节对n1,m1;n2,m2;...n8,m8之间的位移矢量V1到V8和V21到V28以实线示出,而位移矢量V9到V14和V29到V35以虚线示出。The displacement vectors V1 to V8 and V21 to V28 between the actual corresponding detail pairs n1, m1; n2, m2; ... n8, m8 from the two templates 13, 14 are shown in solid lines, while the displacement vectors V9 to V14 and V29 to V35 are shown in dashed lines.
将可以看出,在图5中,位移矢量V1到V8具有相同长度和朝向,而实际上,它们中的每一个都代表登记模板14到候选模板13的实际平移。另一方面,矢量V9到V14在长度和/或朝向方面不同,因为它们是从碰巧正好有相同的或类似的朝向的细节对n1,m6;n2,m4;n4,m2;n5,m7;n6,m1;n7,m5而产生的。It will be seen that in FIG. 5 the displacement vectors V1 to V8 have the same length and orientation, whereas in reality each of them represents the actual translation of the enrollment template 14 to the candidate template 13 . On the other hand, vectors V9 to V14 differ in length and/or orientation because they are derived from minutiae pairs n1,m6; n2,m4; n4,m2; n5,m7;n6 that happen to have the same or similar orientation. , m1; n7, m5 generated.
容易理解,原则上,当手指在检测候选模板期间相对于它在登记时具有的位置只有平移时,如果因为手指头的一部分超出生物测定检测器9的范围而造成M和N不相等,则相同的位移矢量的数目将会对应于M和N中的最小值。另一方面,诸如矢量V9到V14之类的伪位移矢量的数量从统计学上来讲将会少一些,而相同的伪矢量的任何子集都将包括少一些的矢量。It is easy to understand that, in principle, when the finger has only translation during the detection of the candidate template relative to the position it had at the time of registration, if M and N are not equal because a part of the finger is outside the range of the biometric detector 9, then the same The number of displacement vectors will correspond to the minimum of M and N. On the other hand, the number of pseudo-displacement vectors, such as vectors V9 to V14, will statistically be smaller, and any subset of the same pseudo-vectors will include fewer vectors.
在现实生活的条件下,甚至考虑两个模板的纯平移,由于为从检测到的指纹提取细节而执行的计算(上文所概述的基于生物测定的识别方法的步骤113),来自两个模板13,14的实际对应的细节对n1,m1;n2,m2;...n8,m8之间的实线位移矢量V1到V8实际上在长度和/或朝向方面稍微不同。Under real-life conditions, even considering a pure translation of the two templates, due to the computation performed to extract minutiae from the detected fingerprint (step 113 of the biometric-based identification method outlined above), from the two templates 13, 14 Actual Corresponding Details The solid-line displacement vectors V1 to V8 between pairs n1, m1; n2, m2; ... n8, m8 are actually slightly different in length and/or orientation.
此外,在模板13,14之间存在旋转的情况下(图6),尽管是在来自两个模板13,14的实际对应的细节对n1,m1;n2,m2;...n8,m8之间,实线位移矢量V21到V28在长度和朝向方面也是不同的。具体而言,它们将是以旋转中心C为中心的圆周的弦并且穿过细节对。此外,比起碰巧正好有相同或类似的朝向的细节对n1,m6;n2,m4;n4,m8;n5,m7;n6,m1;n7,m5;n8,m3之间的伪位移矢量V29到V35的子集,它们在长度方面更加相似-而在朝向方面则关键程度较低。Furthermore, in the case of rotation between the templates 13, 14 (Fig. 6), although between the actual corresponding minutiae pairs n1, m1; n2, m2; ... n8, m8 from the two templates 13, 14 Between, the solid-line displacement vectors V21 to V28 are also different in length and orientation. Specifically, they will be chords of a circle centered on the center of rotation C and pass through the pair of minutiae. Furthermore, compared to the pseudo-displacement vector V29 between the minutiae pairs n1, m6; n2, m4; n4, m8; n5, m7; n6, m1; n7, m5; n8, m3 that happen to have the same or similar orientation A subset of the V35, they are more similar in length - and less critical in orientation.
同样,原则上,当手指在检测候选模板期间相对于它在检测到登记模板时具有的位置只是旋转时,如果因为手指头的一部分超出生物测定检测器的范围而造成M和N不相等,则将会有若干个对应于M和N中的最小值的具有类似的长度和朝向的位移矢量,而诸如矢量V29到V35之类的伪位移矢量的数量将统计上来讲少一些,而相同的伪矢量的任何子集将包括较少的矢量。Also, in principle, if M and N are not equal because part of the finger is out of range of the biometric detector when the finger is only rotated during the detection of the candidate template relative to the position it had when the enrollment template was detected, then There will be several displacement vectors of similar length and orientation corresponding to the minimum of M and N, while the number of pseudo displacement vectors such as vectors V29 to V35 will be statistically less, while the same pseudo Any subset of vectors will include fewer vectors.
在现实生活的条件下,候选模板13将相对于登记模板14既平移又旋转。应该理解,上面的原理仍成立,在两个模板13、14来自同一用户的手指的情况下,在实际对应的细节对之间将会有若干个只在长度和朝向方面仅稍微不同的位移矢量,比伪位移矢量的子集大一些,并与M、N的最小值相当。同样,容易理解,在两个模板13、14不来自同一用户的手指的情况下,位移矢量之间的差将非常大,即,在长度和朝向方面仅稍微不同的位移矢量的数量将会比较低。Under real life conditions, the candidate template 13 will both translate and rotate relative to the enrollment template 14 . It should be understood that the above principle still holds true, that in the case where two templates 13, 14 come from the same user's finger, there will be several displacement vectors between the actual corresponding minutiae pairs that differ only slightly in length and orientation , which is larger than the subset of pseudo-displacement vectors and comparable to the minimum values of M and N. Also, it is easy to understand that where the two templates 13, 14 do not come from the same user's fingers, the difference between the displacement vectors will be very large, i.e. the number of displacement vectors that differ only slightly in length and orientation will be comparable Low.
基于上面的考虑,该匹配方法包括,在上文所概述的步骤之后,获取相差不超过第二阈值Range的位移矢量V的最大数量Score的步骤214(下面将比较详细地描述),以及将该最大数量Score与第三阈值Mlim比较的步骤215。Based on the above considerations, the matching method includes, after the steps outlined above, obtaining the step 214 of the maximum number Score of the displacement vector V that differs no more than the second threshold Range (described in more detail below), and Step 215 of comparing the maximum number Score with the third threshold Mlim.
在最大数量Score等于或大于第三阈值Mlim的情况下,在步骤216中返回匹配,而在最大数量Score低于第三阈值Mlim的情况下,在步骤217中返回不匹配。In case the maximum number Score is equal to or greater than the third threshold Mlim, a match is returned in step 216 , and in case the maximum number Score is lower than the third threshold Mlim, a mismatch is returned in step 217 .
应当注意,代表两个位移矢量Vr,Vs在长度和朝向方面应该如何相似的阈值Range,原则上应是二维阈值。实际上,矢量的差是矢量ΔV本身。然而,差矢量ΔV的朝向不是所关心的,因为重要的是两个位移矢量的相对朝向,而不是它们的绝对朝向。如此,阈值Range只需要等于涉及矢量长度或大小的阈值。It should be noted that the threshold Range, which represents how similar the two displacement vectors Vr and Vs should be in terms of length and orientation, should in principle be a two-dimensional threshold. In fact, the difference of the vectors is the vector ΔV itself. However, the orientation of the difference vector ΔV is not of concern since it is the relative orientation of the two displacement vectors that matters, not their absolute orientation. As such, the threshold Range only needs to be equal to the threshold involving the length or size of the vector.
由于代表位移阵列V的数据结构的选择,其中,每一个位移矢量都通过上面的公式(5)和(6)在空间W,Z中表示,阈值Range可以表达为单个图,代表差矢量ΔV的每个坐标W,Z的限值。这样的位移矢量相似性准则的几何意义规定,差矢量ΔV在具有边Range的正方形中是内接的。Due to the choice of the data structure representing the displacement array V, where each displacement vector is represented in the space W, Z by the above equations (5) and (6), the threshold Range can be expressed as a single graph representing the difference vector ΔV Limits for each coordinate W, Z. The geometric meaning of such a displacement vector similarity criterion stipulates that the difference vector ΔV is inscribed in a square with side Range.
两个位移矢量Vr(wr,zr),Vs(ws,zs)将相应地相差不超过第二阈值Range,如果Two displacement vectors Vr (wr, zr), Vs (ws, zs) will differ accordingly and do not exceed the second threshold Range, if
Δw=|wr-ws|=|(xmi-xnj)-(xmk-xml)|<=Range (7)Δw=|wr-ws|=|(xmi-xnj)-(xmk-xml)|<=Range (7)
Δz=|zr-zs|=|(xmi-xnj)-(xmk-xml)|<=Range (8)Δz=|zr-zs|=|(xmi-xnj)-(xmk-xml)|<=Range (8)
如果使用不同的数据结构来表示位移矢量V,如极坐标ρ,θ,那么,阈值Range将表示为单个图,代表半径坐标ρ的限值。这样的位移矢量相似性准则的几何意义规定,差矢量ΔV在具有半径Range的圆中是内切的。If a different data structure is used to represent the displacement vector V, such as polar coordinates ρ, θ, then the threshold Range will be represented as a single graph representing the limits of the radius coordinate ρ. The geometric meaning of such a displacement vector similarity criterion stipulates that the difference vector ΔV is inscribed in a circle with radius Range.
获取相差不超过第二阈值Range的位移矢量V的最大数量Score的步骤214,可以通过上面的公式(7),(8),对照阈值Range比较位移阵列L的每一对两个位移矢量Vr、Vs,并统计成功的次数,来执行。In the step 214 of acquiring the maximum number Score of displacement vectors V whose difference does not exceed the second threshold Range, the above formulas (7) and (8) can be used to compare each pair of two displacement vectors Vr, Vr, Vs, and count the number of successes, to execute.
更加有益地,步骤214通过下列步骤来执行。More advantageously, step 214 is performed by the following steps.
首先,在步骤218中,按照坐标W对位移阵列L进行排序。优选情况下,这是使用已知的插入排序算法来执行的,该算法不需要任何辅助阵列,因为两阵列项目同时交换位置。First, in step 218, the displacement array L is sorted according to the coordinate W. Preferably, this is performed using the known insertion sort algorithm, which does not require any auxiliary arrays, since both array items are swapped simultaneously.
然后,通过浏览位移阵列L,生成第一位移子阵列LW(步骤219),这是位移阵列L的项的比较长的子集,根据上面的公式(7),其W组件相差不超过第二阈值Range。注意,验证过W的位移子阵列LW可以与位移阵列L存储在相同存储器位置。Then, by browsing the displacement array L, a first displacement subarray LW is generated (step 219), which is a relatively long subset of the items of the displacement array L whose W components differ by no more than the second Threshold Range. Note that the W-verified shift sub-array LW can be stored in the same memory location as the shift array L.
图4比较详细地示出了生成第一或验证过W的位移子阵列LW的步骤219。在包括迭代次数等于位移阵列L中项数D减去1的外循环中,如将指针r与D比较的步骤220所示出的,选择位移阵列L的一个项Lr(wr,zr)(步骤221),并且在包括D-r次迭代的内循环中,如将指针s与D-r比较的步骤222所示出的,选择位移阵列L的后面的项Vs(ws,zs)(步骤223)。然后,在步骤224中检查公式(7),并且如果检查结果为肯定的,则在步骤225中递增CurrentLength变量。在内循环结束时,在步骤226中作为先前存储的CurrentLength和Maximum Length的最大值存储Maximum Length变量,并且在步骤227中分别作为当前索引r或先前存储的索引Max_W_index存储Max_W_index。FIG. 4 shows the step 219 of generating the first or verified W-shifted sub-array LW in more detail. In an outer loop comprising a number of iterations equal to the number of entries D in the displacement array L minus 1, as shown in step 220 of comparing pointer r with D, an entry Lr(wr, zr) of the displacement array L is selected (step 221), and in an inner loop comprising D-r iterations, as shown in step 222 comparing pointer s to D-r, select the next entry Vs(ws, zs) of displacement array L (step 223). Equation (7) is then checked in step 224 and if the check is positive, the CurrentLength variable is incremented in step 225 . At the end of the inner loop, the Maximum Length variable is stored in step 226 as the maximum value of the previously stored CurrentLength and Maximum Length, and the Max_W_index is stored in step 227 as the current index r or the previously stored index Max_W_index respectively.
注意,为最小化执行时间,内部和外部循环也可以在要处理的添加到CurrentLength的对数将不会超出Maximum Length时结束。Note that to minimize execution time, the inner and outer loops can also end when the number of logarithms to be processed added to CurrentLength will not exceed Maximum Length.
在外循环220结束时,选择位移阵列L中r=Max_W_index的项Lr(wr,zr),并保留在验证过W的位移子阵列VW中(步骤228)。然后,再次浏览位移阵列L。在包括迭代次数至多等于D-r的循环中,如将指针s与D比较的步骤229所示出的,选择位移阵列L中随后的项目Vs(ws,zs)(步骤230)。At the end of the outer loop 220, the entry Lr(wr, zr) of r=Max_W_index in the displacement array L is selected and retained in the displacement subarray VW of the verified W (step 228). Then, browse through the displacement array L again. In a loop comprising an iteration number at most equal to D-r, the subsequent entry Vs(ws, zs) in the displacement array L is selected (step 230), as shown by step 229 comparing pointer s to D.
然后,在步骤231中检查公式(7),如果检查结果为肯定的,则在步骤232中将项目Vs(ws,zs)保留在验证过W的位移子阵列VW中。返回到图3,然后,通过浏览验证过W的位移子阵列LW,生成第二位移子阵列LWZ(步骤233),这是第一位移子阵列LW的项的比较长的子集,根据上面的公式(8),其Z组件相差不超过第二阈值Range。注意,第二位移子阵列LWZ可以与位移阵列V和第一位移子阵列LW存储在相同的存储器位置。可以如上面详细描述的步骤219一样执行步骤233,并加以必要的变更。Then, in step 231, formula (7) is checked, and if the result of the check is affirmative, in step 232, the entry Vs(ws, zs) is kept in the verified W-shifted subarray VW. Return to Fig. 3, then, generate the second displacement subarray LWZ (step 233) by browsing through the displacement subarray LW of W verified, which is a relatively long subset of the items of the first displacement subarray LW, according to the above Formula (8), the difference between its Z components does not exceed the second threshold Range. Note that the second shifted sub-array LWZ may be stored in the same memory location as the shifted array V and the first shifted sub-array LW. Step 233 can be performed as step 219 described in detail above with necessary changes.
然后,在步骤234中统计第二位移子阵列LWZ的项数,并且它是要在比较步骤215中使用的最大数量Score。Then, in step 234 the number of items of the second shift sub-array LWZ is counted, and it is the maximum number Score to be used in the comparison step 215 .
应该理解,阈值Range的值的选择对于执行匹配方法是关键的。如果选择的值太大,则来自登记模板14和候选模板13的不实际对应的细节对之间的位移矢量将被视为类似的,假匹配的比率将增大。相反,如果选择的值太小,则由于在检测候选模板13期间手指相对于在登记时的它具有的位置有平移和旋转,所以来自登记模板14和候选模板13的实际对应的细节对之间的位移矢量将被视为不类似,并且假的不匹配的比率将增大。It should be understood that the selection of the value of the threshold Range is critical to the execution of the matching method. If a value is chosen that is too large, displacement vectors between pairs of minutiae from enrollment templates 14 and candidate templates 13 that do not actually correspond will be considered similar and the rate of false matches will increase. Conversely, if the value chosen is too small, there will be a gap between the actual corresponding minutiae pairs from the enrolled template 14 and the candidate template 13 due to the translation and rotation of the finger during detection of the candidate template 13 relative to the position it had at the time of enrollment. The displacement vectors of will be considered dissimilar, and the ratio of false mismatches will be increased.
根据本发明的匹配方法也可以应用于包括3D位置数据的候选和登记模板13、14,比如在生物测定特征是用户的手、脸或虹膜的情况。The matching method according to the invention can also be applied to candidate and enrollment templates 13, 14 comprising 3D position data, such as in the case where the biometric feature is the user's hand, face or iris.
Claims (20)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/EP2007/011421 WO2009080089A1 (en) | 2007-12-24 | 2007-12-24 | Biometrics based identification |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101925914A CN101925914A (en) | 2010-12-22 |
CN101925914B true CN101925914B (en) | 2016-12-14 |
Family
ID=
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1982001434A1 (en) * | 1980-10-20 | 1982-04-29 | Rockwell International Corp | Fingerprint minutiae matcher |
US6778687B2 (en) * | 2001-04-24 | 2004-08-17 | Lockheed Martin Corporation | Fingerprint matching system with ARG-based prescreener |
EP1612714A2 (en) * | 2004-06-28 | 2006-01-04 | Fujitsu Limited | Biometric authentication with transmission of scrambled data |
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1982001434A1 (en) * | 1980-10-20 | 1982-04-29 | Rockwell International Corp | Fingerprint minutiae matcher |
US6778687B2 (en) * | 2001-04-24 | 2004-08-17 | Lockheed Martin Corporation | Fingerprint matching system with ARG-based prescreener |
EP1612714A2 (en) * | 2004-06-28 | 2006-01-04 | Fujitsu Limited | Biometric authentication with transmission of scrambled data |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2238562B1 (en) | Biometrics based identification | |
US8842887B2 (en) | Method and system for combining a PIN and a biometric sample to provide template encryption and a trusted stand-alone computing device | |
US7274804B2 (en) | Method and apparatus for hashing data | |
US7840034B2 (en) | Method, system and program for authenticating a user by biometric information | |
Kumar et al. | Privacy preserving security using biometrics in cloud computing | |
US9286457B2 (en) | Method and system for providing password-free, hardware-rooted, ASIC-based authentication of a human to a mobile device using biometrics with a protected, local template to release trusted credentials to relying parties | |
US7400749B2 (en) | Method and apparatus for supporting a biometric registration performed on an authentication server | |
US20080065900A1 (en) | Method and apparatus for biometrics | |
Braithwaite et al. | Application-specific biometric templates | |
Benhammadi et al. | Password hardened fuzzy vault for fingerprint authentication system | |
EP3655874B1 (en) | Method and electronic device for authenticating a user | |
US20090122979A1 (en) | Method and apparatus for protecting pattern recognition data | |
Verma et al. | A Hybrid Privacy Preserving Scheme Using Finger Print Detection in Cloud Environment. | |
CN110300971A (en) | Telnet based on biological characteristic | |
CN107395369B (en) | Authentication method, access method and system for self-contained equipment of mobile Internet | |
Baghel et al. | A non‐invertible transformation based technique to protect a fingerprint template | |
KR20070052296A (en) | Shape Extraction Algorithm for Automatic Ear Recognition | |
Baghel et al. | Generation of secure fingerprint template using DFT for consumer electronics devices | |
Ahmad et al. | String-based cancelable fingerprint templates | |
EP1385118B1 (en) | Method and apparatus for supporting a biometric registration performed on a card | |
JP6222692B2 (en) | Confidential biometric server authentication | |
CN101925914B (en) | Mark based on bioassay | |
Conti et al. | An embedded biometric sensor for ubiquitous authentication | |
Vadim et al. | Privacy-Preserving Decentralized Biometric Identity Verification in Car-Sharing System | |
Bhanushali et al. | Fingerprint based ATM system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant |