CN101863674A - A corundum hollow sphere structure heat insulation integrated composite brick and its preparation method - Google Patents
A corundum hollow sphere structure heat insulation integrated composite brick and its preparation method Download PDFInfo
- Publication number
- CN101863674A CN101863674A CN 201010192173 CN201010192173A CN101863674A CN 101863674 A CN101863674 A CN 101863674A CN 201010192173 CN201010192173 CN 201010192173 CN 201010192173 A CN201010192173 A CN 201010192173A CN 101863674 A CN101863674 A CN 101863674A
- Authority
- CN
- China
- Prior art keywords
- heat insulation
- corundum
- insulation layer
- preparation
- alumina
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000009413 insulation Methods 0.000 title claims abstract description 51
- 229910052593 corundum Inorganic materials 0.000 title claims abstract description 43
- 239000010431 corundum Substances 0.000 title claims abstract description 43
- 239000011449 brick Substances 0.000 title claims abstract description 25
- 238000002360 preparation method Methods 0.000 title claims abstract description 20
- 239000002131 composite material Substances 0.000 title claims abstract description 16
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims abstract description 29
- 238000003825 pressing Methods 0.000 claims abstract description 7
- 239000000463 material Substances 0.000 claims description 18
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical group OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 16
- 239000000843 powder Substances 0.000 claims description 14
- 239000000203 mixture Substances 0.000 claims description 13
- 238000000465 moulding Methods 0.000 claims description 12
- 239000002994 raw material Substances 0.000 claims description 10
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims description 8
- 238000003756 stirring Methods 0.000 claims description 8
- 239000004927 clay Substances 0.000 claims description 7
- 239000002245 particle Substances 0.000 claims description 7
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 2
- 229910052749 magnesium Inorganic materials 0.000 claims description 2
- 239000011777 magnesium Substances 0.000 claims description 2
- 239000003795 chemical substances by application Substances 0.000 claims 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims 2
- 229910019142 PO4 Inorganic materials 0.000 claims 2
- HIGRAKVNKLCVCA-UHFFFAOYSA-N alumine Chemical compound C1=CC=[Al]C=C1 HIGRAKVNKLCVCA-UHFFFAOYSA-N 0.000 claims 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims 2
- 229910052782 aluminium Inorganic materials 0.000 claims 2
- 239000003595 mist Substances 0.000 claims 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims 2
- 239000010452 phosphate Substances 0.000 claims 2
- 239000000758 substrate Substances 0.000 claims 1
- 229910001570 bauxite Inorganic materials 0.000 abstract description 17
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 16
- 239000011230 binding agent Substances 0.000 description 15
- 238000010304 firing Methods 0.000 description 10
- 238000000034 method Methods 0.000 description 9
- RGPUVZXXZFNFBF-UHFFFAOYSA-K diphosphonooxyalumanyl dihydrogen phosphate Chemical compound [Al+3].OP(O)([O-])=O.OP(O)([O-])=O.OP(O)([O-])=O RGPUVZXXZFNFBF-UHFFFAOYSA-K 0.000 description 6
- 239000011812 mixed powder Substances 0.000 description 5
- 239000011819 refractory material Substances 0.000 description 4
- 239000012774 insulation material Substances 0.000 description 3
- 230000035939 shock Effects 0.000 description 3
- 239000004375 Dextrin Substances 0.000 description 2
- 229920001353 Dextrin Polymers 0.000 description 2
- 235000019425 dextrin Nutrition 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- 239000002694 phosphate binding agent Substances 0.000 description 2
- 239000002689 soil Substances 0.000 description 2
- 239000002704 solution binder Substances 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 229920001732 Lignosulfonate Polymers 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 239000003546 flue gas Substances 0.000 description 1
- 239000004088 foaming agent Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000013081 microcrystal Substances 0.000 description 1
- 239000004005 microsphere Substances 0.000 description 1
- 229910052863 mullite Inorganic materials 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Landscapes
- Compositions Of Oxide Ceramics (AREA)
Abstract
本发明公开了一种刚玉空心球结构隔热一体化复合砖及制备方法。包括致密高铝矾土的重质支撑层,以及以刚玉空心球为轻质骨料的轻质隔热层,由两者采用振动加压或机压成型复合而成,重质支撑层和轻质隔热层的长度尺寸比例为1~5∶2~1。本发明克服高温窑用刚玉砖和高铝砖导热系数大,使用寿命短;克服现有氧化铝空心球砖和刚玉空心球砖荷重软化温度低,长时间使用易出现窑体内突等问题。本发明提供一种具有耐火度高、结构强度好及保温隔热性能好的结构隔热一体化复合砖。
The invention discloses a corundum hollow sphere structure heat insulation integrated composite brick and a preparation method thereof. It includes a heavy support layer of dense high-alumina bauxite, and a lightweight heat insulation layer with corundum hollow spheres as lightweight aggregates, which are composited by vibration pressing or machine pressing. The heavy support layer and light weight The length-to-dimension ratio of the thermal insulation layer is 1-5:2-1. The invention overcomes the high thermal conductivity and short service life of corundum bricks and high-alumina bricks used in high-temperature kilns; and overcomes the problems of low load softening temperature of existing alumina hollow ball bricks and corundum hollow ball bricks, and easy kiln body protrusions and the like when used for a long time. The invention provides a structure and heat insulation integrated composite brick with high refractoriness, good structural strength and good thermal insulation performance.
Description
技术领域technical field
本发明涉及耐火复合砖及制备方法,尤其是涉及一种刚玉空心球结构隔热一体化复合砖及制备方法。The invention relates to a refractory composite brick and a preparation method thereof, in particular to a corundum hollow ball structure heat-insulating integrated composite brick and a preparation method thereof.
背景技术Background technique
耐高温隔热材料是各种窑炉等热工设备的关键部分,耐高温隔热材料直接接触火焰,要求既耐高温又隔热节能,对材料的性能要求特别高。开发轻质、高强、热震稳定性好、使用温度高能满足轻质结构高温窑炉所需的材料,改变传统高温窑炉采用重质材料而存在的热容量大、升温速率小、能耗大、使用寿命短、施工维修量大等缺点,为建设资源节约型和环境友好型社会服务。High temperature resistant heat insulation material is a key part of thermal equipment such as various kilns. High temperature resistant heat insulation material is directly in contact with the flame, which requires both high temperature resistance and heat insulation and energy saving, and the performance requirements of the material are particularly high. Develop materials with light weight, high strength, good thermal shock stability, and high operating temperature that can meet the needs of high-temperature kilns with light structures, and change the traditional high-temperature kilns that use heavy materials that have large heat capacity, low heating rate, and high energy consumption. Short service life, large amount of construction and maintenance, etc., serve for building a resource-saving and environment-friendly society.
氧化铝空心球已经在耐火保温隔热领域得到广泛应用,空心球利用了封闭空腔热阻大的特点,隔热效果好,强度高,耐高温,抗剥落。轻质氧化铝空心球制品克服了泡沫氧化铝产品强度低、高温抗蠕变性能差的特点,不但可以直接接触火焰,还可以作为隔热层使用,但其荷重软化温度有待于进一步提高,特别是炉龄得到提高之后,由于烟气中的低熔点挥发成份进入及长时间蠕变作用易造成炉体内衬变形内突,炉顶塌陷。为进一步延长窑炉寿命,为满足节能降耗的要求,浙江大学材料系无机非金属材料研究所结合本所在高温材料制备和高温节能技术方面的优势,利用研究所专有技术开发了刚玉空心球结构隔热一体化复合砖,致密高铝支撑层用来承重,同时提高窑炉致密性和降低高温蠕变,轻质隔热层主要用于隔热和提高抗热震性,以便进一步提高炉龄,达到节能降耗的目的。砌筑窑炉时注意,轻质层接触火焰,否则起不到提高寿命作用。Alumina hollow spheres have been widely used in the field of refractory heat preservation and heat insulation. The hollow spheres take advantage of the large thermal resistance of the closed cavity, which has good heat insulation effect, high strength, high temperature resistance and peeling resistance. Lightweight alumina hollow ball products overcome the characteristics of low strength and poor high-temperature creep resistance of foamed alumina products. Not only can they be directly exposed to flames, but they can also be used as heat insulation layers, but their softening temperature under load needs to be further improved, especially After the furnace life is increased, due to the entry of low-melting volatile components in the flue gas and the long-term creep effect, the furnace lining is easily deformed and the furnace roof collapses. In order to further extend the life of the kiln and meet the requirements of energy saving and consumption reduction, the Inorganic Non-metallic Materials Research Institute of the Department of Materials, Zhejiang University, combined with its advantages in high-temperature material preparation and high-temperature energy-saving technology, developed corundum hollow balls using the proprietary technology of the research institute. Structural heat insulation integrated composite brick, the dense high alumina support layer is used for load bearing, while improving the kiln compactness and reducing high temperature creep, the light heat insulation layer is mainly used for heat insulation and improving thermal shock resistance, so as to further improve the furnace Age, to achieve the purpose of saving energy and reducing consumption. When building a kiln, pay attention that the light layer is in contact with the flame, otherwise it will not improve the service life.
发明内容Contents of the invention
为了克服已有高温窑炉重质刚玉砖结构和轻质空心球砖结构的缺点,本发明的目的在于提供一种刚玉空心球结构隔热一体化复合砖及制备方法,采用重质和轻质相结合的方式来降低热容、克服蠕变、提高寿命。In order to overcome the shortcomings of the existing high-temperature kiln heavy corundum brick structure and lightweight hollow ball brick structure, the purpose of the present invention is to provide a corundum hollow ball structure heat insulation integrated composite brick and its preparation method, using heavy and light A combination of ways to reduce heat capacity, overcome creep, and improve life.
本发明解决其技术问题所采用的技术方案是:The technical solution adopted by the present invention to solve its technical problems is:
一、一种刚玉空心球结构隔热一体化复合砖:1. A corundum hollow ball structure heat insulation integrated composite brick:
包括致密高铝矾土的重质支撑层,以及以刚玉空心球为轻质骨料的轻质隔热层,由两者复合而成,重质支撑层和轻质隔热层的长度尺寸比例为1~5∶2~1。It consists of a heavy support layer of dense high-alumina bauxite, and a lightweight heat insulation layer with corundum hollow spheres as lightweight aggregates. It is 1~5:2~1.
二、一种刚玉空心球结构隔热一体化复合砖的制备方法:2. A preparation method of corundum hollow sphere structure heat insulation integrated composite brick:
A、重质支撑层和轻质隔热层的原料配比如下:A. The raw material ratio of the heavy support layer and the light insulation layer is as follows:
一、致密高铝矾土重质支撑层中,各个组分的质量百分含量为:1. In the dense high-alumina bauxite heavy support layer, the mass percentage of each component is:
1~3mm高铝矾土35~45%;小于mm高铝矾土20~35%;不大于325目高铝矾土20~35%;粘土粉5~10%;外加结合剂3~5%;1 ~ 3mm high bauxite 35 ~ 45%; less than mm high bauxite 20 ~ 35%; no more than 325 mesh high bauxite 20 ~ 35%; clay powder 5 ~ 10%; additional binder 3 ~ 5% ;
二、轻质隔热层为以刚玉空心球为轻质骨料的轻质隔热层,其技术指标和含量比例如下:2. The lightweight insulation layer is a lightweight insulation layer with corundum hollow spheres as lightweight aggregates, and its technical indicators and content ratios are as follows:
刚玉空心球高强轻质隔热层中,Al2O3的质量百分含量>92%,粒径为0.2~5mm,自然堆积密度0.6~0.9g/cm3;各个组分的质量百分含量为:刚玉空心球34~60%、α-Al2O3微粉40~66%、外加结合剂为α-Al2O3微粉质量百分含量的30~35%;In the corundum hollow sphere high-strength and light-weight insulation layer, the mass percentage of Al 2 O 3 is >92%, the particle size is 0.2-5mm, and the natural bulk density is 0.6-0.9g/cm 3 ; the mass percentage of each component It is: 34-60% of corundum hollow spheres, 40-66% of α-Al 2 O 3 micropowder, and 30-35% of the mass percentage of α-Al 2 O 3 micropowder as the added binder;
B、刚玉空心球结构隔热一体化复合砖的制备方法:B. Preparation method of corundum hollow sphere structural heat insulation integrated composite brick:
(1)重质支撑层制备:先将不大于325目粉料按比例配好后在球磨机中混合均匀,再在其余骨料颗粒与结合剂混合均匀后加入混合好的粉料,搅拌10~30分钟后备用;(1) Preparation of heavy support layer: first mix the powder not larger than 325 mesh in proportion and mix it evenly in the ball mill, then add the mixed powder after the rest of the aggregate particles and the binder are mixed evenly, and stir for 10~ Ready after 30 minutes;
(2)轻质隔热层制备:以刚玉空心球为轻质骨料,把轻质骨料按比例和结合剂混合均匀,然后按比例加入粉料搅拌10~30分钟备用;(2) Preparation of lightweight heat insulation layer: use corundum hollow spheres as lightweight aggregates, mix the lightweight aggregates with the binder in proportion, then add powder in proportion and stir for 10-30 minutes for later use;
(3)成型:完成配料之后,用隔板把成型模具的料腔隔成两部分,重质支撑层和轻质隔热层的长度尺寸比例为1~5∶2~1,加料后抽出隔板,采用震动加压或机压成型;(3) Molding: After the batching is completed, the material cavity of the forming mold is divided into two parts by a partition. Plates are formed by vibrating pressure or machine pressing;
(4)烧成:成型后的坯体取出经80~150℃烘干后装窑于1500~1650℃保温3~8小时烧成。(4) Firing: The shaped green body is taken out and dried at 80-150°C, then loaded into a kiln and kept at 1500-1650°C for 3-8 hours for firing.
所述轻质隔热层中,结合剂是磷酸溶液或磷酸二氢铝溶液。In the lightweight heat insulation layer, the binder is phosphoric acid solution or aluminum dihydrogen phosphate solution.
所述致密镁高铝的重质支撑层中,结合剂是有机结合剂或磷酸溶液或磷酸二氢铝溶液。In the dense magnesium high alumina heavy support layer, the binding agent is an organic binding agent or a phosphoric acid solution or an aluminum dihydrogen phosphate solution.
刚玉空心球是氧化铝含量在92~98%的电熔喷吹空心球,晶型以α-Al2O3微晶体为主,该球在温度高达1700℃的窑炉中仍能保持良好的物理和化学稳定性,是一种新型的高温隔热材料。以其作为骨料,引入α-Al2O3微粉、莫来石微粉、矾土细粉、粘土和结合剂等可制备各种基质的刚玉空心球砖或浇注料,其密度为1.2~1.8g/cm3,若引入聚苯乙烯微球或锯末或发泡剂等,则其密度可以低于0.6g/cm3,采用该空心球制备的产品具有强度高、使用温度高、荷重软化点高、收缩率低的有点。Corundum hollow spheres are electromelted blown hollow spheres with an alumina content of 92-98%. The crystal form is mainly α-Al 2 O 3 microcrystals. The spheres can still maintain good performance in kilns with temperatures as high as 1700°C. It is a new type of high temperature insulation material with excellent physical and chemical stability. Using it as an aggregate, introducing α-Al 2 O 3 fine powder, mullite fine powder, bauxite fine powder, clay and binders, etc., can prepare corundum hollow ball bricks or castables of various matrices, with a density of 1.2 to 1.8 g/cm 3 . If polystyrene microspheres or sawdust or foaming agent are introduced, the density can be lower than 0.6g/cm 3 . High and low shrinkage.
本发明具有的有益效果是:The beneficial effects that the present invention has are:
本发明可以改变现有重质砖结构或空心球砖内衬结构窑炉存在的缺点,延长窑炉使用寿命,降低成本。The invention can change the existing defects of the existing heavy brick structure or the hollow spherical brick lining structure kiln, prolong the service life of the kiln and reduce the cost.
附图说明Description of drawings
附图是刚玉空心球结构隔热一体化复合砖结构图。The accompanying drawing is a structure diagram of corundum hollow ball structure heat insulation integrated composite brick.
图中:1、重质支撑层,2、轻质隔热层。In the figure: 1. Heavy support layer, 2. Light heat insulation layer.
具体实施方式Detailed ways
下面结合附图和实施例对本发明作进一步描述。The present invention will be further described below in conjunction with the accompanying drawings and embodiments.
如附图所示,本发明包括致密高铝矾土的重质支撑层,以及以刚玉空心球为轻质骨料的轻质隔热层,由两者复合而成,重质支撑层和轻质隔热层的长度尺寸比例为1~5∶2~1。致密高铝矾土重质支撑层,抗高温蠕变;轻质隔热层则朝向火焰,起到隔热作用,并具有高抗热震性。As shown in the accompanying drawings, the present invention includes a heavy support layer of dense high-alumina bauxite, and a lightweight heat-insulating layer with corundum hollow spheres as lightweight aggregates, which are composited from the two, and the heavy support layer and light weight The length-to-dimension ratio of the thermal insulation layer is 1-5:2-1. The dense high-alumina bauxite heavy support layer is resistant to high temperature creep; the light insulation layer faces the flame for heat insulation and has high thermal shock resistance.
实施例1:Example 1:
本实施例采用致密高铝矾土耐火材料和刚玉空心球复合而成,重质支撑层所采用的原料及其质量百分含量为:1~3mm高铝35%,小于mm高铝30%,不大于325目高铝矾土30%,粘土5%,外加黄糊精溶液3%;轻质隔热层所采用的原料及其质量百分含量为:刚玉空心球65%、α-Al2O3微粉35%、外加磷酸结合剂为α-Al2O3微粉质量百分含量的35%。This embodiment is made of dense high-alumina bauxite refractory materials and corundum hollow spheres. The raw materials and mass percentages used for the heavy support layer are: 1-3mm high-alumina 35%, less than mm high-alumina 30%, No more than 325 mesh high bauxite 30%, clay 5%, plus 3% yellow dextrin solution; the raw materials and mass percentages used for the light heat insulation layer are: corundum hollow ball 65%, α-Al 2 35% of the O 3 micropowder, and 35% of the mass percentage of the α-Al 2 O 3 micropowder as the added phosphoric acid binder.
制备工艺包括以下步骤:The preparation process comprises the following steps:
(1)配料:重质支撑层的配料工艺为先将不大于325目粉料按比例配好后在球磨机中混合均匀,然后在其余骨料颗粒与结合剂混合均匀后加入混合好的粉料,搅拌10~30分钟后备用;轻质隔热层的配料工艺为将刚玉空心球按比例和磷酸结合剂混合均匀,然后按比例加入α-Al2O3搅拌10~30分钟备用。(1) Batching: The batching process of the heavy support layer is to mix the powder not larger than 325 mesh in proportion and mix it evenly in the ball mill, and then add the mixed powder after the rest of the aggregate particles and the binder are mixed evenly , stirred for 10-30 minutes and then set aside; the batching process of the light heat insulation layer is to mix corundum hollow balls and phosphoric acid binder in proportion, and then add α-Al 2 O 3 in proportion and stir for 10-30 minutes and set aside.
(2)成型:完成配料之后,根据材料的使用位置和磨损率及使用寿命确定重质支撑层和轻质隔热层之间的尺寸比例,根据比例用隔板把成型模具的料腔隔成两部分,加料后抽出隔板,采用震动加压成型。(2) Molding: After the batching is completed, the size ratio between the heavy support layer and the light heat insulation layer is determined according to the use position, wear rate and service life of the material, and the material cavity of the molding mold is separated into parts according to the ratio. The two parts, after feeding materials, pull out the partition, and adopt vibration and pressure molding.
(3)烧成:成型后的坯体取出经80~150℃烘干后装窑于1650℃保温3小时烧成。(3) Firing: The shaped green body is taken out and dried at 80-150°C, then put into a kiln and kept at 1650°C for 3 hours for firing.
实施例2:Example 2:
本实施例采用致密高铝矾土耐火材料和刚玉空心球复合而成,重质支撑层所采用的原料及其质量百分含量为:1~3mm高铝矾土45%,小于mm高铝矾土25%,不大于325高铝矾土15%,粘土15%,外加木质磺酸素5%;轻质隔热层所采用的原料及其质量百分含量为:刚玉空心球38%、α-Al2O3微粉62%、外加磷酸二氢铝结合剂为α-Al2O3微粉质量百分含量的31%。This embodiment is made of dense high-alumina refractory materials and corundum hollow spheres. The raw materials and mass percentages used for the heavy support layer are: 1-3mm high-alumina 45%, less than mm high-alumina 25% soil, 15% bauxite not greater than 325, 15% clay, plus 5% lignosulfonate; the raw materials and mass percentages used for the light heat insulation layer are: corundum hollow ball 38%, α- 62% of the Al 2 O 3 micropowder, and 31% of the mass percentage of the α-Al 2 O 3 micropowder added with an aluminum dihydrogen phosphate binder.
制备工艺包括以下步骤:The preparation process comprises the following steps:
(1)配料:重质支撑层的配料工艺为先将不大于325目粉料按比例配好后在球磨机中混合均匀,然后在其余骨料颗粒与结合剂混合均匀后加入混合好的粉料,搅拌10~30分钟后备用;高强轻质隔热层的配料工艺为将刚玉空心球按比例和磷酸二氢铝结合剂混合均匀,然后按比例加入α-Al2O3搅拌10~30分钟备用。(1) Batching: The batching process of the heavy support layer is to mix the powder not larger than 325 mesh in proportion and mix it evenly in the ball mill, and then add the mixed powder after the rest of the aggregate particles and the binder are mixed evenly , stirred for 10-30 minutes and then set aside; the batching process of the high-strength light-weight insulation layer is to mix corundum hollow balls with aluminum dihydrogen phosphate binder in proportion, and then add α-Al 2 O 3 in proportion and stir for 10-30 minutes spare.
(2)成型:完成配料之后,根据材料的使用位置和磨损率及使用寿命确定重质支撑层和轻质隔热层之间的尺寸比例,根据比例用隔板把成型模具的料腔隔成两部分,加料后抽出隔板,采用机压成型。(2) Molding: After the batching is completed, the size ratio between the heavy support layer and the light heat insulation layer is determined according to the use position, wear rate and service life of the material, and the material cavity of the molding mold is separated into parts according to the ratio. The two parts are drawn out after adding materials, and are formed by machine pressing.
(3)烧成:成型后的坯体取出经80~150℃烘干后装窑于1500℃保温3~8小时烧成。(3) Firing: The shaped green body is taken out and dried at 80-150°C, then loaded into a kiln and kept at 1500°C for 3-8 hours for firing.
实施例3:Example 3:
本实施例采用致密高铝矾土耐火材料和刚玉空心球复合而成,重质支撑层所采用的原料及其质量百分含量为:1~3mm高铝矾土45%,小于mm高铝矾土20%,不大于325目矾土25%,粘土10%,外加聚乙烯醇溶液3%;轻质隔热层所采用的原料及其质量百分含量为:刚玉空心球60%、α-Al2O3微粉40%、外加磷酸二氢铝溶液结合剂为α-Al2O3微粉质量百分含量的35%。This embodiment is made of dense high-alumina refractory materials and corundum hollow spheres. The raw materials and mass percentages used for the heavy support layer are: 1-3mm high-alumina 45%, less than mm high-alumina 20% soil, 25% bauxite not larger than 325 mesh, 10% clay, plus 3% polyvinyl alcohol solution; the raw materials and mass percentages used for the light heat insulation layer are: corundum hollow ball 60%, α- 40% of Al 2 O 3 micropowder, and 35% of the mass percent of α-Al 2 O 3 micropowder as the binder of aluminum dihydrogen phosphate solution.
制备工艺包括以下步骤:The preparation process comprises the following steps:
(1)配料:重质支撑层的配料工艺为先将不大于325目粉料按比例配好后在球磨机中混合均匀,然后在其余骨料颗粒与结合剂混合均匀后加入混合好的粉料,搅拌10~30分钟后备用;高强轻质隔热层的配料工艺为将刚玉空心球按比例和磷酸二氢铝溶液结合剂混合均匀,然后按比例加入α-Al2O3搅拌10~30分钟备用。(1) Batching: The batching process of the heavy support layer is to mix the powder not larger than 325 mesh in proportion and mix it evenly in the ball mill, and then add the mixed powder after the rest of the aggregate particles and the binder are mixed evenly , stirred for 10-30 minutes and then set aside; the batching process of the high-strength light-weight heat insulation layer is to mix the corundum hollow spheres with the aluminum dihydrogen phosphate solution binder in proportion, and then add α-Al 2 O 3 in proportion and stir for 10-30 minutes to spare.
(2)成型:完成配料之后,根据材料的使用位置和磨损率及使用寿命确定重质支撑层和轻质隔热层之间的尺寸比例,根据比例用隔板把成型模具的料腔隔成两部分,加料后抽出隔板,采用震动加压或机压成型。(2) Molding: After the batching is completed, the size ratio between the heavy support layer and the light heat insulation layer is determined according to the use position, wear rate and service life of the material, and the material cavity of the molding mold is separated into parts according to the ratio. The two parts are drawn out after feeding, and formed by vibrating pressure or machine pressing.
(3)烧成:成型后的坯体取出经80~150℃烘干后装窑于1650℃保温3~8小时烧成。(3) Firing: The shaped body is taken out and dried at 80-150°C, then put into a kiln and kept at 1650°C for 3-8 hours for firing.
实施例4:Example 4:
本实施例采用致密高铝矾土耐火材料,轻质隔热层骨料由刚玉空心球为骨料,重质支撑层所采用的原料及其质量百分含量为:1~3mm高铝矾土40%,小于mm高铝矾土30%,不大于325目高铝矾土20%,粘土10%,外加黄糊精溶液4%;轻质隔热层所采用的原料及其质量百分含量为:刚玉空心球50%、α-Al2O3微粉50%、外加磷酸溶液结合剂为α-Al2O3微粉质量百分含量的33%。In this embodiment, dense high-alumina bauxite refractory material is used. The aggregate of the light insulation layer is made of corundum hollow spheres. The raw materials and mass percentages of the heavy support layer are: 1-3mm high-alumina bauxite 40%, less than mm high bauxite 30%, no more than 325 mesh high bauxite 20%, clay 10%, plus 4% yellow dextrin solution; the raw materials and mass percentages used in the light heat insulation layer It is: 50% of corundum hollow spheres, 50% of α-Al 2 O 3 micropowder, and 33% of the mass percentage content of α-Al 2 O 3 micropowder as a phosphoric acid solution binder.
制备工艺包括以下步骤:The preparation process comprises the following steps:
(1)配料:重质支撑层的配料工艺为先将不大于325目粉料按比例配好后在球磨机中混合均匀,然后在其余骨料颗粒与结合剂混合均匀后加入混合好的粉料,搅拌10~30分钟后备用;高强轻质隔热层的配料工艺为将刚玉空心球按比例和磷酸溶液混合均匀,然后按比例加入α-Al2O3搅拌10~30分钟备用。(1) Batching: The batching process of the heavy support layer is to mix the powder not larger than 325 mesh in proportion and mix it evenly in the ball mill, and then add the mixed powder after the rest of the aggregate particles and the binder are mixed evenly , stirred for 10-30 minutes and then set aside; the batching process of the high-strength and light-weight heat insulation layer is to mix corundum hollow balls with phosphoric acid solution in proportion, and then add α-Al 2 O 3 in proportion to stir for 10-30 minutes and set aside.
(2)成型:完成配料之后,根据材料的使用位置和磨损率及使用寿命确定重质支撑层和轻质隔热层之间的尺寸比例,根据比例用隔板把成型模具的料腔隔成两部分,加料后抽出隔板,采用震动加压或机压成型。(2) Molding: After the batching is completed, the size ratio between the heavy support layer and the light heat insulation layer is determined according to the use position, wear rate and service life of the material, and the material cavity of the molding mold is separated into parts according to the ratio. The two parts are drawn out after feeding, and formed by vibrating pressure or machine pressing.
(3)烧成:成型后的坯体取出经80~150℃烘干后装窑于1600℃保温3~8小时烧成。(3) Firing: The shaped green body is taken out and dried at 80-150°C, then loaded into a kiln and kept at 1600°C for 3-8 hours for firing.
Claims (4)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201010192173 CN101863674A (en) | 2010-06-07 | 2010-06-07 | A corundum hollow sphere structure heat insulation integrated composite brick and its preparation method |
PCT/CN2011/075386 WO2011153932A1 (en) | 2010-06-07 | 2011-06-07 | Structure and heat insulation integrated composite brick |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201010192173 CN101863674A (en) | 2010-06-07 | 2010-06-07 | A corundum hollow sphere structure heat insulation integrated composite brick and its preparation method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101863674A true CN101863674A (en) | 2010-10-20 |
Family
ID=42955643
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201010192173 Pending CN101863674A (en) | 2010-06-07 | 2010-06-07 | A corundum hollow sphere structure heat insulation integrated composite brick and its preparation method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101863674A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102261846A (en) * | 2011-06-06 | 2011-11-30 | 浙江大学 | Heat-insulating integrated composite brick having zirconium corundum structure and method for preparing heat-insulating integrated composite brick |
WO2011153932A1 (en) * | 2010-06-07 | 2011-12-15 | 浙江大学 | Structure and heat insulation integrated composite brick |
CN103058682A (en) * | 2013-01-25 | 2013-04-24 | 苏州罗卡节能科技有限公司 | Medium-density brick used for rotary kiln and preparation method thereof |
CN103058687A (en) * | 2013-01-25 | 2013-04-24 | 苏州罗卡节能科技有限公司 | Middle-density high-alumina brick for revolving kiln and preparation method of brick |
CN103086727A (en) * | 2013-01-28 | 2013-05-08 | 浙江大学苏州工业技术研究院 | Medium-density corundum brick for rotary kiln and preparation method thereof |
CN103664210A (en) * | 2013-12-09 | 2014-03-26 | 湖南湘钢瑞泰科技有限公司 | Composite brick and preparation method thereof |
CN105237019A (en) * | 2015-11-19 | 2016-01-13 | 长兴县新宏信耐火材料有限公司 | Novel composite brick made of magnesium-zirconium materials |
CN111196736A (en) * | 2020-02-14 | 2020-05-26 | 辽宁科技大学 | A box-type resistance furnace complex phase gradient furnace brick and complex phase gradient furnace body |
CN115368117A (en) * | 2022-09-15 | 2022-11-22 | 山东理工大学 | Aluminum-silicon composite preforms with different densities and preparation method thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1040573A (en) * | 1988-08-31 | 1990-03-21 | 江西省工业设备安装公司 | High temperature clay and compound method thereof |
CN1056297A (en) * | 1990-05-04 | 1991-11-20 | 湖南省娄底地区新材料研究所 | Refractory material and preparation thereof |
CN101148343A (en) * | 2007-08-27 | 2008-03-26 | 浙江工业大学 | Novel gradient composite insulation layer and its manufacturing method |
-
2010
- 2010-06-07 CN CN 201010192173 patent/CN101863674A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1040573A (en) * | 1988-08-31 | 1990-03-21 | 江西省工业设备安装公司 | High temperature clay and compound method thereof |
CN1056297A (en) * | 1990-05-04 | 1991-11-20 | 湖南省娄底地区新材料研究所 | Refractory material and preparation thereof |
CN101148343A (en) * | 2007-08-27 | 2008-03-26 | 浙江工业大学 | Novel gradient composite insulation layer and its manufacturing method |
Non-Patent Citations (1)
Title |
---|
《耐火材料》 20031031 周刚德 等 低温烧成复合砖的研制与应用 第307、308页 1、3、4 , 第5期 * |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011153932A1 (en) * | 2010-06-07 | 2011-12-15 | 浙江大学 | Structure and heat insulation integrated composite brick |
CN102261846A (en) * | 2011-06-06 | 2011-11-30 | 浙江大学 | Heat-insulating integrated composite brick having zirconium corundum structure and method for preparing heat-insulating integrated composite brick |
CN103058682A (en) * | 2013-01-25 | 2013-04-24 | 苏州罗卡节能科技有限公司 | Medium-density brick used for rotary kiln and preparation method thereof |
CN103058687A (en) * | 2013-01-25 | 2013-04-24 | 苏州罗卡节能科技有限公司 | Middle-density high-alumina brick for revolving kiln and preparation method of brick |
CN103086727A (en) * | 2013-01-28 | 2013-05-08 | 浙江大学苏州工业技术研究院 | Medium-density corundum brick for rotary kiln and preparation method thereof |
CN103664210A (en) * | 2013-12-09 | 2014-03-26 | 湖南湘钢瑞泰科技有限公司 | Composite brick and preparation method thereof |
CN103664210B (en) * | 2013-12-09 | 2015-06-10 | 湖南湘钢瑞泰科技有限公司 | Composite brick and preparation method thereof |
CN105237019A (en) * | 2015-11-19 | 2016-01-13 | 长兴县新宏信耐火材料有限公司 | Novel composite brick made of magnesium-zirconium materials |
CN111196736A (en) * | 2020-02-14 | 2020-05-26 | 辽宁科技大学 | A box-type resistance furnace complex phase gradient furnace brick and complex phase gradient furnace body |
CN115368117A (en) * | 2022-09-15 | 2022-11-22 | 山东理工大学 | Aluminum-silicon composite preforms with different densities and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101857450B (en) | Corundum structural heat-insulation integrative composite brick and preparation method | |
CN101863675B (en) | High-alumina structure heat-insulation integrated composite brick and preparation method | |
CN101863674A (en) | A corundum hollow sphere structure heat insulation integrated composite brick and its preparation method | |
CN101215176B (en) | High-strength low heat conductivity energy-saving fireproof material | |
CN101857451B (en) | Heat-insulating integrated composite brick with alkaline structure and preparation method thereof | |
CN101863673B (en) | Magnesia-alumina spinel structure heat insulation integral composite brick and preparation method thereof | |
CN100564307C (en) | Gradient composite heat-insulating layer and manufacture method thereof | |
CN101481255A (en) | High-heat resistance shock resistant mullite bearing burning plate and preparation thereof | |
CN102838379B (en) | Lightweight foamed ceramics and preparation method thereof | |
CN105130468B (en) | A kind of flame-proof thermal insulation material and preparation method thereof | |
CN101172832A (en) | Light high-strength unburned brick | |
CN102557698A (en) | A kind of aluminum-containing hollow ball lightweight brick and its preparation method | |
CN107226704A (en) | A kind of kiln saves castable with fire resisting | |
CN102285812A (en) | Magnesium-aluminium-titanium structure and thermal insulation integrated composite brick and preparation method thereof | |
CN102261845A (en) | Heat insulation integral composite brick with corundum-mullite structure and preparation method | |
CN108017397A (en) | Refractory brick containing quartz sand and preparation method thereof | |
CN103058687A (en) | Middle-density high-alumina brick for revolving kiln and preparation method of brick | |
CN102285810B (en) | Forsterite structure and thermal insulation integrated composite brick and preparation method thereof | |
CN102230740A (en) | High siliceous structure and thermal insulation integrated composite brick and preparation method | |
CN102030517A (en) | Structural-thermal-insulation integrated and high-strength alumina bubble ceramic and preparation method thereof | |
CN112960986B (en) | Heat-preservation coating material for propane dehydrogenation device and preparation method thereof | |
CN115745638A (en) | Mullite-boron carbide light refractory material and preparation method thereof | |
CN102285808A (en) | Alkaliproof structure and thermal insulation integrated composite brick and preparation method thereof | |
CN102589290B (en) | A kind of forsterite four-layer composite brick and its preparation method | |
CN208846432U (en) | A kind of incinerator insulating layer refractory lining structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C12 | Rejection of a patent application after its publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20101020 |