CN101823764B - Preparation method of mesoporous anatase phase titanium dioxide material - Google Patents
Preparation method of mesoporous anatase phase titanium dioxide material Download PDFInfo
- Publication number
- CN101823764B CN101823764B CN2010101738452A CN201010173845A CN101823764B CN 101823764 B CN101823764 B CN 101823764B CN 2010101738452 A CN2010101738452 A CN 2010101738452A CN 201010173845 A CN201010173845 A CN 201010173845A CN 101823764 B CN101823764 B CN 101823764B
- Authority
- CN
- China
- Prior art keywords
- titanium dioxide
- preparation
- anatase phase
- phase titanium
- acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 title claims abstract description 77
- 239000004408 titanium dioxide Substances 0.000 title claims abstract description 27
- 238000002360 preparation method Methods 0.000 title claims abstract description 14
- 239000000463 material Substances 0.000 title claims abstract description 13
- 229910052500 inorganic mineral Inorganic materials 0.000 claims abstract description 4
- 239000011707 mineral Substances 0.000 claims abstract description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 21
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims description 12
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 10
- 238000003756 stirring Methods 0.000 claims description 8
- 239000002253 acid Substances 0.000 claims description 7
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 6
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 claims description 5
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 4
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 claims description 4
- YHWCPXVTRSHPNY-UHFFFAOYSA-N butan-1-olate;titanium(4+) Chemical compound [Ti+4].CCCC[O-].CCCC[O-].CCCC[O-].CCCC[O-] YHWCPXVTRSHPNY-UHFFFAOYSA-N 0.000 claims description 4
- 229910017604 nitric acid Inorganic materials 0.000 claims description 4
- 239000002244 precipitate Substances 0.000 claims description 4
- 235000010755 mineral Nutrition 0.000 claims description 3
- 235000011114 ammonium hydroxide Nutrition 0.000 claims description 2
- 229910000030 sodium bicarbonate Inorganic materials 0.000 claims description 2
- 235000017557 sodium bicarbonate Nutrition 0.000 claims description 2
- 150000003839 salts Chemical class 0.000 claims 3
- SMRKTBLEVAAJIF-UHFFFAOYSA-N propanamide;prop-2-enoic acid Chemical compound CCC(N)=O.OC(=O)C=C SMRKTBLEVAAJIF-UHFFFAOYSA-N 0.000 claims 2
- 238000009413 insulation Methods 0.000 claims 1
- 238000007669 thermal treatment Methods 0.000 claims 1
- 229910052719 titanium Inorganic materials 0.000 claims 1
- 239000010936 titanium Substances 0.000 claims 1
- 238000005406 washing Methods 0.000 claims 1
- 229920002401 polyacrylamide Polymers 0.000 abstract description 9
- 230000001699 photocatalysis Effects 0.000 abstract description 8
- 238000000034 method Methods 0.000 abstract description 6
- 229920003169 water-soluble polymer Polymers 0.000 abstract description 6
- 239000007864 aqueous solution Substances 0.000 abstract description 4
- 239000013335 mesoporous material Substances 0.000 abstract description 3
- 230000015572 biosynthetic process Effects 0.000 abstract description 2
- 238000007146 photocatalysis Methods 0.000 abstract description 2
- 238000003786 synthesis reaction Methods 0.000 abstract 1
- 239000000243 solution Substances 0.000 description 26
- 239000000047 product Substances 0.000 description 17
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 13
- 229940043267 rhodamine b Drugs 0.000 description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 10
- 239000012153 distilled water Substances 0.000 description 6
- 239000011148 porous material Substances 0.000 description 6
- 239000005416 organic matter Substances 0.000 description 5
- 239000012266 salt solution Substances 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 4
- 238000013033 photocatalytic degradation reaction Methods 0.000 description 4
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 239000011259 mixed solution Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 238000002835 absorbance Methods 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000003344 environmental pollutant Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 231100000719 pollutant Toxicity 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- 238000004098 selected area electron diffraction Methods 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 229910052724 xenon Inorganic materials 0.000 description 2
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000007857 degradation product Substances 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000000383 hazardous chemical Substances 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000000696 nitrogen adsorption--desorption isotherm Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000011941 photocatalyst Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 235000011121 sodium hydroxide Nutrition 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 238000000870 ultraviolet spectroscopy Methods 0.000 description 1
Images
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
本发明涉及介孔锐钛矿相二氧化钛材料的制备方法,属于介孔材料和光催化材料领域。本发明在过氧钛酸盐水溶液中,利用聚丙酰胺-丙烯酸(或聚丙烯酰胺)等水溶聚合物辅助合成了具有较高比表面积(>70m2g-1)、高度结晶的介孔锐钛矿相二氧化钛材料。相比其它介孔二氧化钛的制备方法而言,本发明工艺简单,成本低,能在低温水溶液体系中进行,且产物结晶度高,有望应用于光催化领域。The invention relates to a preparation method of a mesoporous anatase phase titanium dioxide material, belonging to the field of mesoporous materials and photocatalytic materials. The present invention utilizes polyacrylamide-acrylic acid (or polyacrylamide) and other water-soluble polymers to assist in the synthesis of highly crystalline mesoporous anatase with high specific surface area (>70m 2 g -1 ) in peroxotitanate aqueous solution Mineral phase titanium dioxide material. Compared with other preparation methods of mesoporous titanium dioxide, the present invention has simple process, low cost, can be carried out in a low-temperature aqueous solution system, and the product has high crystallinity, and is expected to be applied in the field of photocatalysis.
Description
技术领域 technical field
本发明涉及介孔锐钛矿相二氧化钛材料的制备方法,属于介孔材料和光催化材料领域。The invention relates to a preparation method of a mesoporous anatase phase titanium dioxide material, belonging to the field of mesoporous materials and photocatalytic materials.
背景技术 Background technique
二氧化钛作为一种重要的半导体,在光照条件下能产生出强还原性的电子和强氧化性的空穴,进而与吸附在其表面的物质发生反应,从而被广泛用作光催化剂来降解污染物。在二氧化钛的几种物相中,以锐钛矿相二氧化钛的光催化活性最高。但由于电子和空穴容易复合,大大降低了光催化性能及其实用化。为了解决上述问题,可以采取提高结晶程度和增加比表面积来等方法来解决:前者能够降低电子-空穴在缺陷点的复合;后者则能使污染物在二氧化钛的表面吸附能力加强。由于介孔材料具有2nm到50nm的孔径,比表面积大,因此,高结晶度的介孔锐钛矿相二氧化钛将具备良好的光催化性能和潜在的应用前景。As an important semiconductor, titanium dioxide can generate strong reducing electrons and strong oxidizing holes under light conditions, and then react with the substances adsorbed on its surface, so it is widely used as a photocatalyst to degrade pollutants. . Among several phases of titanium dioxide, the photocatalytic activity of anatase phase titanium dioxide is the highest. However, due to the easy recombination of electrons and holes, the photocatalytic performance and its practical application are greatly reduced. In order to solve the above problems, methods such as increasing the degree of crystallization and increasing the specific surface area can be adopted: the former can reduce the recombination of electron-holes at defect points; the latter can enhance the adsorption capacity of pollutants on the surface of titanium dioxide. Since the mesoporous material has a pore size of 2nm to 50nm and a large specific surface area, the highly crystalline mesoporous anatase phase titanium dioxide will have good photocatalytic performance and potential application prospects.
为了制备结晶态的介孔锐钛矿相二氧化钛,往往要通过高温烧结或水热(溶剂热)处理等步骤来提高结晶度,这使得工艺较为繁琐,成本较高[(1)Peng,T.Y.;Zhao,D.;Dai,K.;Shi W.;Hirao,K.J.The Journal of Physical Chemistry B,2005,109,4947-4952.(2)Kim,D.S.;Kwak,S.Y.Applied Catalysis A-General,2007,323,110-118.(3)Zhang,X.;Li,X.G.;Wu,J.S.;Yang,R.C.;Tian,L.M.;Zhang,Z.H.Journal of Sol-GelScience and Technology,2009,51,1-3.]。相对而言,低温下直接合成结晶的二氧化钛则具有简单、低成本的优点。目前已有一些关于低温制备介孔二氧化钛的报道[(1)Goutailler,G.;Guillard,C.;Daniele,S.;Hubert-Pfalzgraf,L.G.Journal of Materials Chemistry,2003,13,342-346.(2)Liu,Y.;Li,J.;Wang,M.J.;Li,Z.Y.;Liu,H.T.;He,P.;Yang,X.R.;Li,J.H.Crystal Growth & Design,2005,5,1643-1649.(3)Shibata,H.;Ogura,T.;Mukai,T.;Ohkubo,T.;Sakai,H.;Abe,M.Journal of the American ChemicalSociety,2005,127,16396-16397.(4)Hao,H.Y.;Zhang,J.L.Materials Letters,2009,63,106-108.],但所得产物为混合相或结晶度较低。此外,由于锐钛矿相二氧化钛是一种热力学上的亚稳态相,稳定锐钛矿相也是需要解决的问题之一。因此,寻找在低温条件下直接制备高结晶性的介孔二氧化钛方法仍是研究的难点。In order to prepare crystalline mesoporous anatase titanium dioxide, it is often necessary to increase the crystallinity by high-temperature sintering or hydrothermal (solvothermal) treatment, which makes the process more cumbersome and costly [(1) Peng, T.Y.; Zhao, D.; Dai, K.; Shi W.; Hirao, K.J. The Journal of Physical Chemistry B, 2005, 109, 4947-4952. (2) Kim, D.S.; Kwak, S.Y. Applied Catalysis A-General, 2007, 323, 110-118. (3) Zhang, X.; Li, X.G.; Wu, J.S.; Yang, R.C.; Tian, L.M.; Zhang, Z.H. Journal of Sol-Gel Science and Technology, 2009, 51, 1-3.] . Relatively speaking, the direct synthesis of crystalline titanium dioxide at low temperature has the advantages of simplicity and low cost. There are some reports [(1) Goutailler, G.; Guillard, C.; Daniele, S.; Hubert-Pfalzgraf, L.G.Journal of Materials Chemistry, 2003, 13, 342-346.( 2) Liu, Y.; Li, J.; Wang, M.J.; Li, Z.Y.; Liu, H.T.; 3) Shibata, H.; Ogura, T.; Mukai, T.; Ohkubo, T.; Sakai, H.; Abe, M. Journal of the American Chemical Society, 2005, 127, 16396-16397. (4) Hao, H.Y.; Zhang, J.L.Materials Letters, 2009, 63, 106-108.], but the obtained product is mixed phase or has low crystallinity. In addition, since the anatase phase titanium dioxide is a thermodynamically metastable phase, stabilizing the anatase phase is also one of the problems to be solved. Therefore, finding a method to directly prepare highly crystalline mesoporous titania at low temperature is still a difficult research point.
已有文献报道,利用过氧钛酸盐为前驱物的合成方法能在低温条件下得到结晶的二氧化钛(Zhang,Y.;Wu,L.Z.;Zeng,Q.H.;Zhi,J.F.The Journal of Physical ChemistryC,2008,112,16457-16462)。此外,在以有机物为添加剂的条件下,通过有机物与二氧化钛发生配位等作用改变晶体中原子排列方式,可以促进锐钛矿相的生成(Wang,Y.W.;Huang,Y.;Ho,W.K.;Zhang,L.Z.;Zou,Z.G.;Lee,S.C.Journal of Hazardous Materials,2009,169,77-87)。It has been reported in the literature that the synthesis method using peroxotitanate as a precursor can obtain crystalline titanium dioxide (Zhang, Y.; Wu, L.Z.; Zeng, Q.H.; Zhi, J.F.The Journal of Physical ChemistryC, 2008 , 112, 16457-16462). In addition, under the condition of using organic substances as additives, the formation of anatase phase can be promoted by changing the arrangement of atoms in the crystal through the coordination between organic substances and titanium dioxide (Wang, Y.W.; Huang, Y.; Ho, W.K.; Zhang , L.Z.; Zou, Z.G.; Lee, S.C. Journal of Hazardous Materials, 2009, 169, 77-87).
发明内容 Contents of the invention
本发明的目的在于提出一种介孔锐钛矿相二氧化钛材料的制备方法,在过氧钛酸盐水溶液中,利用聚丙酰胺-丙烯酸(或聚丙烯酰胺)等水溶聚合物辅助合成了具有较高比表面积(>70m2g-1)、高度结晶的介孔锐钛矿相二氧化钛材料。The purpose of the present invention is to propose a kind of preparation method of mesoporous anatase phase titanium dioxide material, in peroxotitanate aqueous solution, utilize polyacrylamide-acrylic acid (or polyacrylamide) etc. Specific surface area (>70m 2 g -1 ), highly crystalline mesoporous anatase titanium dioxide material.
本发明的制备方法为:The preparation method of the present invention is:
在过氧钛酸盐溶液中,调节pH为1-4后,加入聚丙酰胺-丙烯酸或聚丙烯酰胺,热处理后,将产生的沉淀分离洗涤后烘干。In the peroxotitanate solution, after the pH is adjusted to 1-4, polyacrylamide-acrylic acid or polyacrylamide is added, after heat treatment, the generated precipitate is separated, washed and then dried.
所述调节pH为1-4优选通过加入无机酸实现;进一步优选通过加入硝酸或/和硫酸实现;The adjustment of pH to 1-4 is preferably realized by adding mineral acid; further preferably, it is realized by adding nitric acid or/and sulfuric acid;
所述过氧钛酸盐溶液中钛元素浓度优选为0.1mmol/L-20mmol/L;The concentration of titanium element in the peroxotitanate solution is preferably 0.1mmol/L-20mmol/L;
所述聚丙酰胺-丙烯酸或聚丙烯酰胺加入后,聚丙酰胺-丙烯酸或聚丙烯酰胺在整个溶液中的浓度优选为0.01g/L-10g/L;After the polyacrylamide-acrylic acid or polyacrylamide is added, the concentration of polyacrylamide-acrylic acid or polyacrylamide in the whole solution is preferably 0.01g/L-10g/L;
所述热处理的条件优选为70-120℃保温2小时以上;The heat treatment conditions are preferably 70-120 ° C for more than 2 hours;
所述过氧钛酸盐溶液的制备方法优选是将四氯化钛或钛酸四丁酯溶解于过氧化氢溶液中后,调节pH为8-12,搅拌获得;所述调节pH为8-12优选通过加入氢氧化钠、氨水、碳酸氢钠中的一种或几种实现。The preparation method of the peroxotitanate solution is preferably obtained by dissolving titanium tetrachloride or tetrabutyl titanate in a hydrogen peroxide solution, adjusting the pH to 8-12, and stirring; the adjusted pH is 8- 12 is preferably realized by adding one or more of sodium hydroxide, ammonia water, and sodium bicarbonate.
用X射线衍射(XRD)分析产物物相,确定产物为锐钛矿相二氧化钛。用透射电子显微镜(TEM)观察粒子的形貌和尺寸,产物中具有不规则的孔道。选区电子衍射花样(SAED)表明为单晶,结合XRD图谱中的尖锐衍射峰,表明产物的结晶程度高。用氮吸附法分析了产物的比表面积和孔径分布,结果表明BET比表面积超过70m2g-1,BJH孔径主要分布在2nm到30nm。The phase of the product was analyzed by X-ray diffraction (XRD), and it was determined that the product was anatase phase titanium dioxide. The shape and size of the particles were observed with a transmission electron microscope (TEM), and the product had irregular pores. The selected area electron diffraction pattern (SAED) showed that it was a single crystal, combined with the sharp diffraction peaks in the XRD pattern, it indicated that the product had a high degree of crystallinity. The specific surface area and pore size distribution of the product were analyzed by nitrogen adsorption method, and the results showed that the BET specific surface area exceeded 70m 2 g -1 , and the BJH pore size mainly distributed between 2nm and 30nm.
以罗丹明B为目标降解产物,对产物的光催化性能进行了表征。结果表明,在含有0.05g所得二氧化钛的罗丹明B溶液中(溶液体积为50mL,罗丹明B浓度10-5mol/L),在氙灯(500W)的照射下罗丹明B能在50到70分钟内完全降解。Taking rhodamine B as the target degradation product, the photocatalytic performance of the product was characterized. The results show that in the rhodamine B solution containing 0.05g of the obtained titanium dioxide (the volume of the solution is 50mL, and the concentration of rhodamine B is 10 -5 mol/L), the rhodamine B can be recovered in 50 to 70 minutes under the irradiation of a xenon lamp (500W). completely degraded.
相比其它介孔二氧化钛的制备方法而言,本发明工艺简单,成本低,能在低温水溶液体系中进行,且产物结晶度高,有望应用于光催化领域。Compared with other preparation methods of mesoporous titanium dioxide, the present invention has simple process, low cost, can be carried out in a low-temperature aqueous solution system, and the product has high crystallinity, and is expected to be applied in the field of photocatalysis.
附图说明 Description of drawings
图1是实施例1所得产物的X射线衍射图,表明物相为锐钛矿相。Fig. 1 is the X-ray diffraction diagram of the product obtained in Example 1, showing that the phase of matter is anatase phase.
图2是实施例1所得产物的透射电镜观察图(图2a,插图为选区电子衍射花样图)及高分辨透射电镜图(图2b),表明产物高度结晶。Figure 2 is a transmission electron microscope observation image (Figure 2a, the inset is a selected area electron diffraction pattern) and a high-resolution transmission electron microscope image (Figure 2b) of the product obtained in Example 1, indicating that the product is highly crystalline.
图3是实施例1所得产物的氮气吸附脱附等温线,比表面积为89.6m2g-1。Figure 3 is the nitrogen adsorption-desorption isotherm of the product obtained in Example 1, with a specific surface area of 89.6 m 2 g -1 .
图4是实施例1所得产物的BJH孔径分布曲线,孔径主要分布在2nm到10nm。Fig. 4 is the BJH pore size distribution curve of the product obtained in Example 1, and the pore size is mainly distributed between 2nm and 10nm.
图5是实施例1和实施例2所得产物和罗丹明B混合溶液在光照条件下,罗丹明B浓度与其初始浓度比值(C/C。)随时间的变化关系图。结果表明,在实施例1和实施例2中,罗丹明B完全降解所需时间分别为70分钟和50分钟。Fig. 5 is the relationship diagram of the rhodamine B concentration and its initial concentration ratio (C/C) over time of the mixed solution of the product obtained in Example 1 and Example 2 and Rhodamine B mixed solution under light conditions. The results showed that in Example 1 and Example 2, the time required for the complete degradation of Rhodamine B was 70 minutes and 50 minutes respectively.
具体实施方式 Detailed ways
下面通过具体实施方式对本发明做进一步的阐述。The present invention will be further elaborated below through specific embodiments.
实施例1Example 1
将1mmol四氯化钛滴加到100mL过氧化氢中,用氢氧化钠将溶液调成碱性(pH为10),搅拌后即得过氧钛酸水盐溶液,该溶液中钛元素浓度为10mmol/L。再把所得过氧钛酸盐溶液用硝酸调成酸性后(pH值为1),于其中添加聚丙烯酰胺-丙烯酸水溶性聚合物(溶液中有机物最终浓度6g/L),95℃处理70小时后离心过滤,用蒸馏水洗涤三次、乙醇洗涤一次,85℃烘干24小时后即得介孔锐钛矿相二氧化钛。Add 1mmol of titanium tetrachloride dropwise to 100mL of hydrogen peroxide, adjust the solution to be alkaline (pH is 10) with sodium hydroxide, and after stirring, a peroxotitanate water salt solution is obtained, and the concentration of titanium element in the solution is 10mmol/L. Then adjust the obtained peroxotitanate solution to be acidic with nitric acid (pH value is 1), add polyacrylamide-acrylic acid water-soluble polymer (final concentration of organic matter in the solution is 6g/L), and treat at 95°C for 70 hours Afterwards, centrifugally filter, wash with distilled water three times, wash with ethanol once, and dry at 85°C for 24 hours to obtain mesoporous anatase phase titanium dioxide.
取所得介孔锐钛矿相二氧化钛0.05g与50mL罗丹明B溶液(浓度为10-5mol/L)混合后,先于黑暗中搅拌30分钟,然后用氙灯照射该混合溶液,每隔一段时间后取出少量溶液,离心后取上层清液,在紫外-可见分光光度计下记录在波长为550nm处的吸光度值。根据吸光度值计算罗丹明B浓度与初始浓度比值随时间的变化。After mixing 0.05 g of the obtained mesoporous anatase phase titanium dioxide with 50 mL of rhodamine B solution (concentration: 10 -5 mol/L), stir in the dark for 30 minutes, and then irradiate the mixed solution with a xenon lamp. Finally, a small amount of solution was taken out, and the supernatant was taken after centrifugation, and the absorbance value at a wavelength of 550 nm was recorded under an ultraviolet-visible spectrophotometer. Calculate the change of the ratio of rhodamine B concentration to initial concentration with time according to the absorbance value.
实施例2Example 2
将0.6mmol四氯化钛滴加到过100mL过氧化氢中,用氢氧化钠将溶液调成碱性(pH值为8),搅拌后即得过氧钛酸水盐溶液,取上述溶液1.67mL,用蒸馏水稀释至钛元素浓度为0.1mmol/L(溶液体积为100mL),再用硫酸调成酸性后(pH值为4),于其中添加聚丙烯酰胺水溶性聚合物(溶液中有机物最终浓度0.01g/L),120℃处理80小时后将所产生的沉淀离心过滤,用蒸馏水洗涤三次、乙醇洗涤一次后,85℃烘24小时后即得介孔锐钛矿相二氧化钛。Add 0.6mmol of titanium tetrachloride dropwise to 100mL of hydrogen peroxide, adjust the solution to alkalinity (pH value is 8) with sodium hydroxide, and then obtain peroxotitanate water salt solution after stirring. Take the above solution for 1.67 mL, dilute with distilled water to a titanium element concentration of 0.1mmol/L (solution volume is 100mL), then acidify it with sulfuric acid (pH value is 4), add polyacrylamide water-soluble polymer (the organic matter in the solution is finally Concentration 0.01g/L), after 120°C treatment for 80 hours, the resulting precipitate was centrifuged and filtered, washed three times with distilled water and once with ethanol, and baked at 85°C for 24 hours to obtain mesoporous anatase phase titanium dioxide.
所得产物对罗丹明B的光催化降解实验同实施例1中所述。The photocatalytic degradation experiment of the obtained product on rhodamine B is the same as that described in Example 1.
实施例3Example 3
将0.6mmol四氯化钛滴加到过100mL过氧化氢中,用氢氧化钠将溶液调成碱性(pH值为8),搅拌后即得过氧钛酸水盐溶液,该溶液中钛元素浓度为6mmol/L,再用硫酸调成酸性后(pH值为4),于其中添加聚丙烯酰胺水溶性聚合物(溶液中有机物最终浓度3g/L),85℃处理80小时后将所产生的沉淀离心过滤,用蒸馏水洗涤三次、乙醇洗涤一次后,85℃烘24小时后即得介孔锐钛矿相二氧化钛。Add 0.6mmol of titanium tetrachloride dropwise to 100mL of hydrogen peroxide, adjust the solution to be alkaline (pH value is 8) with sodium hydroxide, and then obtain peroxotitanate water salt solution after stirring. The element concentration is 6mmol/L, and then acidified with sulfuric acid (pH value is 4), polyacrylamide water-soluble polymer (final concentration of organic matter in the solution is 3g/L), and treated at 85°C for 80 hours. The resulting precipitate was centrifugally filtered, washed three times with distilled water and once with ethanol, and baked at 85°C for 24 hours to obtain mesoporous anatase phase titanium dioxide.
所得产物对罗丹明B的光催化降解实验同实施例1中所述。The photocatalytic degradation experiment of the obtained product on rhodamine B is the same as that described in Example 1.
实施例4Example 4
将1.5mmol钛酸四丁酯滴加到100mL过氧化氢中,用氢氧化钠将溶液调成碱性(pH为11),搅拌后即得过氧钛酸水盐溶液,该溶液中钛元素浓度为15mmol/L。再把所得过氧钛酸盐溶液用硝酸调成酸性后(pH值为1.5),于其中添加聚丙烯酰胺水溶性聚合物(溶液中有机物最终浓度8g/L),95℃处理70小时后离心过滤,用蒸馏水洗涤三次、乙醇洗涤一次,85℃烘24小时后即得介孔锐钛矿相二氧化钛。Add 1.5mmol of tetrabutyl titanate dropwise to 100mL of hydrogen peroxide, adjust the solution to alkaline (pH 11) with sodium hydroxide, and stir to obtain a peroxotitanic acid water salt solution. The titanium element in the solution The concentration is 15mmol/L. After the obtained peroxotitanate solution was adjusted to acidity with nitric acid (pH value 1.5), polyacrylamide water-soluble polymer was added thereto (final concentration of organic matter in the solution was 8 g/L), treated at 95°C for 70 hours, and then centrifuged Filter, wash with distilled water three times, wash with ethanol once, bake at 85°C for 24 hours to obtain mesoporous anatase phase titanium dioxide.
所得产物对罗丹明B的光催化降解实验同实施例1中所述。The photocatalytic degradation experiment of the obtained product on rhodamine B is the same as that described in Example 1.
实施例5Example 5
将2mmol钛酸四丁酯滴加到100mL过氧化氢中,用氢氧化钠将溶液调成碱性(pH为12),搅拌后即得过氧钛酸水盐溶液,该溶液中钛元素浓度为20mmol/L。再把所得过氧钛酸盐溶液用硫酸调成酸性后(pH值为2),于其中添加聚丙烯酰胺等水溶性聚合物(溶液中有机物最终浓度10g/L),70℃处理50小时后离心过滤,用蒸馏水洗涤三次、乙醇洗涤一次,85℃烘24小时后即得介孔锐钛矿相二氧化钛。Add 2mmol of tetrabutyl titanate dropwise to 100mL of hydrogen peroxide, adjust the solution to be alkaline (pH 12) with sodium hydroxide, and then obtain peroxotitanate water salt solution after stirring. The concentration of titanium element in the solution is 20mmol/L. Then, the obtained peroxotitanate solution was made acidic with sulfuric acid (pH value was 2), and water-soluble polymers such as polyacrylamide were added thereto (the final concentration of organic matter in the solution was 10 g/L), and treated at 70°C for 50 hours Centrifugal filtration, washed three times with distilled water, washed once with ethanol, and baked at 85°C for 24 hours to obtain mesoporous anatase phase titanium dioxide.
所得产物对罗丹明B的光催化降解实验同实施例1中所述。The photocatalytic degradation experiment of the obtained product on rhodamine B is the same as that described in Example 1.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010101738452A CN101823764B (en) | 2010-04-30 | 2010-04-30 | Preparation method of mesoporous anatase phase titanium dioxide material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010101738452A CN101823764B (en) | 2010-04-30 | 2010-04-30 | Preparation method of mesoporous anatase phase titanium dioxide material |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101823764A CN101823764A (en) | 2010-09-08 |
CN101823764B true CN101823764B (en) | 2012-05-30 |
Family
ID=42687964
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2010101738452A Expired - Fee Related CN101823764B (en) | 2010-04-30 | 2010-04-30 | Preparation method of mesoporous anatase phase titanium dioxide material |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101823764B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102167396B (en) * | 2011-03-18 | 2012-11-28 | 浙江大学 | Method for preparing strontium titanate mesoporous sphere |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1038833A1 (en) * | 1999-03-20 | 2000-09-27 | Degussa-Hüls Aktiengesellschaft | Process for the preparation of hydrogen peroxide by direct synthesis |
CN101597084A (en) * | 2009-07-03 | 2009-12-09 | 东华大学 | Method for Synthesizing Anatase Titanium Dioxide Nanoparticles in Microreactor |
-
2010
- 2010-04-30 CN CN2010101738452A patent/CN101823764B/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1038833A1 (en) * | 1999-03-20 | 2000-09-27 | Degussa-Hüls Aktiengesellschaft | Process for the preparation of hydrogen peroxide by direct synthesis |
CN101597084A (en) * | 2009-07-03 | 2009-12-09 | 东华大学 | Method for Synthesizing Anatase Titanium Dioxide Nanoparticles in Microreactor |
Non-Patent Citations (2)
Title |
---|
李爽等.过氧钛酸水热合成锐钛矿相二氧化钛纳米棒溶胶.《无机材料学报》.2009,第24卷(第4期),675-679. * |
鲍兴旺等.过氧钛酸法低温制备二氧化钛薄膜及其性能表征.《2004 全国太阳能光化学与光催化学术会议专辑》.2004,70-71. * |
Also Published As
Publication number | Publication date |
---|---|
CN101823764A (en) | 2010-09-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Moradi et al. | CuO and ZnO co-anchored on g-C3N4 nanosheets as an affordable double Z-scheme nanocomposite for photocatalytic decontamination of amoxicillin | |
Gao et al. | Synergistic introducing of oxygen vacancies and hybrid of organic semiconductor: Realizing deep structure modulation on Bi5O7I for high-efficiency photocatalytic pollutant oxidation | |
Amano et al. | Preparation and characterization of bismuth tungstate polycrystalline flake-ball particles for photocatalytic reactions | |
CN101890344B (en) | Preparation method of graphene/titanium dioxide composite photocatalyst | |
Cerrato et al. | The role of Cerium, Europium and Erbium doped TiO2 photocatalysts in water treatment: A mini-review | |
CN102921416A (en) | Nano composite photocatalytic material and method for preparing same | |
CN104084186A (en) | Graphene/titanium dioxide photocatalysis composite material and preparation method thereof | |
Seck et al. | Comparative study of nanocrystalline titanium dioxide obtained through sol–gel and sol–gel–hydrothermal synthesis | |
Durmus et al. | Preparation and characterization of Ce-MOF/g-C3N4 composites and evaluation of their photocatalytic performance | |
Shang et al. | Optimized photocatalytic regeneration of adsorption-photocatalysis bifunctional composite saturated with Methyl Orange | |
Thennarasu et al. | Hydrothermal temperature as a morphological control factor: Preparation, characterization and photocatalytic activity of titanate nanotubes and nanoribbons | |
CN105413748A (en) | A kind of ZnO@ZIF-8 core-shell structure complex and its preparation method and application | |
CN103316698A (en) | Preparation method of energy band-tunable solid solution BiOI-Bi5O7I nanosheet visible light photocatalytic material | |
CN104310466B (en) | A kind of hollow titanium dioxide microballoon based on gel ball presoma and preparation method thereof | |
Jiang et al. | Hydrothermal synthesis of high-efficiency Pr, N, P-tridoped TiO2 from TiCl4 hydrolysis and mechanism of its enhanced photoactivity | |
Ivanova et al. | Synthesis and application of layered titanates in the photocatalytic degradation of phenol | |
Li et al. | In-situ formation of carboxylate species on TiO2 nanosheets for enhanced visible-light photocatalytic performance | |
Nguyen-Le et al. | Effective photodegradation of dyes using in-situ N-Ti3+ co-doped porous titanate-TiO2 rod-like heterojunctions | |
Mozia | Application of temperature modified titanate nanotubes for removal of an azo dye from water in a hybrid photocatalysis-MD process | |
CN105080534A (en) | Microwave Hydrothermal Synthesis of Photocatalyst BiVO4 | |
Li et al. | Double activating peroxymonosulfate with gC 3 N 4/Fe 2 (MoO 4) 3 to enhance photocatalytic activity under visible light irradiation | |
CN101823764B (en) | Preparation method of mesoporous anatase phase titanium dioxide material | |
CN111036256A (en) | A kind of preparation method of vanadate composite Mxene aerogel photocatalyst | |
CN104556098B (en) | Large aperture one dimension tubulose zeolite and preparation method thereof | |
Lu et al. | Adjusting phase transition of titania-based nanotubes via hydrothermal and post treatment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20120530 Termination date: 20200430 |
|
CF01 | Termination of patent right due to non-payment of annual fee |