[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN101804627A - Redundant manipulator motion planning method - Google Patents

Redundant manipulator motion planning method Download PDF

Info

Publication number
CN101804627A
CN101804627A CN 201010144515 CN201010144515A CN101804627A CN 101804627 A CN101804627 A CN 101804627A CN 201010144515 CN201010144515 CN 201010144515 CN 201010144515 A CN201010144515 A CN 201010144515A CN 101804627 A CN101804627 A CN 101804627A
Authority
CN
China
Prior art keywords
mrow
mtd
msubsup
msub
math
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 201010144515
Other languages
Chinese (zh)
Other versions
CN101804627B (en
Inventor
张雨浓
张智军
李克讷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sun Yat Sen University
Original Assignee
Sun Yat Sen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sun Yat Sen University filed Critical Sun Yat Sen University
Priority to CN2010101445150A priority Critical patent/CN101804627B/en
Publication of CN101804627A publication Critical patent/CN101804627A/en
Application granted granted Critical
Publication of CN101804627B publication Critical patent/CN101804627B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Numerical Control (AREA)

Abstract

The invention provides a redundant manipulator motion planning method which comprises the following steps that: (1) an upper computer analyzes the inverse kinematics of a manipulator on a velocity layer through quadratic optimization, the designed minimum performance index can be velocity norm, repetitive motion or kinetic energy and is bound by a velocity jacobian equation, an inequation and a joint angular velocity limit, and the angular velocity limit changes with a joint angle; (2) the quadratic optimization of step (1) is optimized into a quadratic programming problem; (3) the quadratic programming problem in step (2) is calculated by a linear variational inequation primal-dual neural network solver or a numerical method; and (4) the calculation result in step (3) is transmitted to a lower computer controller to drive the manipulator to move. The redundant manipulator motion planning method is based on the primal-dual neural network of the linear variational inequation, has global exponential convergence, does not involve matrix inversion and other complicated operations, greatly improves the calculation efficiency, and simultaneously has strong real-time performance, and can adapt to the changes to the joint angular velocity limit.

Description

Redundant manipulator motion planning method
Technical Field
The invention belongs to a redundant manipulator motion planning method, and particularly relates to a redundant manipulator motion planning method with variable-limit joint angular velocity.
Background
The redundant manipulator is a tail end active mechanical device with the degree of freedom greater than the minimum degree of freedom required by a task space, the motion tasks of the redundant manipulator comprise welding, painting, assembling, excavating, drawing and the like, and the redundant manipulator is widely applied to national economic production activities such as equipment manufacturing, product processing, machine operation and the like. The inverse kinematics problem of the redundant manipulator refers to the problem that the terminal pose of the manipulator is known to determine the joint angle of the manipulator. The traditional redundancy analysis method and the industrial mechanical arm control method are mainly based on a pseudo-inverse method: that is, the solution to the problem is converted to a minimum norm solution plus a homogeneous solution. The secondary target can be assigned to a solution of the same kind to control the self-movement of the mechanical arm to avoid obstacles, joint limits, singular points and optimize other objective functions. The method has the defects of difficulty in processing inequality constraints, large calculation amount, poor real-time performance, and generation of an infeasible solution under the condition of singularity, and is greatly restricted in the application of the actual mechanical arm.
Disclosure of Invention
The invention aims to overcome the defects of the prior art and provides a redundant manipulator motion planning method which is small in calculated amount, strong in real-time performance and capable of adapting to the change of the joint angular speed limit.
In order to realize the purpose of the invention, the technical scheme is as follows:
a redundant manipulator motion planning method comprises the following steps:
1) the upper computer analyzes the inverse kinematics of the mechanical arm on a speed layer by quadratic optimization, the designed minimum performance index can be speed norm, repetitive motion or kinetic energy and is constrained by a speed Jacobian equation, an inequality and a joint angular speed limit, and the angular speed limit is changed along with a joint angle;
2) converting the quadratic form optimization of the step 1) into a quadratic programming problem;
3) solving the quadratic programming problem in the step 2) by using a linear variational inequality primal-dual neural network solver or a numerical method;
4) and transmitting the solving result of the step 3) to a lower computer controller to drive the mechanical arm to move.
The primal-dual neural network based on the linear variational inequality has global exponential convergence, does not involve complex operations such as matrix inversion and the like, greatly improves the calculation efficiency, has strong real-time performance and can adapt to the limit change of the angular velocity of the joint.
Drawings
FIG. 1 is a flow chart of the present invention;
FIG. 2 is a front view of a robotic arm structure embodying the present invention;
FIG. 3 is a top view of a robotic arm structure embodying the present invention;
figure 4 is a partial schematic view of a robotic arm.
Detailed Description
The invention is further described below with reference to the accompanying drawings.
The redundant manipulator motion planning method shown in fig. 1 mainly comprises a target problem 1, a quadratic programming problem 2, a primal-dual neural network solver or quadratic programming numerical algorithm 3 based on a linear variational inequality, a lower computer controller 4 and a manipulator 5. Solving inverse kinematics on the velocity layer is first designed to minimize
Figure GSA00000082218900021
And is constrained to
Figure GSA00000082218900022
Figure GSA00000082218900023
θ-≤θ≤θ+
Figure GSA00000082218900024
Performance index to be optimized
Figure GSA00000082218900025
May be a minimum velocity norm function
Figure GSA00000082218900026
Index of repetitive motion
Figure GSA00000082218900027
Or minimum kinetic energy function
Figure GSA00000082218900028
And converting the various redundancy analysis schemes into a universal quadratic optimization standard form 2, solving by using a primal-dual neural network or quadratic programming numerical method 3 based on a linear variational inequality, and transmitting a solving result to a lower computer controller 4 to drive a mechanical arm 5 to move.
The robot arm shown in fig. 2 and 3 is composed of a robot arm link 1, a push rod 2, a joint 3, a joint and push rod force application point connecting part 4 and a base 5. The existence of the push rod 2 makes the mechanical arm different from the constant angular speed limit mode of the traditional push rod-free series mechanical arm, and is a limit-variable mechanical arm. This angular velocity limit is a function of angle when calculating the inverse solution of the mechanical arm in real time. Thus, by changing constraints of quadratic programming
Figure GSA00000082218900031
Thereby realizing the variable limit control.
The robot arm shown in fig. 4 is partially schematic, and in a typical design, mechanical power is considered to be generated by internal motor torque, i.e. power is not assumed to come from a push rod, or 4 is considered to be very small and almost negligible, so that 1 and 2 are coincident. The present invention relates to a robot arm design where the push rod is present, i.e. 4 cannot be ignored. Thus, the original angular velocity limit changes every moment due to the presence of the pushrod, being a function of angle. Let 1 be a in length, 4 b in length, and 2 c in length. The specific derivation process is as follows:
<math><mrow><msup><mi>c</mi><mn>2</mn></msup><mo>=</mo><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>a</mi><mo>*</mo><mi>b</mi><mo>*</mo><mi>cos</mi><mrow><mo>(</mo><mfrac><mi>&pi;</mi><mn>2</mn></mfrac><mo>+</mo><mi>&theta;</mi><mo>)</mo></mrow><mo>;</mo><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></mrow></math>
the formula is derived from the time t to obtain
<math><mrow><mn>2</mn><mi>c</mi><mo>*</mo><mfrac><mi>dc</mi><mi>dt</mi></mfrac><mo>=</mo><mn>2</mn><mi>a</mi><mo>*</mo><mi>b</mi><mo>*</mo><mi>sin</mi><mrow><mo>(</mo><mfrac><mi>&pi;</mi><mn>2</mn></mfrac><mo>+</mo><mi>&theta;</mi><mo>)</mo></mrow><mo>*</mo><mover><mi>&theta;</mi><mo>&CenterDot;</mo></mover><mo>;</mo><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow></mrow></math>
Wherein c is c0+v*Δt*Δc,c0The initial c side length is, v is the rotating speed of the stepping motor, and deltac is the corresponding electric push rod elongation of one circle of motor rotation. Further obtain the
<math><mrow><mn>2</mn><mi>c</mi><mo>*</mo><mrow><mo>(</mo><mi>v</mi><mo>*</mo><mi>&Delta;c</mi><mo>)</mo></mrow><mo>=</mo><mn>2</mn><mi>a</mi><mo>*</mo><mi>b</mi><mo>*</mo><mi>sin</mi><mrow><mo>(</mo><mfrac><mi>&pi;</mi><mn>2</mn></mfrac><mo>+</mo><mi>&theta;</mi><mo>)</mo></mrow><mo>*</mo><mover><mi>&theta;</mi><mo>&CenterDot;</mo></mover><mo>=</mo><mn>2</mn><mi>a</mi><mo>*</mo><mi>b</mi><mo>*</mo><mi>cos</mi><mi>&theta;</mi><mo>*</mo><mover><mi>&theta;</mi><mo>&CenterDot;</mo></mover><mo>;</mo><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow></mrow></math>
Namely, it is <math><mrow><mi>c</mi><mo>*</mo><mi>&Delta;c</mi><mo>*</mo><mi>v</mi><mo>=</mo><mi>a</mi><mo>*</mo><mi>b</mi><mo>*</mo><mi>cos</mi><mi>&theta;</mi><mo>*</mo><mover><mi>&theta;</mi><mo>&CenterDot;</mo></mover><mo>;</mo></mrow></math> (4)
Therefore, it is not only easy to use <math><mrow><mover><mi>&theta;</mi><mo>&CenterDot;</mo></mover><mo>=</mo><mfrac><mrow><mi>c</mi><mo>*</mo><mi>&Delta;c</mi><mo>*</mo><mi>v</mi></mrow><mrow><mi>a</mi><mo>*</mo><mi>b</mi><mo>*</mo><mi>cos</mi><mi>&theta;</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mi>&Delta;c</mi><mo>*</mo><mi>v</mi><mo>*</mo><msqrt><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>a</mi><mo>*</mo><mi>b</mi><mo>*</mo><mi>cos</mi><mrow><mo>(</mo><mfrac><mi>&pi;</mi><mn>2</mn></mfrac><mo>+</mo><mi>&theta;</mi><mo>)</mo></mrow></msqrt></mrow><mrow><mi>a</mi><mo>*</mo><mi>b</mi><mo>*</mo><mi>cos</mi><mi>&theta;</mi></mrow></mfrac><mo>,</mo><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>5</mn><mo>)</mo></mrow></mrow></math>
The variable limit of the available joint velocity is therefore
<math><mrow><mfrac><mrow><mi>&Delta;c</mi><mo>*</mo><msup><mi>v</mi><mo>-</mo></msup><mo>*</mo><msqrt><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>a</mi><mo>*</mo><mi>b</mi><mo>*</mo><mi>cos</mi><mrow><mo>(</mo><mfrac><mi>&pi;</mi><mn>2</mn></mfrac><mo>+</mo><mi>&theta;</mi><mo>)</mo></mrow></msqrt></mrow><mrow><mi>a</mi><mo>*</mo><mi>b</mi><mo>*</mo><mi>cos</mi><mi>&theta;</mi></mrow></mfrac><mo>:</mo><mo>=</mo><msup><mover><mi>&theta;</mi><mo>&CenterDot;</mo></mover><mo>-</mo></msup><mrow><mo>(</mo><mi>&theta;</mi><mo>)</mo></mrow><mo>&le;</mo><mover><mi>&theta;</mi><mo>&CenterDot;</mo></mover></mrow></math> (6)
<math><mrow><mo>&le;</mo><msup><mover><mi>&theta;</mi><mo>&CenterDot;</mo></mover><mo>+</mo></msup><mrow><mo>(</mo><mi>&theta;</mi><mo>)</mo></mrow><mo>:</mo><mo>=</mo><mfrac><mrow><mi>&Delta;c</mi><mo>*</mo><msup><mi>v</mi><mo>+</mo></msup><mo>*</mo><msqrt><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>a</mi><mo>*</mo><mi>b</mi><mo>*</mo><mi>cos</mi><mrow><mo>(</mo><mfrac><mi>&pi;</mi><mn>2</mn></mfrac><mo>+</mo><mi>&theta;</mi><mo>)</mo></mrow></msqrt></mrow><mrow><mi>a</mi><mo>*</mo><mi>b</mi><mo>*</mo><mi>cos</mi><mi>&theta;</mi></mrow></mfrac><mo>,</mo></mrow></math>
Wherein v is+And v-Respectively a positive limit and a negative limit of the rotating speed of the relevant joint stepping motor. By considering that the limit of the angular velocity is a function changing along with the angle, corresponding constraint conditions are modified when a control method is designed, and the angular velocity limit condition with variable limit parameters is formed, so that the problem of variable limit is solved.
Based on the foregoing analysis, the inverse kinematics solution for the robotic arm can be designed on the velocity layer as:
<math><mrow><mi>min</mi><mi>&phi;</mi><mrow><mo>(</mo><mi>&theta;</mi><mo>,</mo><mover><mi>&theta;</mi><mo>&CenterDot;</mo></mover><mo>)</mo></mrow><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>7</mn><mo>)</mo></mrow></mrow></math>
<math><mrow><mi>s</mi><mo>.</mo><mi>t</mi><mo>.</mo><mi>J</mi><mover><mi>&theta;</mi><mo>&CenterDot;</mo></mover><mo>=</mo><mover><mi>r</mi><mo>&CenterDot;</mo></mover><mo>,</mo><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>8</mn><mo>)</mo></mrow></mrow></math>
<math><mrow><mi>A</mi><mover><mi>&theta;</mi><mo>&CenterDot;</mo></mover><mo>&le;</mo><mi>b</mi><mo>,</mo><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>9</mn><mo>)</mo></mrow></mrow></math>
θ-≤θ≤θ+, (10)
<math><mrow><msup><mover><mi>&theta;</mi><mo>&CenterDot;</mo></mover><mo>-</mo></msup><mrow><mo>(</mo><mi>&theta;</mi><mo>)</mo></mrow><mo>&le;</mo><mover><mi>&theta;</mi><mo>&CenterDot;</mo></mover><mo>&le;</mo><msup><mover><mi>&theta;</mi><mo>&CenterDot;</mo></mover><mo>+</mo></msup><mrow><mo>(</mo><mi>&theta;</mi><mo>)</mo></mrow><mo>;</mo><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>11</mn><mo>)</mo></mrow></mrow></math>
wherein,
Figure GSA00000082218900048
representing the performance index to be optimized; constraint of equality
Figure GSA00000082218900049
Expressing the motion trail of the tail end of the mechanical arm; constraint of inequality
Figure GSA000000822189000410
May be used for avoidance of environmental obstacles or other performance constraints; theta-≤θ≤θ+
Figure GSA000000822189000411
Respectively, joint angle limit and joint angular velocity limit.
Performance index to be optimized
Figure GSA000000822189000412
Optimization criteria for various redundancy resolution schemes can be designed. It may be a minimum velocity norm function, i.e.
Figure GSA000000822189000413
Or a repetitive motion indicator, i.e.
Figure GSA000000822189000414
Where z is λ (θ - θ (0)), λ > 0 is a positive design parameter used to control the amplitude of joint displacement; it may also be a minimum kinetic energy function
Figure GSA00000082218900051
And the like.
As shown in step 1 of fig. 1, the above problem is transformed into a standard quadratic programming problem to be solved and applied to the control of the robot arm. The quadratic programming problem can be written in the following general form:
minxTWx/2+qTx, (12)
s.t.Jx=d, (13)
Ax≤b, (14)
x-≤x≤x+。 (15)
wherein the decision variable x can be defined as
Figure GSA00000082218900052
W,q,J,d,A,b,x-,x+For known corresponding coefficient matrices and vectors, for example, in the minimum velocity norm scheme, W is an identity matrix, q is 0, J is a jacobian matrix,
Figure GSA00000082218900053
and A and b can be barrier avoidance parameters or inequality constraints obtained by converting optimization indexes, x-,x+Obtained by transformation from equations (10), (11).
The following describes the processing and transformation process of joint physical limit, i.e. how to convert the formula (10), (11) into the formula (15). When analyzing on the velocity layer, it is necessary to convert equation (10) into the velocity layer
Figure GSA00000082218900054
The expression of (A) above:
<math><mrow><mi>&mu;</mi><mrow><mo>(</mo><msup><mi>&theta;</mi><mo>-</mo></msup><mo>-</mo><mi>&theta;</mi><mo>)</mo></mrow><mo>&le;</mo><mover><mi>&theta;</mi><mo>&CenterDot;</mo></mover><mo>&le;</mo><mi>&mu;</mi><mrow><mo>(</mo><msup><mi>&theta;</mi><mo>+</mo></msup><mo>-</mo><mi>&theta;</mi><mo>)</mo></mrow><mo>,</mo><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>16</mn><mo>)</mo></mrow></mrow></math>
wherein the coefficient mu > 0 is a feasible region for adjusting the joint angular velocity, and the coefficient mu is selected such that the feasible region after the formula (16) conversion is slightly larger than the original feasible region of the joint angular velocity under normal conditions. Thus, the double-ended constraint equations (10) and (11) can be combined into one unified double-ended constraint: x is the number of-≤x≤x+Wherein x is-And x+Are defined as follows:
<math><mrow><msubsup><mi>x</mi><mi>i</mi><mo>-</mo></msubsup><mo>=</mo><mi>max</mi><mo>{</mo><msubsup><mover><mi>&theta;</mi><mo>&CenterDot;</mo></mover><mi>i</mi><mo>-</mo></msubsup><mrow><mo>(</mo><mi>&theta;</mi><mo>)</mo></mrow><mo>,</mo><mi>&mu;</mi><mrow><mo>(</mo><msubsup><mi>&theta;</mi><mi>i</mi><mo>-</mo></msubsup><mo>-</mo><msub><mi>&theta;</mi><mi>i</mi></msub><mo>)</mo></mrow><mo>}</mo><mo>,</mo><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>17</mn><mo>)</mo></mrow></mrow></math>
<math><mrow><msubsup><mi>x</mi><mi>i</mi><mo>+</mo></msubsup><mo>=</mo><mi>min</mi><mo>{</mo><msubsup><mover><mi>&theta;</mi><mo>&CenterDot;</mo></mover><mi>i</mi><mo>+</mo></msubsup><mrow><mo>(</mo><mi>&theta;</mi><mo>)</mo></mrow><mo>,</mo><mi>&mu;</mi><mrow><mo>(</mo><msubsup><mi>&theta;</mi><mi>i</mi><mo>+</mo></msubsup><mo>-</mo><msub><mi>&theta;</mi><mi>i</mi></msub><mo>)</mo></mrow><mo>}</mo><mo>.</mo><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>18</mn><mo>)</mo></mrow></mrow></math>
the invention uses a double-end inequality to express the avoidance of the joint physical limit, and the selection of the related parameter mu can be based on theoretical analysis or experience.
After the quadratic programming problems (12) - (15) are obtained, the solving method of the invention adopts a primal-dual neural network or a quadratic programming numerical algorithm based on a linear variational inequality to solve the quadratic programming problem in real time.
The following is the construction process of the neural network solver for solving the quadratic programming problem with constraints (12) - (15) based on the primal-dual neural network of the linear variational inequality.
Firstly, converting the equations of quadratic programming problems (12) - (15) into a linear variational inequality, namely solving a primal-dual variable
Figure GSA00000082218900061
So that
Figure GSA00000082218900062
(y-y*)T(My*+p)≥0, (19)
Wherein, the primal-dual variable y and the upper and lower limits thereof are defined as follows:
y = x u v ,
Figure GSA00000082218900064
Figure GSA00000082218900065
the dual variables u and v are respectively opposite to an equality constraint (13) and an inequality constraint (14)The preparation method comprises the following steps of; 1v:=[1,...,1]TAre corresponding dimension vectors with elements all being 1;are constants large enough to numerically replace infinity + ∞, and the spreading matrix M, p is defined as follows:
M = W - J T A T J 0 0 - A 0 0 , p = q - d b ;
from this can be summarized as: there is at least one optimal solution x*The quadratic programming problem (12) - (15) can be transformed into a linear variational inequality problem (19).
Second, the linear variational inequality problem (19) is again equivalent to a linear projection equation, i.e., PΩ(y- (My + P)) -y ═ 0, where P isΩ(. is a space R)dim(x)+dim(d)+dim(b)Piecewise linear projection operator, P, to the set ΩΩThe i-th calculation unit of (y) is defined as
<math><mrow><mfenced open='{' close=''><mtable><mtr><mtd><msubsup><mi>y</mi><mi>i</mi><mo>-</mo></msubsup></mtd><mtd><mi>if</mi></mtd><mtd><msub><mi>y</mi><mi>i</mi></msub><mo>&lt;</mo><msubsup><mi>y</mi><mi>i</mi><mo>-</mo></msubsup></mtd></mtr><mtr><mtd><msub><mi>y</mi><mi>i</mi></msub></mtd><mtd><mi>if</mi></mtd><mtd><msubsup><mi>y</mi><mi>i</mi><mo>-</mo></msubsup><mo>&le;</mo><msub><mi>y</mi><mi>i</mi></msub><mo>&le;</mo><msubsup><mi>y</mi><mi>i</mi><mo>+</mo></msubsup></mtd></mtr><mtr><mtd><msubsup><mi>y</mi><mi>i</mi><mo>+</mo></msubsup></mtd><mtd><mi>if</mi></mtd><mtd><msub><mi>y</mi><mi>i</mi></msub><mo>></mo><msubsup><mi>y</mi><mi>i</mi><mo>+</mo></msubsup></mtd></mtr></mtable></mfenced><mo>,</mo><mo>&ForAll;</mo><mi>i</mi><mo>&Element;</mo><mo>{</mo><mn>1,2</mn><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><mi>dim</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>+</mo><mi>dim</mi><mrow><mo>(</mo><mi>d</mi><mo>)</mo></mrow><mo>+</mo><mi>dim</mi><mrow><mo>(</mo><mi>b</mi><mo>)</mo></mrow><mo>}</mo><mo>.</mo></mrow></math>
Next, the linear variational inequality problem and the quadratic programming problem are solved by the following dynamical system (as a dynamical description form of the primal-dual neural network based on the linear variational inequality, as in step 3 of fig. 1):
<math><mrow><mover><mi>y</mi><mo>&CenterDot;</mo></mover><mo>=</mo><mi>&gamma;</mi><mrow><mo>(</mo><mi>I</mi><mo>+</mo><msup><mi>M</mi><mi>T</mi></msup><mo>)</mo></mrow><mo>{</mo><msub><mi>P</mi><mi>&Omega;</mi></msub><mrow><mo>(</mo><mi>y</mi><mo>-</mo><mrow><mo>(</mo><mi>My</mi><mo>+</mo><mi>p</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>-</mo><mi>y</mi><mo>}</mo><mo>,</mo><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>20</mn><mo>)</mo></mrow></mrow></math>
wherein, the design parameter gamma is more than 0 to adjust the convergence of the network, and the larger gamma is, the faster the network converges. In addition, when (12) - (15) at least one optimal solution x exists*From any initial state, linear variational inequality primal-dual neural network(20) Will converge to some equilibrium point y*The first dim (x) elements of which constitute the optimal solution x of the quadratic programming problem (12) - (15)*. If there is a constant ρ > 0, let | | | y-PΩ(y-(My+p))||2≥ρ||y-y*||2If true, the global index of the neural network (20) converges to the equilibrium point y*And the problem optimal solution x*(the convergence rate is proportional to γ ρ). And transmitting the calculated angular velocity to a lower computer controller so as to control the motion of the mechanical arm, thereby realizing the method of the invention.

Claims (4)

1. A redundant manipulator motion planning method is characterized by comprising the following steps:
1) the upper computer analyzes the inverse kinematics of the mechanical arm on a speed layer by quadratic optimization, the designed minimum performance index can be speed norm, repetitive motion or kinetic energy and is constrained by a speed Jacobian equation, an inequality and a joint angular speed limit, and the angular speed limit is changed along with a joint angle;
2) converting the quadratic form optimization of the step 1) into a quadratic programming problem;
3) solving the quadratic programming problem in the step 2) by a primal-dual neural network solver or a quadratic programming numerical method based on a linear variational inequality;
4) and transmitting the solving result of the step 3) to a lower computer controller to drive the mechanical arm to move.
2. The method for redundant manipulator motion planning according to claim 1, wherein the quadratic optimization redundancy resolution scheme of step 1) designs the inverse kinematics solution of the manipulator on the velocity level as: minimization
Figure FSA00000082218800011
Is constrained to
Figure FSA00000082218800012
θ-≤θ≤θ+
Figure FSA00000082218800014
Wherein
Figure FSA00000082218800015
Representing performance indicators to be optimized, equality constraints
Figure FSA00000082218800016
Expressing the motion trail of the tail end of the mechanical arm and inequality constraint
Figure FSA00000082218800017
Representing avoidance Performance constraints for environmental obstacles, θ-≤θ≤θ+Respectively representing joint angle limit and joint angular velocity limit;
said property to be optimizedEnergy index
Figure FSA00000082218800019
For optimization criteria of various redundancy resolution schemes, at the speed level
Figure FSA000000822188000110
Using a minimum velocity norm function, i.e.
Figure FSA000000822188000111
Or repetitive motion indicators, i.e.
Figure FSA000000822188000112
Where z is λ (θ - θ (0)), λ > 0 is a positive design parameter, or minimum kinetic energy function, used to control the amplitude of joint displacement
Figure FSA000000822188000113
Wherein H is the arm inertia matrix.
3. The method of claim 2, wherein the quadratic programming problem of step 2) is transformed into a linear variational inequality, i.e. a primal-dual variational solutionSo that
Figure FSA000000822188000115
(y-y*)T(My*+ p) is greater than or equal to 0, wherein the primal-dual variable y and the upper and lower limits thereof are defined as follows:
y = x u v ,
Figure FSA00000082218800022
Figure FSA00000082218800023
the dual variables u and v correspond to an equality constraint (7) and an inequality constraint (8), respectively; 1v:=[1,...,1]TAre corresponding dimension vectors with elements all being 1;are constants large enough to numerically replace infinity + ∞, and the spreading matrix M, p is defined as follows:
M = W - J T A T J 0 0 - A 0 0 , p = q - d b .
4. the linear variational inequality according to claim 3 characterized in that it is equivalent to the linear projection equation PΩ(y- (My + P)) -y ═ 0, where P isΩ(. is a space R)dim(x)+dim(d)+dim(b)Piecewise linear projection operator, P, to the set ΩΩThe i-th calculation unit of (y) is defined as
<math><mrow><mfenced open='{' close=''><mtable><mtr><mtd><msubsup><mi>y</mi><mi>i</mi><mo>-</mo></msubsup></mtd><mtd><mi>if</mi></mtd><mtd><msub><mi>y</mi><mi>i</mi></msub><mo>&lt;</mo><msubsup><mi>y</mi><mi>i</mi><mo>-</mo></msubsup></mtd></mtr><mtr><mtd><msub><mi>y</mi><mi>i</mi></msub></mtd><mtd><mi>if</mi></mtd><mtd><msubsup><mi>y</mi><mi>i</mi><mo>-</mo></msubsup><mo>&le;</mo><msub><mi>y</mi><mi>i</mi></msub><mo>&le;</mo><msubsup><mi>y</mi><mi>i</mi><mo>+</mo></msubsup></mtd></mtr><mtr><mtd><msubsup><mi>y</mi><mi>i</mi><mo>+</mo></msubsup></mtd><mtd><mi>if</mi></mtd><mtd><msub><mi>y</mi><mi>i</mi></msub><mo>></mo><msubsup><mi>y</mi><mi>i</mi><mo>+</mo></msubsup></mtd></mtr></mtable></mfenced><mo>,</mo></mrow></math> <math><mrow><mo>&ForAll;</mo><mi>i</mi><mo>&Element;</mo><mo>{</mo><mn>1,2,3</mn><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><mi>dim</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>+</mo><mi>dim</mi><mrow><mo>(</mo><mi>d</mi><mo>)</mo></mrow><mo>+</mo><mi>dim</mi><mrow><mo>(</mo><mi>b</mi><mo>)</mo></mrow><mo>}</mo><mo>.</mo></mrow></math>
Then, using a kinetic system
Figure FSA00000082218800029
Solving the linear variational inequality problem and the quadratic programming problem, wherein the design parameter gamma is more than 0 to adjust the convergence of the network, and the larger the gamma is, the faster the network converges.
CN2010101445150A 2010-04-02 2010-04-02 Redundant manipulator motion planning method Expired - Fee Related CN101804627B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010101445150A CN101804627B (en) 2010-04-02 2010-04-02 Redundant manipulator motion planning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010101445150A CN101804627B (en) 2010-04-02 2010-04-02 Redundant manipulator motion planning method

Publications (2)

Publication Number Publication Date
CN101804627A true CN101804627A (en) 2010-08-18
CN101804627B CN101804627B (en) 2011-12-07

Family

ID=42606659

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010101445150A Expired - Fee Related CN101804627B (en) 2010-04-02 2010-04-02 Redundant manipulator motion planning method

Country Status (1)

Country Link
CN (1) CN101804627B (en)

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101927495A (en) * 2010-08-25 2010-12-29 中山大学 Repetitive motion planning method for redundant manipulator
CN102126219A (en) * 2010-11-22 2011-07-20 中山大学 Fault-tolerant type motion planning method of redundancy mechanical arm
CN102289204A (en) * 2011-06-03 2011-12-21 华南理工大学 Mechanical arm general control method based on determined learning theory
CN102514008A (en) * 2011-11-21 2012-06-27 中山大学 Method for optimizing performance indexes of different layers of redundancy mechanical arm simultaneously
CN102663154A (en) * 2012-03-08 2012-09-12 东南大学 Simulation method for movement process of plane closed-loop linkage mechanism
CN103231381A (en) * 2013-05-03 2013-08-07 中山大学 Novel acceleration layer repetitive motion planning method for redundant manipulator
CN104760041A (en) * 2015-03-19 2015-07-08 中山大学 Barrier escaping motion planning method based on impact degree
CN104908040A (en) * 2015-06-23 2015-09-16 广东顺德中山大学卡内基梅隆大学国际联合研究院 Fault-tolerant planning method for accelerated speed layer of redundancy mechanical arm
CN105538325A (en) * 2015-12-30 2016-05-04 哈尔滨理工大学 Decoupling control method of single leg joint of hydraulic four-leg robot
CN105598968A (en) * 2016-01-26 2016-05-25 中山大学 Motion planning and control method of parallel connection mechanical arm
CN106155076A (en) * 2016-08-23 2016-11-23 华南理工大学 A kind of stabilized flight control method of many rotor unmanned aircrafts
CN106426164A (en) * 2016-09-27 2017-02-22 华南理工大学 Redundancy dual-mechanical-arm multi-index coordinate exercise planning method
CN106826828A (en) * 2017-02-16 2017-06-13 香港理工大学深圳研究院 A kind of cooperative control method and device of multi-redundant mechanical arm system
WO2017132905A1 (en) * 2016-02-03 2017-08-10 华为技术有限公司 Method and apparatus for controlling motion system
CN107066698A (en) * 2017-03-18 2017-08-18 华南理工大学 Repetitive motion planning method for redundant manipulator based on New Type of Numerical solver
CN107378952A (en) * 2017-08-16 2017-11-24 华南理工大学 A kind of solution method that redundancy mechanical arm end effector posture is kept
CN107962566A (en) * 2017-11-10 2018-04-27 浙江科技学院 A kind of mobile mechanical arm repetitive motion planning method
CN107966907A (en) * 2017-11-30 2018-04-27 华南理工大学 A kind of Obstacle avoidance applied to redundancy mechanical arm solves method
CN107984472A (en) * 2017-11-13 2018-05-04 华南理工大学 A kind of neural solver design method of change ginseng for redundant manipulator motion planning
CN108015766A (en) * 2017-11-22 2018-05-11 华南理工大学 A kind of primal-dual neural network robot motion planing method of nonlinear restriction
CN108015765A (en) * 2017-11-22 2018-05-11 华南理工大学 A kind of expansion disaggregation counter propagation neural network of robot motion planning solves method
WO2018176854A1 (en) * 2017-03-27 2018-10-04 华南理工大学 Method for programming repeating motion of redundant robotic arm
CN108714894A (en) * 2018-05-03 2018-10-30 华南理工大学 A kind of dynamic method for solving dual redundant mechanical arm and colliding with each other
CN109086557A (en) * 2018-09-26 2018-12-25 华南理工大学 A kind of repetitive motion planning method for redundant manipulator based on Euler's type discrete periodic rhythm and pace of moving things neural network
CN109129487A (en) * 2018-09-26 2019-01-04 华南理工大学 Repetitive motion planning method for redundant manipulator based on Taylor's type discrete periodic rhythm and pace of moving things neural network under periodic noise
CN109227550A (en) * 2018-11-12 2019-01-18 吉林大学 A kind of Mechanical arm control method based on RBF neural
CN110014427A (en) * 2019-03-26 2019-07-16 华侨大学 A kind of redundancy mechanical arm high-precision motion planing method based on pseudoinverse
CN110076770A (en) * 2019-03-28 2019-08-02 陕西理工大学 A kind of autokinesis method for redundant mechanical arm
CN110103225A (en) * 2019-06-04 2019-08-09 兰州大学 A kind of the mechanical arm repeating motion control method and device of data-driven
CN110434854A (en) * 2019-08-20 2019-11-12 兰州大学 A kind of redundancy mechanical arm Visual servoing control method and apparatus based on data-driven
CN110682286A (en) * 2019-05-28 2020-01-14 广东省智能制造研究所 Real-time obstacle avoidance method for cooperative robot
CN111037560A (en) * 2019-12-25 2020-04-21 广东省智能制造研究所 Cooperative robot compliance control method and system
CN111309002A (en) * 2019-11-26 2020-06-19 华南理工大学 Wheel type mobile robot obstacle avoidance method and system based on vector
CN111515945A (en) * 2020-04-10 2020-08-11 广州大学 Control method, system and device for mechanical arm visual positioning sorting and grabbing
CN111975768A (en) * 2020-07-08 2020-11-24 华南理工大学 Mechanical arm motion planning method based on fixed parameter neural network
CN112605996A (en) * 2020-12-16 2021-04-06 中山大学 Model-free collision avoidance control method for redundant mechanical arm
CN114564009A (en) * 2022-01-21 2022-05-31 首都医科大学 Surgical robot path planning method and system
CN114643582A (en) * 2022-05-05 2022-06-21 中山大学 Model-free joint fault-tolerant control method and device for redundant mechanical arm
CN114700938A (en) * 2022-03-04 2022-07-05 华南理工大学 Redundant mechanical arm motion planning method based on jump gain integral neural network
CN115026813A (en) * 2022-05-26 2022-09-09 中山大学 Mechanical arm vision servo control method and system based on cerebellar-like model
CN115075313A (en) * 2022-08-04 2022-09-20 网易(杭州)网络有限公司 Control semaphore determination method, device, equipment and storage medium
CN115582826A (en) * 2022-10-14 2023-01-10 华南理工大学 Super-redundancy modular mechanical arm based on line driving
US20230101489A1 (en) * 2021-09-27 2023-03-30 Ubtech Robotics Corp Ltd Redundant robot joint acceleration planning method, redundant robot using the same, and computer readable storage medium

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105563490A (en) * 2016-03-03 2016-05-11 吉首大学 Fault tolerant motion planning method for obstacle avoidance of mobile manipulator

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1728600A1 (en) * 2005-05-31 2006-12-06 Honda Research Institute Europe GmbH Controlling the trajectory of an effector
JP2007136590A (en) * 2005-11-16 2007-06-07 Kawasaki Heavy Ind Ltd Control device and control method for redundant robot having redundant joint
CN101028712A (en) * 2007-02-09 2007-09-05 北京航空航天大学 Rope-driven redundancy mechanical arm
CN101352854A (en) * 2008-07-17 2009-01-28 上海交通大学 Remote operation planar redundant manipulator automated guided intelligent element, system and method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1728600A1 (en) * 2005-05-31 2006-12-06 Honda Research Institute Europe GmbH Controlling the trajectory of an effector
JP2007136590A (en) * 2005-11-16 2007-06-07 Kawasaki Heavy Ind Ltd Control device and control method for redundant robot having redundant joint
CN101028712A (en) * 2007-02-09 2007-09-05 北京航空航天大学 Rope-driven redundancy mechanical arm
CN101352854A (en) * 2008-07-17 2009-01-28 上海交通大学 Remote operation planar redundant manipulator automated guided intelligent element, system and method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
《控制理论与应用》 20050825 马宝离 冗余机器人的双向自运动路径规划 547-550 第22卷, 第4期 *
《机器人》 20081115 张雨浓等 基于二次型规划的平面冗余机械臂的自运动 566-571 第30卷, 第6期 *

Cited By (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101927495B (en) * 2010-08-25 2013-04-17 中山大学 Repetitive motion planning method for redundant manipulator
CN101927495A (en) * 2010-08-25 2010-12-29 中山大学 Repetitive motion planning method for redundant manipulator
CN102126219A (en) * 2010-11-22 2011-07-20 中山大学 Fault-tolerant type motion planning method of redundancy mechanical arm
CN102126219B (en) * 2010-11-22 2012-11-07 中山大学 Fault-tolerant type motion planning method of redundancy mechanical arm
CN102289204A (en) * 2011-06-03 2011-12-21 华南理工大学 Mechanical arm general control method based on determined learning theory
CN102514008A (en) * 2011-11-21 2012-06-27 中山大学 Method for optimizing performance indexes of different layers of redundancy mechanical arm simultaneously
CN102514008B (en) * 2011-11-21 2014-03-19 中山大学 Method for optimizing performance indexes of different layers of redundancy mechanical arm simultaneously
CN102663154A (en) * 2012-03-08 2012-09-12 东南大学 Simulation method for movement process of plane closed-loop linkage mechanism
CN102663154B (en) * 2012-03-08 2013-12-25 东南大学 Simulation method for movement process of plane closed-loop linkage mechanism
CN103231381B (en) * 2013-05-03 2015-10-21 中山大学 A kind of novel acceleration layer repetitive motion planning method of redundancy mechanical arm
CN103231381A (en) * 2013-05-03 2013-08-07 中山大学 Novel acceleration layer repetitive motion planning method for redundant manipulator
CN104760041A (en) * 2015-03-19 2015-07-08 中山大学 Barrier escaping motion planning method based on impact degree
CN104760041B (en) * 2015-03-19 2016-08-03 中山大学 A kind of Obstacle avoidance motion planning method based on impact degree
CN104908040A (en) * 2015-06-23 2015-09-16 广东顺德中山大学卡内基梅隆大学国际联合研究院 Fault-tolerant planning method for accelerated speed layer of redundancy mechanical arm
CN104908040B (en) * 2015-06-23 2017-06-20 广东顺德中山大学卡内基梅隆大学国际联合研究院 A kind of fault-tolerant planing method of redundancy mechanical arm acceleration layer
CN105538325A (en) * 2015-12-30 2016-05-04 哈尔滨理工大学 Decoupling control method of single leg joint of hydraulic four-leg robot
CN105538325B (en) * 2015-12-30 2018-10-30 哈尔滨理工大学 A kind of hydraulic pressure quadruped robot list leg joint decoupling control method
CN105598968A (en) * 2016-01-26 2016-05-25 中山大学 Motion planning and control method of parallel connection mechanical arm
WO2017132905A1 (en) * 2016-02-03 2017-08-10 华为技术有限公司 Method and apparatus for controlling motion system
CN106155076A (en) * 2016-08-23 2016-11-23 华南理工大学 A kind of stabilized flight control method of many rotor unmanned aircrafts
CN106155076B (en) * 2016-08-23 2019-04-09 华南理工大学 A kind of stabilized flight control method of more rotor unmanned aircrafts
CN106426164B (en) * 2016-09-27 2019-04-09 华南理工大学 A kind of multi objective coordinated movement of various economic factors planing method of redundancy double mechanical arms
CN106426164A (en) * 2016-09-27 2017-02-22 华南理工大学 Redundancy dual-mechanical-arm multi-index coordinate exercise planning method
CN106826828B (en) * 2017-02-16 2019-06-14 香港理工大学深圳研究院 A kind of cooperative control method and device of multi-redundant mechanical arm system
CN106826828A (en) * 2017-02-16 2017-06-13 香港理工大学深圳研究院 A kind of cooperative control method and device of multi-redundant mechanical arm system
CN107066698A (en) * 2017-03-18 2017-08-18 华南理工大学 Repetitive motion planning method for redundant manipulator based on New Type of Numerical solver
US11409263B2 (en) 2017-03-27 2022-08-09 South China University Of Technology Method for programming repeating motion of redundant robotic arm
WO2018176854A1 (en) * 2017-03-27 2018-10-04 华南理工大学 Method for programming repeating motion of redundant robotic arm
CN107378952A (en) * 2017-08-16 2017-11-24 华南理工大学 A kind of solution method that redundancy mechanical arm end effector posture is kept
CN107378952B (en) * 2017-08-16 2019-08-20 华南理工大学 A kind of solution that redundancy mechanical arm end effector posture is kept
CN107962566A (en) * 2017-11-10 2018-04-27 浙江科技学院 A kind of mobile mechanical arm repetitive motion planning method
CN107984472A (en) * 2017-11-13 2018-05-04 华南理工大学 A kind of neural solver design method of change ginseng for redundant manipulator motion planning
CN108015765A (en) * 2017-11-22 2018-05-11 华南理工大学 A kind of expansion disaggregation counter propagation neural network of robot motion planning solves method
WO2019100891A1 (en) * 2017-11-22 2019-05-31 华南理工大学 Dual neural network solution method for extended solution set for robot motion planning
CN108015766B (en) * 2017-11-22 2020-05-22 华南理工大学 Nonlinear constrained primal-dual neural network robot action planning method
CN108015765B (en) * 2017-11-22 2019-06-18 华南理工大学 A kind of expansion disaggregation counter propagation neural network solution of robot motion planning
CN108015766A (en) * 2017-11-22 2018-05-11 华南理工大学 A kind of primal-dual neural network robot motion planing method of nonlinear restriction
CN107966907B (en) * 2017-11-30 2020-09-22 华南理工大学 Obstacle avoidance solution applied to redundant manipulator
CN107966907A (en) * 2017-11-30 2018-04-27 华南理工大学 A kind of Obstacle avoidance applied to redundancy mechanical arm solves method
CN108714894A (en) * 2018-05-03 2018-10-30 华南理工大学 A kind of dynamic method for solving dual redundant mechanical arm and colliding with each other
CN109129487A (en) * 2018-09-26 2019-01-04 华南理工大学 Repetitive motion planning method for redundant manipulator based on Taylor's type discrete periodic rhythm and pace of moving things neural network under periodic noise
CN109086557A (en) * 2018-09-26 2018-12-25 华南理工大学 A kind of repetitive motion planning method for redundant manipulator based on Euler's type discrete periodic rhythm and pace of moving things neural network
CN109086557B (en) * 2018-09-26 2022-05-24 华南理工大学 Redundant manipulator repetitive motion planning method based on Euler type discrete periodic rhythm neural network
CN109227550A (en) * 2018-11-12 2019-01-18 吉林大学 A kind of Mechanical arm control method based on RBF neural
CN110014427B (en) * 2019-03-26 2021-11-02 华侨大学 Pseudo-inverse-based high-precision motion planning method for redundant mechanical arm
CN110014427A (en) * 2019-03-26 2019-07-16 华侨大学 A kind of redundancy mechanical arm high-precision motion planing method based on pseudoinverse
CN110076770A (en) * 2019-03-28 2019-08-02 陕西理工大学 A kind of autokinesis method for redundant mechanical arm
CN110682286A (en) * 2019-05-28 2020-01-14 广东省智能制造研究所 Real-time obstacle avoidance method for cooperative robot
CN110682286B (en) * 2019-05-28 2020-07-28 广东省智能制造研究所 Real-time obstacle avoidance method for cooperative robot
CN110103225A (en) * 2019-06-04 2019-08-09 兰州大学 A kind of the mechanical arm repeating motion control method and device of data-driven
CN110103225B (en) * 2019-06-04 2023-04-11 兰州大学 Data-driven method and device for controlling repeated motion of mechanical arm
CN110434854A (en) * 2019-08-20 2019-11-12 兰州大学 A kind of redundancy mechanical arm Visual servoing control method and apparatus based on data-driven
CN111309002A (en) * 2019-11-26 2020-06-19 华南理工大学 Wheel type mobile robot obstacle avoidance method and system based on vector
CN111037560A (en) * 2019-12-25 2020-04-21 广东省智能制造研究所 Cooperative robot compliance control method and system
CN111515945A (en) * 2020-04-10 2020-08-11 广州大学 Control method, system and device for mechanical arm visual positioning sorting and grabbing
CN111975768A (en) * 2020-07-08 2020-11-24 华南理工大学 Mechanical arm motion planning method based on fixed parameter neural network
CN111975768B (en) * 2020-07-08 2022-03-25 华南理工大学 Mechanical arm motion planning method based on fixed parameter neural network
CN112605996A (en) * 2020-12-16 2021-04-06 中山大学 Model-free collision avoidance control method for redundant mechanical arm
US20230101489A1 (en) * 2021-09-27 2023-03-30 Ubtech Robotics Corp Ltd Redundant robot joint acceleration planning method, redundant robot using the same, and computer readable storage medium
US11992946B2 (en) * 2021-09-27 2024-05-28 Ubkang (Qingdao) Technology Co., Ltd. Redundant robot joint acceleration planning method, redundant robot using the same, and computer readable storage medium
CN114564009A (en) * 2022-01-21 2022-05-31 首都医科大学 Surgical robot path planning method and system
CN114700938A (en) * 2022-03-04 2022-07-05 华南理工大学 Redundant mechanical arm motion planning method based on jump gain integral neural network
CN114700938B (en) * 2022-03-04 2023-06-16 华南理工大学 Redundant mechanical arm motion planning method based on jump gain integral neural network
CN114643582B (en) * 2022-05-05 2022-12-27 中山大学 Model-free joint fault-tolerant control method and device for redundant mechanical arm
CN114643582A (en) * 2022-05-05 2022-06-21 中山大学 Model-free joint fault-tolerant control method and device for redundant mechanical arm
CN115026813A (en) * 2022-05-26 2022-09-09 中山大学 Mechanical arm vision servo control method and system based on cerebellar-like model
CN115075313A (en) * 2022-08-04 2022-09-20 网易(杭州)网络有限公司 Control semaphore determination method, device, equipment and storage medium
CN115582826A (en) * 2022-10-14 2023-01-10 华南理工大学 Super-redundancy modular mechanical arm based on line driving
CN115582826B (en) * 2022-10-14 2024-03-19 华南理工大学 Super-redundancy modularized mechanical arm based on line driving

Also Published As

Publication number Publication date
CN101804627B (en) 2011-12-07

Similar Documents

Publication Publication Date Title
CN101804627B (en) Redundant manipulator motion planning method
CN106426164B (en) A kind of multi objective coordinated movement of various economic factors planing method of redundancy double mechanical arms
CN104760041B (en) A kind of Obstacle avoidance motion planning method based on impact degree
CN102514008B (en) Method for optimizing performance indexes of different layers of redundancy mechanical arm simultaneously
CN101927495B (en) Repetitive motion planning method for redundant manipulator
CN104191429B (en) The mixing control method of a kind of tendon driving device hand position and tendon tension force and control device
CN105538327A (en) Redundant manipulator repeated motion programming method based on abrupt acceleration
CN107972030B (en) Initial position correction method in redundant mechanical arm repeated movement
CN108015766B (en) Nonlinear constrained primal-dual neural network robot action planning method
CN104965517A (en) Robot cartesian space trajectory planning method
CN112016194A (en) All-directional mobile mechanical arm data driving model prediction control method based on Koopman operator
CN105690388A (en) Impedance control method and device for restraining tendon tensile force of tendon driving mechanical arm
CN111975768A (en) Mechanical arm motion planning method based on fixed parameter neural network
CN107351081A (en) Redundancy mechanical arm impact degree layer motion planning method with speed-optimization characteristic
CN108098777B (en) Redundant manipulator moment layer repetitive motion control method
CN105598968A (en) Motion planning and control method of parallel connection mechanical arm
CN105174061A (en) Double-pendulum crane global time optimal trajectory planning method based on pseudo-spectral method
CN113043286B (en) Multi-degree-of-freedom mechanical arm real-time obstacle avoidance path planning system and method
CN114211492B (en) Optimal track planning method of multi-degree-of-freedom mechanical arm based on model
CN108422424A (en) A kind of disturbance rejection mechanical arm repetitive motion planning method with saturated characteristic
CN111993377B (en) Teleoperation main hand force feedback curve fitting algorithm and system
Li et al. Stiffness-maximum trajectory planning of a hybrid kinematic-redundant robot machine
CN111300414B (en) Dual-criterion redundant mechanical arm self-movement planning method
CN110587611B (en) Mechanical arm control method for television set assembly line
Yin et al. Modeling and control strategy of flexible joint servo system in humanoid manipulator driven by tendon-sheath

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20111207

Termination date: 20140402