[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN101804627A - Redundant manipulator motion planning method - Google Patents

Redundant manipulator motion planning method Download PDF

Info

Publication number
CN101804627A
CN101804627A CN 201010144515 CN201010144515A CN101804627A CN 101804627 A CN101804627 A CN 101804627A CN 201010144515 CN201010144515 CN 201010144515 CN 201010144515 A CN201010144515 A CN 201010144515A CN 101804627 A CN101804627 A CN 101804627A
Authority
CN
China
Prior art keywords
mtd
msubsup
mrow
inequality
msub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 201010144515
Other languages
Chinese (zh)
Other versions
CN101804627B (en
Inventor
张雨浓
张智军
李克讷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sun Yat Sen University
Original Assignee
Sun Yat Sen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sun Yat Sen University filed Critical Sun Yat Sen University
Priority to CN2010101445150A priority Critical patent/CN101804627B/en
Publication of CN101804627A publication Critical patent/CN101804627A/en
Application granted granted Critical
Publication of CN101804627B publication Critical patent/CN101804627B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Numerical Control (AREA)

Abstract

本发明提供了一种冗余度机械臂运动规划方法,包括如下步骤:1)通过上位机采用二次型优化在速度层上对机械臂的逆运动学解析,设计的最小性能指标可为速度范数、重复运动或动能,受约束于速度雅可比等式、不等式和关节角速度极限,该角速度极限是随关节角度变化的;2)将步骤1)的二次型优化转化为二次规划问题;3)将步骤2)的二次规划问题用线性变分不等式原对偶神经网络求解器或数值方法求解;4)将步骤3)的求解结果传递给下位机控制器驱动机械臂运动。本发明基于线性变分不等式的原对偶神经网络具有全局指数收敛性,且没有涉及到矩阵求逆等复杂运算,大大地提高了计算效率,同时实时性强且能适应关节角速度极限变化。

Figure 201010144515

The invention provides a method for motion planning of a redundant manipulator, comprising the following steps: 1) through the host computer, adopting quadratic optimization to analyze the inverse kinematics of the manipulator on the velocity layer, the minimum performance index of the design can be the speed Norm, repetitive motion or kinetic energy, constrained by velocity Jacobian equation, inequality and joint angular velocity limit, which varies with joint angle; 2) Transform the quadratic optimization of step 1) into a quadratic programming problem ; 3) solving the quadratic programming problem in step 2) with a linear variational inequality primal dual neural network solver or a numerical method; 4) passing the solution result of step 3) to the lower computer controller to drive the mechanical arm to move. The original dual neural network based on the linear variational inequality of the present invention has global exponential convergence, and does not involve complex operations such as matrix inversion, greatly improves calculation efficiency, and has strong real-time performance and can adapt to limit changes of joint angular velocities.

Figure 201010144515

Description

一种冗余度机械臂运动规划方法 A Motion Planning Method for Redundant Manipulator

技术领域technical field

本发明属于冗余度机械臂运动规划方法,特别是涉及一种关节角速度变极限的冗余度机械臂运动规划方法。The invention belongs to a motion planning method of a redundant manipulator, in particular to a motion planning method of a redundant manipulator in which joint angular velocity changes to a limit.

背景技术Background technique

冗余度机械臂是一种自由度大于任务空间所需最少自由度的末端能动机械装置,其运动任务包括焊接、油漆、组装、挖掘和绘图等,广泛应用于装备制造、产品加工、机器作业等国民经济生产活动中。冗余度机械臂的逆运动学问题是指已知机械臂末端位姿,确定机械臂的关节角问题。传统的冗余度解析方法以及工业机械臂控制方法主要是基于伪逆的方法:即,把问题的解转化成求一个最小范数解加上一个同类解。次目标可以被指定到同类解上,去控制机械臂的自运动以躲避障碍物、关节极限、奇异点和优化其它目标函数。其缺点是在处理不等式约束上有困难,计算量大,实时性差,而且它会遇到奇异情况而生成不可行解,在实际机械臂的应用中受到很大的制约。The redundant manipulator is a terminal active mechanical device with a degree of freedom greater than the minimum degree of freedom required by the task space. Its motion tasks include welding, painting, assembly, excavation, and drawing, etc. It is widely used in equipment manufacturing, product processing, and machine operations. and other national economic production activities. The inverse kinematics problem of the redundant manipulator refers to the problem of determining the joint angle of the manipulator given the end pose of the manipulator. Traditional redundancy analysis methods and industrial manipulator control methods are mainly based on the pseudo-inverse method: that is, the solution of the problem is transformed into a minimum norm solution plus a similar solution. Secondary objectives can be assigned to homogeneous solutions to control the ego-motion of the manipulator to avoid obstacles, joint limits, singularities, and optimize other objective functions. Its disadvantages are that it is difficult to deal with inequality constraints, the amount of calculation is large, the real-time performance is poor, and it will encounter singular situations and generate infeasible solutions, which are greatly restricted in the application of actual manipulators.

发明内容Contents of the invention

本发明的目的在于克服现有技术的不足,提供一种计算量小、实时性强且能适应关节角速度极限变化的冗余度机械臂运动规划方法。The purpose of the present invention is to overcome the deficiencies of the prior art, and provide a redundant mechanical arm motion planning method with small calculation amount, strong real-time performance and adaptability to limit changes of joint angular velocities.

为了实现上述发明目的,采用的技术方案如下:In order to realize the above-mentioned purpose of the invention, the technical scheme adopted is as follows:

一种冗余度机械臂运动规划方法,包括如下步骤:A method for motion planning of a redundant mechanical arm, comprising the steps of:

1)通过上位机采用二次型优化在速度层上对机械臂的逆运动学解析,设计的最小性能指标可为速度范数、重复运动或动能,受约束于速度雅可比等式、不等式和关节角速度极限,该角速度极限是随关节角度变化的;1) The upper computer adopts quadratic optimization to analyze the inverse kinematics of the manipulator on the velocity layer. The minimum performance index designed can be the velocity norm, repetitive motion or kinetic energy, which is constrained by the velocity Jacobian equation, inequality and Joint angular velocity limit, the angular velocity limit changes with the joint angle;

2)将步骤1)的二次型优化转化为二次规划问题;2) converting the quadratic optimization of step 1) into a quadratic programming problem;

3)将步骤2)的二次规划问题用线性变分不等式原对偶神经网络求解器或数值方法求解;3) the quadratic programming problem of step 2) is solved with linear variational inequality original dual neural network solver or numerical method;

4)将步骤3)的求解结果传递给下位机控制器驱动机械臂运动。4) Pass the solution result of step 3) to the lower computer controller to drive the movement of the mechanical arm.

本发明基于线性变分不等式的原对偶神经网络具有全局指数收敛性,且没有涉及到矩阵求逆等复杂运算,大大地提高了计算效率,同时实时性强且能适应关节角速度极限变化。The original dual neural network based on the linear variational inequality of the present invention has global exponential convergence, and does not involve complex operations such as matrix inversion, greatly improves calculation efficiency, and has strong real-time performance and can adapt to limit changes of joint angular velocities.

附图说明Description of drawings

图1为本发明的流程图;Fig. 1 is a flowchart of the present invention;

图2为实现本发明的机械臂结构主视图;Fig. 2 is the front view of the mechanical arm structure realizing the present invention;

图3为实现本发明的机械臂结构俯视图;Fig. 3 is the top view of the mechanical arm structure realizing the present invention;

图4为机械臂局部示意图。Fig. 4 is a partial schematic diagram of the mechanical arm.

具体实施方式Detailed ways

下面结合附图对本发明做进一步的说明。The present invention will be further described below in conjunction with the accompanying drawings.

图1所示的冗余度机械臂运动规划方法主要由目标问题1、二次规划问题2、基于线性变分不等式原对偶神经网络求解器或二次规划数值算法3、下位机控制器4和机械臂5组成。先将逆运动学求解在速度层上设计为最小化

Figure GSA00000082218900021
且受约束于
Figure GSA00000082218900022
Figure GSA00000082218900023
θ-≤θ≤θ+
Figure GSA00000082218900024
欲优化的性能指标
Figure GSA00000082218900025
可以是最小速度范数函数
Figure GSA00000082218900026
重复运动指标
Figure GSA00000082218900027
或最小动能函数
Figure GSA00000082218900028
将上述的各种冗余度解析方案转化为通用的二次型优化标准形式2,再使用基于线性变分不等式的原对偶神经网络或二次规划数值方法3求解,并将求解结果传递给下位机控制器4驱动机械臂5运动。The redundant manipulator motion planning method shown in Figure 1 mainly consists of the target problem 1, the quadratic programming problem 2, the linear variational inequality-based primal dual neural network solver or the quadratic programming numerical algorithm 3, the lower computer controller 4 and The mechanical arm is composed of 5. First, the inverse kinematics solution is designed to minimize the velocity layer
Figure GSA00000082218900021
and is subject to
Figure GSA00000082218900022
Figure GSA00000082218900023
θ ≤ θ ≤ θ + ,
Figure GSA00000082218900024
Performance indicators to be optimized
Figure GSA00000082218900025
Can be the minimum velocity norm function
Figure GSA00000082218900026
repetitive motion metrics
Figure GSA00000082218900027
or minimum kinetic energy function
Figure GSA00000082218900028
Transform the above-mentioned various redundancy analysis schemes into a general quadratic optimization standard form 2, and then use the original dual neural network or quadratic programming numerical method 3 based on linear variational inequality to solve the problem, and pass the solution result to the next Machine controller 4 drives mechanical arm 5 to move.

图2和图3所示的机械臂由机械臂连杆1、推杆2、关节3、关节与推杆施力点连结部4和基座5组成。其中推杆2的存在使其不同于传统无推杆串联机械臂的角速度恒定极限方式,而是一种变极限机械臂。在实时计算机械臂的逆解时,这个角速度极限是角度的函数。因此,通过改变二次规划的约束条件

Figure GSA00000082218900031
从而实现变极限的控制。The mechanical arm shown in FIG. 2 and FIG. 3 is composed of a connecting rod 1 of the mechanical arm, a push rod 2 , a joint 3 , a connection part 4 between the joint and the force application point of the push rod, and a base 5 . The existence of the push rod 2 makes it different from the constant angular velocity limit mode of the traditional series manipulator without push rod, but a variable limit manipulator. This angular velocity limit is a function of angle when calculating the inverse solution of the manipulator in real time. Therefore, by changing the constraints of the quadratic programming
Figure GSA00000082218900031
Thereby realizing variable limit control.

图4所示机械臂局部示意图,在通常的设计中,认为机械的动力产生于内部电机力矩,即假设动力不是来自于推杆,或者认为4非常小,几乎可以忽略,这样1和2就会重合在一起。本发明涉及的机械臂设计中,推杆是存在的,即4不可能忽略。这样,由于推杆的存在使得原来的角速度极限在每时每刻都会变化,是角度的函数。假设1的长度为a,4的长度为b,2的长度为c。具体推导过程如下:The partial schematic diagram of the mechanical arm shown in Figure 4, in the usual design, it is considered that the mechanical power is generated by the internal motor torque, that is, it is assumed that the power does not come from the push rod, or that 4 is very small and can be ignored, so 1 and 2 will be overlap together. In the design of the mechanical arm involved in the present invention, the push rod exists, that is, 4 cannot be ignored. In this way, due to the existence of the push rod, the original angular velocity limit will change every moment, which is a function of the angle. Suppose 1 has length a, 4 has length b, and 2 has length c. The specific derivation process is as follows:

cc 22 == aa 22 ++ bb 22 -- 22 aa ** bb ** coscos (( ππ 22 ++ θθ )) ;; -- -- -- (( 11 ))

将上述公式对时间t求导,得Deriving the above formula with respect to time t, we get

22 cc ** dcdc dtdt == 22 aa ** bb ** sinsin (( ππ 22 ++ θθ )) ** θθ ·· ;; -- -- -- (( 22 ))

其中,c=c0+v*Δt*Δc,c0为初始的c边长,v为步进电机的转速,Δc为电机转一圈对应的电推杆伸长量。进一步可得Among them, c=c 0 +v*Δt*Δc, c 0 is the initial side length of c, v is the speed of the stepping motor, and Δc is the elongation of the electric push rod corresponding to one revolution of the motor. further available

22 cc ** (( vv ** ΔcΔ c )) == 22 aa ** bb ** sinsin (( ππ 22 ++ θθ )) ** θθ ·&Center Dot; == 22 aa ** bb ** coscos θθ ** θθ ·&Center Dot; ;; -- -- -- (( 33 ))

c * Δc * v = a * b * cos θ * θ · ; (4)Right now c * Δ c * v = a * b * cos θ * θ &Center Dot; ; (4)

所以 θ · = c * Δc * v a * b * cos θ = Δc * v * a 2 + b 2 - 2 a * b * cos ( π 2 + θ ) a * b * cos θ , - - - ( 5 ) so θ · = c * Δ c * v a * b * cos θ = Δ c * v * a 2 + b 2 - 2 a * b * cos ( π 2 + θ ) a * b * cos θ , - - - ( 5 )

因此可得关节速度的变极限为Therefore, the variable limit of the joint velocity can be obtained as

Δc * v - * a 2 + b 2 - 2 a * b * cos ( π 2 + θ ) a * b * cos θ : = θ · - ( θ ) ≤ θ · (6) Δ c * v - * a 2 + b 2 - 2 a * b * cos ( π 2 + θ ) a * b * cos θ : = θ &Center Dot; - ( θ ) ≤ θ &Center Dot; (6)

≤≤ θθ ·&Center Dot; ++ (( θθ )) :: == ΔcΔ c ** vv ++ ** aa 22 ++ bb 22 -- 22 aa ** bb ** coscos (( ππ 22 ++ θθ )) aa ** bb ** coscos θθ ,,

其中,v+和v-分别为相关关节步进电机的转速正极限和负极限。通过考虑角速度的极限为随角度变化的函数,在设计控制方法时,修改相应的约束条件,组成带有变极限参数的角速度极限条件,从而实现对变极限问题的解决。Among them, v + and v - are the positive limit and negative limit of the speed of the stepper motor of the relevant joint, respectively. Considering that the limit of angular velocity is a function that varies with the angle, when designing the control method, modify the corresponding constraint conditions to form the limit condition of angular velocity with variable limit parameters, so as to realize the solution to the variable limit problem.

基于前面的分析,机械臂的逆运动学求解在速度层上可设计为:Based on the previous analysis, the inverse kinematics solution of the manipulator can be designed at the velocity layer as:

minmin φφ (( θθ ,, θθ ·· )) -- -- -- (( 77 ))

sthe s .. tt .. JJ θθ ·&Center Dot; == rr ·&Center Dot; ,, -- -- -- (( 88 ))

AA θθ ·&Center Dot; ≤≤ bb ,, -- -- -- (( 99 ))

θ-≤θ≤θ+,                           (10)θ ≤ θ ≤ θ + , (10)

θθ ·&Center Dot; -- (( θθ )) ≤≤ θθ ·· ≤≤ θθ ·· ++ (( θθ )) ;; -- -- -- (( 1111 ))

其中,

Figure GSA00000082218900048
代表欲优化的性能指标;等式约束
Figure GSA00000082218900049
表述机械臂末端运动轨迹;不等式约束
Figure GSA000000822189000410
可以用于环境障碍物的躲避或其它性能约束;θ-≤θ≤θ+
Figure GSA000000822189000411
分别是关节角度极限、关节角速度极限。in,
Figure GSA00000082218900048
Represents the performance index to be optimized; equality constraints
Figure GSA00000082218900049
Express the motion trajectory of the end of the manipulator; inequality constraints
Figure GSA000000822189000410
Can be used for avoidance of environmental obstacles or other performance constraints; θ - ≤ θ ≤ θ + ,
Figure GSA000000822189000411
They are joint angle limit and joint angular velocity limit respectively.

欲优化的性能指标

Figure GSA000000822189000412
可以设计为各种冗余度解析方案的优化判据。其可以是最小速度范数函数,即
Figure GSA000000822189000413
也可是重复运动指标,即
Figure GSA000000822189000414
其中z=λ(θ-θ(0)),λ>0是用来控制关节位移幅值的正设计参数;还可以是最小动能函数
Figure GSA00000082218900051
等。Performance indicators to be optimized
Figure GSA000000822189000412
It can be designed as an optimization criterion for various redundancy resolution schemes. It can be the minimum velocity norm function, namely
Figure GSA000000822189000413
It can also be a repetitive exercise index, that is,
Figure GSA000000822189000414
Where z=λ(θ-θ(0)), λ>0 is a positive design parameter used to control the amplitude of joint displacement; it can also be the minimum kinetic energy function
Figure GSA00000082218900051
wait.

如图1所示的步骤1,将上述问题转化为一个标准的二次规划问题去求解才能应用到机械臂的控制上去。该二次规划问题可写为如下通用形式:Step 1 shown in Figure 1, the above problem is transformed into a standard quadratic programming problem to be solved before it can be applied to the control of the manipulator. The quadratic programming problem can be written in the following general form:

minxTWx/2+qTx,                (12)minx T Wx/2+q T x, (12)

s.t.Jx=d,                    (13)s.t.Jx=d, (13)

Ax≤b,                        (14)Ax≤b, (14)

x-≤x≤x+。                    (15)x ≤ x ≤ x + . (15)

其中,决策变量x可以被定义为

Figure GSA00000082218900052
W,q,J,d,A,b,x-,x+为已知的相对应的系数矩阵和向量,比如,在最小速度范数方案中,W为单位矩阵,q=0,J为雅可比矩阵,
Figure GSA00000082218900053
而A,b可以是障碍物躲避参数或者由优化指标转化得到的不等式约束,x-,x+由公式(10)、(11)通过变换获得。where the decision variable x can be defined as
Figure GSA00000082218900052
W, q, J, d, A, b, x - , x + are known corresponding coefficient matrices and vectors, for example, in the minimum speed norm scheme, W is the identity matrix, q=0, and J is Jacobian matrix,
Figure GSA00000082218900053
And A, b can be obstacle avoidance parameters or inequality constraints obtained by transforming the optimization index, x , x + are obtained by transforming formulas (10) and (11).

下面说明关节物理极限的处理和变换过程,即如何由公式(10)、(11)转换得到公式(15)。在速度层上解析的时候,需要将(10)式转换为速度层

Figure GSA00000082218900054
上的表达形式:The following describes the processing and transformation process of joint physical limit, that is, how to convert formula (10) and (11) to get formula (15). When parsing on the speed layer, it is necessary to convert formula (10) into the speed layer
Figure GSA00000082218900054
The expression on the form:

μμ (( θθ -- -- θθ )) ≤≤ θθ ·&Center Dot; ≤≤ μμ (( θθ ++ -- θθ )) ,, -- -- -- (( 1616 ))

其中系数μ>0是用来调节关节角速度的可行域,系数μ的选取应该使(16)式转换后的可行域比原来的关节角速度可行域在一般情况下略大。由此,双端约束公式(10)和(11)可以合并为一个统一的双端约束:x-≤x≤x+,其中x-和x+的第i个元素分别定义如下:Among them, the coefficient μ > 0 is used to adjust the feasible region of the joint angular velocity. The selection of the coefficient μ should make the feasible region transformed by (16) slightly larger than the original feasible region of the joint angular velocity under normal circumstances. Thus, the double-ended constraint formulas (10) and (11) can be combined into a unified double-ended constraint: x - ≤ x ≤ x + , where the i-th elements of x - and x + are defined as follows:

xx ii -- == maxmax {{ θθ ·· ii -- (( θθ )) ,, μμ (( θθ ii -- -- θθ ii )) }} ,, -- -- -- (( 1717 ))

xx ii ++ == minmin {{ θθ ·· ii ++ (( θθ )) ,, μμ (( θθ ii ++ -- θθ ii )) }} .. -- -- -- (( 1818 ))

本发明用双端不等式来表述关节物理极限的躲避,以上相关参数μ的选择可以基于理论分析或基于经验。The present invention uses a double-terminal inequality to express the avoidance of the physical limit of the joint, and the selection of the above relevant parameter μ can be based on theoretical analysis or experience.

得到上述的二次规划问题(12)-(15)式后,本发明的求解方法是采用基于线性变分不等式的原对偶神经网络或二次规划数值算法来实时求解此二次规划问题。After obtaining the above-mentioned quadratic programming problem (12)-(15), the solution method of the present invention is to use the original dual neural network or quadratic programming numerical algorithm based on the linear variational inequality to solve the quadratic programming problem in real time.

以下就是基于线性变分不等式的原对偶神经网络来求解带约束的二次规划问题(12)-(15)的神经网络求解器的构造过程。The following is the construction process of the neural network solver for solving the constrained quadratic programming problems (12)-(15) based on the primal dual neural network of the linear variational inequality.

首先,将二次规划问题(12)-(15)式转化为一个线性变分不等式,即求一个原对偶变量

Figure GSA00000082218900061
使得
Figure GSA00000082218900062
First, transform the quadratic programming problem (12)-(15) into a linear variational inequality, that is, find a primal dual variable
Figure GSA00000082218900061
make
Figure GSA00000082218900062

(y-y*)T(My*+p)≥0,                    (19)(yy * ) T (My * +p) ≥ 0, (19)

其中,原对偶变量y及其上下限定义如下:Among them, the original dual variable y and its upper and lower limits are defined as follows:

y = x u v ,

Figure GSA00000082218900064
Figure GSA00000082218900065
the y = x u v ,
Figure GSA00000082218900064
Figure GSA00000082218900065

对偶变量u和v分别与等式约束(13)和不等式约束(14)相对应;1v:=[1,...,1]T是元素都为1的相应维数向量;是足够大的常数,用于数值上替代无穷大+∞,而扩展矩阵M、p分别定义如下:The dual variables u and v correspond to the equality constraint (13) and the inequality constraint (14) respectively; 1 v :=[1,...,1] T is the corresponding dimension vector whose elements are all 1; is a constant large enough to numerically replace infinity + ∞, and the expansion matrices M and p are defined as follows:

Mm == WW -- JJ TT AA TT JJ 00 00 -- AA 00 00 ,, pp == qq -- dd bb ;;

由此可总结归纳为:至少存在一个最优解x*时,二次规划问题(12)-(15)可转化为线性变分不等式问题(19)。Therefore, it can be summarized as follows: when there is at least one optimal solution x * , quadratic programming problems (12)-(15) can be transformed into linear variational inequality problems (19).

其次,线性变分不等式问题(19)又等价于线性投影方程,即PΩ(y-(My+p))-y=0,其中PΩ(·)为空间Rdim(x)+dim(d)+dim(b)到集合Ω的分段线性投影算子,PΩ(y)的第i个计算单元定义为Secondly, the linear variational inequality problem (19) is equivalent to the linear projection equation, that is, P Ω (y-(My+p))-y=0, where P Ω ( ) is the space R dim(x)+dim The piecewise linear projection operator of (d)+dim(b) to the set Ω, the i-th computational unit of P Ω (y) is defined as

ythe y ii -- ifif ythe y ii << ythe y ii -- ythe y ii ifif ythe y ii -- &le;&le; ythe y ii &le;&le; ythe y ii ++ ythe y ii ++ ifif ythe y ii >> ythe y ii ++ ,, &ForAll;&ForAll; ii &Element;&Element; {{ 1,21,2 ,, .. .. .. ,, dimdim (( xx )) ++ dimdim (( dd )) ++ dimdim (( bb )) }} ..

接着,用下面的动力学系统(作为基于线性变分不等式的原对偶神经网络的动力学描述形式,如图1的步骤3)来求解上述线性变分不等式问题及二次规划问题:Then, use the following dynamical system (as the dynamical description form of the original dual neural network based on linear variational inequality, as shown in step 3 of Figure 1) to solve the above-mentioned linear variational inequality problem and quadratic programming problem:

ythe y &CenterDot;&Center Dot; == &gamma;&gamma; (( II ++ Mm TT )) {{ PP &Omega;&Omega; (( ythe y -- (( MyMy ++ pp )) )) -- ythe y }} ,, -- -- -- (( 2020 ))

其中,设计参数γ>0用来调节网络的收敛性,γ越大该网络收敛得越快。此外,当(12)-(15)至少存在一个最优解x*时,从任何初始状态出发,线性变分不等式原对偶神经网络(20)的状态向量y(t)都将收敛至某平衡点y*,其前dim(x)个元素组成了二次规划问题(12)-(15)的最优解x*。如果存在一个常数ρ>0,使得||y-PΩ(y-(My+p))||2≥ρ||y-y*||2成立,则神经网络(20)全局指数收敛于平衡点y*和问题最优解x*(其收敛率正比于γρ)。将计算得到的角速度再传送给下位机控制器从而控制机械臂的运动,实现本发明的方法。Among them, the design parameter γ>0 is used to adjust the convergence of the network, and the larger the γ is, the faster the network converges. In addition, when (12)-(15) has at least one optimal solution x * , starting from any initial state, the state vector y(t) of the linear variational inequality original dual neural network (20) will converge to a certain equilibrium Point y * , whose first dim(x) elements constitute the optimal solution x * of the quadratic programming problem (12)-(15). If there is a constant ρ>0 such that ||yP Ω (y-(My+p))|| 2 ≥ ρ||yy * || 2 holds, then the global exponential of the neural network (20) converges to the equilibrium point y * and the optimal solution to the problem x * (its convergence rate is proportional to γρ). The calculated angular velocity is then transmitted to the lower computer controller to control the movement of the mechanical arm to realize the method of the present invention.

Claims (4)

1. A redundant manipulator motion planning method is characterized by comprising the following steps:
1) the upper computer analyzes the inverse kinematics of the mechanical arm on a speed layer by quadratic optimization, the designed minimum performance index can be speed norm, repetitive motion or kinetic energy and is constrained by a speed Jacobian equation, an inequality and a joint angular speed limit, and the angular speed limit is changed along with a joint angle;
2) converting the quadratic form optimization of the step 1) into a quadratic programming problem;
3) solving the quadratic programming problem in the step 2) by a primal-dual neural network solver or a quadratic programming numerical method based on a linear variational inequality;
4) and transmitting the solving result of the step 3) to a lower computer controller to drive the mechanical arm to move.
2. The method for redundant manipulator motion planning according to claim 1, wherein the quadratic optimization redundancy resolution scheme of step 1) designs the inverse kinematics solution of the manipulator on the velocity level as: minimization
Figure FSA00000082218800011
Is constrained to
Figure FSA00000082218800012
θ-≤θ≤θ+
Figure FSA00000082218800014
Wherein
Figure FSA00000082218800015
Representing performance indicators to be optimized, equality constraints
Figure FSA00000082218800016
Expressing the motion trail of the tail end of the mechanical arm and inequality constraint
Figure FSA00000082218800017
Representing avoidance Performance constraints for environmental obstacles, θ-≤θ≤θ+Respectively representing joint angle limit and joint angular velocity limit;
said property to be optimizedEnergy index
Figure FSA00000082218800019
For optimization criteria of various redundancy resolution schemes, at the speed level
Figure FSA000000822188000110
Using a minimum velocity norm function, i.e.
Figure FSA000000822188000111
Or repetitive motion indicators, i.e.
Figure FSA000000822188000112
Where z is λ (θ - θ (0)), λ > 0 is a positive design parameter, or minimum kinetic energy function, used to control the amplitude of joint displacement
Figure FSA000000822188000113
Wherein H is the arm inertia matrix.
3. The method of claim 2, wherein the quadratic programming problem of step 2) is transformed into a linear variational inequality, i.e. a primal-dual variational solutionSo that
Figure FSA000000822188000115
(y-y*)T(My*+ p) is greater than or equal to 0, wherein the primal-dual variable y and the upper and lower limits thereof are defined as follows:
y = x u v ,
Figure FSA00000082218800022
Figure FSA00000082218800023
the dual variables u and v correspond to an equality constraint (7) and an inequality constraint (8), respectively; 1v:=[1,...,1]TAre corresponding dimension vectors with elements all being 1;are constants large enough to numerically replace infinity + ∞, and the spreading matrix M, p is defined as follows:
M = W - J T A T J 0 0 - A 0 0 , p = q - d b .
4. the linear variational inequality according to claim 3 characterized in that it is equivalent to the linear projection equation PΩ(y- (My + P)) -y ═ 0, where P isΩ(. is a space R)dim(x)+dim(d)+dim(b)Piecewise linear projection operator, P, to the set ΩΩThe i-th calculation unit of (y) is defined as
<math><mrow><mfenced open='{' close=''><mtable><mtr><mtd><msubsup><mi>y</mi><mi>i</mi><mo>-</mo></msubsup></mtd><mtd><mi>if</mi></mtd><mtd><msub><mi>y</mi><mi>i</mi></msub><mo>&lt;</mo><msubsup><mi>y</mi><mi>i</mi><mo>-</mo></msubsup></mtd></mtr><mtr><mtd><msub><mi>y</mi><mi>i</mi></msub></mtd><mtd><mi>if</mi></mtd><mtd><msubsup><mi>y</mi><mi>i</mi><mo>-</mo></msubsup><mo>&le;</mo><msub><mi>y</mi><mi>i</mi></msub><mo>&le;</mo><msubsup><mi>y</mi><mi>i</mi><mo>+</mo></msubsup></mtd></mtr><mtr><mtd><msubsup><mi>y</mi><mi>i</mi><mo>+</mo></msubsup></mtd><mtd><mi>if</mi></mtd><mtd><msub><mi>y</mi><mi>i</mi></msub><mo>></mo><msubsup><mi>y</mi><mi>i</mi><mo>+</mo></msubsup></mtd></mtr></mtable></mfenced><mo>,</mo></mrow></math> <math><mrow><mo>&ForAll;</mo><mi>i</mi><mo>&Element;</mo><mo>{</mo><mn>1,2,3</mn><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><mi>dim</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>+</mo><mi>dim</mi><mrow><mo>(</mo><mi>d</mi><mo>)</mo></mrow><mo>+</mo><mi>dim</mi><mrow><mo>(</mo><mi>b</mi><mo>)</mo></mrow><mo>}</mo><mo>.</mo></mrow></math>
Then, using a kinetic system
Figure FSA00000082218800029
Solving the linear variational inequality problem and the quadratic programming problem, wherein the design parameter gamma is more than 0 to adjust the convergence of the network, and the larger the gamma is, the faster the network converges.
CN2010101445150A 2010-04-02 2010-04-02 Redundant manipulator motion planning method Expired - Fee Related CN101804627B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010101445150A CN101804627B (en) 2010-04-02 2010-04-02 Redundant manipulator motion planning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010101445150A CN101804627B (en) 2010-04-02 2010-04-02 Redundant manipulator motion planning method

Publications (2)

Publication Number Publication Date
CN101804627A true CN101804627A (en) 2010-08-18
CN101804627B CN101804627B (en) 2011-12-07

Family

ID=42606659

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010101445150A Expired - Fee Related CN101804627B (en) 2010-04-02 2010-04-02 Redundant manipulator motion planning method

Country Status (1)

Country Link
CN (1) CN101804627B (en)

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101927495A (en) * 2010-08-25 2010-12-29 中山大学 A repetitive motion planning method for a redundant manipulator
CN102126219A (en) * 2010-11-22 2011-07-20 中山大学 Fault-tolerant type motion planning method of redundancy mechanical arm
CN102289204A (en) * 2011-06-03 2011-12-21 华南理工大学 Mechanical arm general control method based on determined learning theory
CN102514008A (en) * 2011-11-21 2012-06-27 中山大学 Method for optimizing performance indexes of different layers of redundancy mechanical arm simultaneously
CN102663154A (en) * 2012-03-08 2012-09-12 东南大学 Simulation method for movement process of plane closed-loop linkage mechanism
CN103231381A (en) * 2013-05-03 2013-08-07 中山大学 Novel acceleration layer repetitive motion planning method for redundant manipulator
CN104760041A (en) * 2015-03-19 2015-07-08 中山大学 Barrier escaping motion planning method based on impact degree
CN104908040A (en) * 2015-06-23 2015-09-16 广东顺德中山大学卡内基梅隆大学国际联合研究院 Fault-tolerant planning method for accelerated speed layer of redundancy mechanical arm
CN105538325A (en) * 2015-12-30 2016-05-04 哈尔滨理工大学 Decoupling control method of single leg joint of hydraulic four-leg robot
CN105598968A (en) * 2016-01-26 2016-05-25 中山大学 Motion planning and control method of parallel connection mechanical arm
CN106155076A (en) * 2016-08-23 2016-11-23 华南理工大学 A kind of stabilized flight control method of many rotor unmanned aircrafts
CN106426164A (en) * 2016-09-27 2017-02-22 华南理工大学 Redundancy dual-mechanical-arm multi-index coordinate exercise planning method
CN106826828A (en) * 2017-02-16 2017-06-13 香港理工大学深圳研究院 A kind of cooperative control method and device of multi-redundant mechanical arm system
WO2017132905A1 (en) * 2016-02-03 2017-08-10 华为技术有限公司 Method and apparatus for controlling motion system
CN107066698A (en) * 2017-03-18 2017-08-18 华南理工大学 Repetitive motion planning method for redundant manipulator based on New Type of Numerical solver
CN107378952A (en) * 2017-08-16 2017-11-24 华南理工大学 A kind of solution method that redundancy mechanical arm end effector posture is kept
CN107966907A (en) * 2017-11-30 2018-04-27 华南理工大学 A kind of Obstacle avoidance applied to redundancy mechanical arm solves method
CN107962566A (en) * 2017-11-10 2018-04-27 浙江科技学院 A kind of mobile mechanical arm repetitive motion planning method
CN107984472A (en) * 2017-11-13 2018-05-04 华南理工大学 A kind of neural solver design method of change ginseng for redundant manipulator motion planning
CN108015765A (en) * 2017-11-22 2018-05-11 华南理工大学 A kind of expansion disaggregation counter propagation neural network of robot motion planning solves method
CN108015766A (en) * 2017-11-22 2018-05-11 华南理工大学 A kind of primal-dual neural network robot motion planing method of nonlinear restriction
WO2018176854A1 (en) * 2017-03-27 2018-10-04 华南理工大学 Method for programming repeating motion of redundant robotic arm
CN108714894A (en) * 2018-05-03 2018-10-30 华南理工大学 A kind of dynamic method for solving dual redundant mechanical arm and colliding with each other
CN109086557A (en) * 2018-09-26 2018-12-25 华南理工大学 A kind of repetitive motion planning method for redundant manipulator based on Euler's type discrete periodic rhythm and pace of moving things neural network
CN109129487A (en) * 2018-09-26 2019-01-04 华南理工大学 Repetitive motion planning method for redundant manipulator based on Taylor's type discrete periodic rhythm and pace of moving things neural network under periodic noise
CN109227550A (en) * 2018-11-12 2019-01-18 吉林大学 A kind of Mechanical arm control method based on RBF neural
CN110014427A (en) * 2019-03-26 2019-07-16 华侨大学 A high-precision motion planning method for redundant manipulators based on pseudo-inverse
CN110076770A (en) * 2019-03-28 2019-08-02 陕西理工大学 A kind of autokinesis method for redundant mechanical arm
CN110103225A (en) * 2019-06-04 2019-08-09 兰州大学 A kind of the mechanical arm repeating motion control method and device of data-driven
CN110434854A (en) * 2019-08-20 2019-11-12 兰州大学 A kind of redundancy mechanical arm Visual servoing control method and apparatus based on data-driven
CN110682286A (en) * 2019-05-28 2020-01-14 广东省智能制造研究所 Real-time obstacle avoidance method for cooperative robot
CN111037560A (en) * 2019-12-25 2020-04-21 广东省智能制造研究所 Cooperative robot compliance control method and system
CN111309002A (en) * 2019-11-26 2020-06-19 华南理工大学 Wheel type mobile robot obstacle avoidance method and system based on vector
CN111515945A (en) * 2020-04-10 2020-08-11 广州大学 Control method, system and device for mechanical arm visual positioning sorting and grabbing
CN111975768A (en) * 2020-07-08 2020-11-24 华南理工大学 A motion planning method for robotic arm based on solid parameter neural network
CN112605996A (en) * 2020-12-16 2021-04-06 中山大学 Model-free collision avoidance control method for redundant mechanical arm
CN114564009A (en) * 2022-01-21 2022-05-31 首都医科大学 Surgical robot path planning method and system
CN114643582A (en) * 2022-05-05 2022-06-21 中山大学 Model-free joint fault-tolerant control method and device for redundant mechanical arm
CN114700938A (en) * 2022-03-04 2022-07-05 华南理工大学 Redundant mechanical arm motion planning method based on jump gain integral neural network
CN115026813A (en) * 2022-05-26 2022-09-09 中山大学 Visual Servo Control Method and System of Robot Arm Based on Cerebellum-like Model
CN115075313A (en) * 2022-08-04 2022-09-20 网易(杭州)网络有限公司 Control semaphore determination method, device, equipment and storage medium
CN115582826A (en) * 2022-10-14 2023-01-10 华南理工大学 A super-redundant modular manipulator based on wire drive
US20230101489A1 (en) * 2021-09-27 2023-03-30 Ubtech Robotics Corp Ltd Redundant robot joint acceleration planning method, redundant robot using the same, and computer readable storage medium

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105563490A (en) * 2016-03-03 2016-05-11 吉首大学 Fault tolerant motion planning method for obstacle avoidance of mobile manipulator

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1728600A1 (en) * 2005-05-31 2006-12-06 Honda Research Institute Europe GmbH Controlling the trajectory of an effector
JP2007136590A (en) * 2005-11-16 2007-06-07 Kawasaki Heavy Ind Ltd Control device and control method for redundant robot having redundant joints
CN101028712A (en) * 2007-02-09 2007-09-05 北京航空航天大学 Rope-driven redundancy mechanical arm
CN101352854A (en) * 2008-07-17 2009-01-28 上海交通大学 Intelligent unit, system and method for autonomous obstacle avoidance of teleoperated planar redundant manipulator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1728600A1 (en) * 2005-05-31 2006-12-06 Honda Research Institute Europe GmbH Controlling the trajectory of an effector
JP2007136590A (en) * 2005-11-16 2007-06-07 Kawasaki Heavy Ind Ltd Control device and control method for redundant robot having redundant joints
CN101028712A (en) * 2007-02-09 2007-09-05 北京航空航天大学 Rope-driven redundancy mechanical arm
CN101352854A (en) * 2008-07-17 2009-01-28 上海交通大学 Intelligent unit, system and method for autonomous obstacle avoidance of teleoperated planar redundant manipulator

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
《控制理论与应用》 20050825 马宝离 冗余机器人的双向自运动路径规划 547-550 第22卷, 第4期 *
《机器人》 20081115 张雨浓等 基于二次型规划的平面冗余机械臂的自运动 566-571 第30卷, 第6期 *

Cited By (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101927495B (en) * 2010-08-25 2013-04-17 中山大学 Repetitive motion planning method for redundant manipulator
CN101927495A (en) * 2010-08-25 2010-12-29 中山大学 A repetitive motion planning method for a redundant manipulator
CN102126219A (en) * 2010-11-22 2011-07-20 中山大学 Fault-tolerant type motion planning method of redundancy mechanical arm
CN102126219B (en) * 2010-11-22 2012-11-07 中山大学 Fault-tolerant type motion planning method of redundancy mechanical arm
CN102289204A (en) * 2011-06-03 2011-12-21 华南理工大学 Mechanical arm general control method based on determined learning theory
CN102514008A (en) * 2011-11-21 2012-06-27 中山大学 Method for optimizing performance indexes of different layers of redundancy mechanical arm simultaneously
CN102514008B (en) * 2011-11-21 2014-03-19 中山大学 Method for optimizing performance indexes of different layers of redundancy mechanical arm simultaneously
CN102663154A (en) * 2012-03-08 2012-09-12 东南大学 Simulation method for movement process of plane closed-loop linkage mechanism
CN102663154B (en) * 2012-03-08 2013-12-25 东南大学 Simulation method for movement process of plane closed-loop linkage mechanism
CN103231381B (en) * 2013-05-03 2015-10-21 中山大学 A kind of novel acceleration layer repetitive motion planning method of redundancy mechanical arm
CN103231381A (en) * 2013-05-03 2013-08-07 中山大学 Novel acceleration layer repetitive motion planning method for redundant manipulator
CN104760041A (en) * 2015-03-19 2015-07-08 中山大学 Barrier escaping motion planning method based on impact degree
CN104760041B (en) * 2015-03-19 2016-08-03 中山大学 A kind of Obstacle avoidance motion planning method based on impact degree
CN104908040A (en) * 2015-06-23 2015-09-16 广东顺德中山大学卡内基梅隆大学国际联合研究院 Fault-tolerant planning method for accelerated speed layer of redundancy mechanical arm
CN104908040B (en) * 2015-06-23 2017-06-20 广东顺德中山大学卡内基梅隆大学国际联合研究院 A kind of fault-tolerant planing method of redundancy mechanical arm acceleration layer
CN105538325A (en) * 2015-12-30 2016-05-04 哈尔滨理工大学 Decoupling control method of single leg joint of hydraulic four-leg robot
CN105538325B (en) * 2015-12-30 2018-10-30 哈尔滨理工大学 A kind of hydraulic pressure quadruped robot list leg joint decoupling control method
CN105598968A (en) * 2016-01-26 2016-05-25 中山大学 Motion planning and control method of parallel connection mechanical arm
WO2017132905A1 (en) * 2016-02-03 2017-08-10 华为技术有限公司 Method and apparatus for controlling motion system
CN106155076A (en) * 2016-08-23 2016-11-23 华南理工大学 A kind of stabilized flight control method of many rotor unmanned aircrafts
CN106155076B (en) * 2016-08-23 2019-04-09 华南理工大学 A stable flight control method for a multi-rotor unmanned aerial vehicle
CN106426164B (en) * 2016-09-27 2019-04-09 华南理工大学 A multi-index coordinated motion planning method for redundant dual manipulators
CN106426164A (en) * 2016-09-27 2017-02-22 华南理工大学 Redundancy dual-mechanical-arm multi-index coordinate exercise planning method
CN106826828B (en) * 2017-02-16 2019-06-14 香港理工大学深圳研究院 A collaborative control method and device for a multi-redundant robotic arm system
CN106826828A (en) * 2017-02-16 2017-06-13 香港理工大学深圳研究院 A kind of cooperative control method and device of multi-redundant mechanical arm system
CN107066698A (en) * 2017-03-18 2017-08-18 华南理工大学 Repetitive motion planning method for redundant manipulator based on New Type of Numerical solver
US11409263B2 (en) 2017-03-27 2022-08-09 South China University Of Technology Method for programming repeating motion of redundant robotic arm
WO2018176854A1 (en) * 2017-03-27 2018-10-04 华南理工大学 Method for programming repeating motion of redundant robotic arm
CN107378952A (en) * 2017-08-16 2017-11-24 华南理工大学 A kind of solution method that redundancy mechanical arm end effector posture is kept
CN107378952B (en) * 2017-08-16 2019-08-20 华南理工大学 A Solution to Attitude Maintenance of Redundant Manipulator Arm End-effector
CN107962566A (en) * 2017-11-10 2018-04-27 浙江科技学院 A kind of mobile mechanical arm repetitive motion planning method
CN107984472A (en) * 2017-11-13 2018-05-04 华南理工大学 A kind of neural solver design method of change ginseng for redundant manipulator motion planning
CN108015766A (en) * 2017-11-22 2018-05-11 华南理工大学 A kind of primal-dual neural network robot motion planing method of nonlinear restriction
WO2019100891A1 (en) * 2017-11-22 2019-05-31 华南理工大学 Dual neural network solution method for extended solution set for robot motion planning
CN108015766B (en) * 2017-11-22 2020-05-22 华南理工大学 A Nonlinear Constrained Primitive-Dual Neural Network Robot Action Planning Method
CN108015765B (en) * 2017-11-22 2019-06-18 华南理工大学 An Extended Solution Set Dual Neural Network Solution for Robot Motion Planning
CN108015765A (en) * 2017-11-22 2018-05-11 华南理工大学 A kind of expansion disaggregation counter propagation neural network of robot motion planning solves method
CN107966907B (en) * 2017-11-30 2020-09-22 华南理工大学 An obstacle avoidance solution applied to redundant manipulators
CN107966907A (en) * 2017-11-30 2018-04-27 华南理工大学 A kind of Obstacle avoidance applied to redundancy mechanical arm solves method
CN108714894A (en) * 2018-05-03 2018-10-30 华南理工大学 A kind of dynamic method for solving dual redundant mechanical arm and colliding with each other
CN109129487A (en) * 2018-09-26 2019-01-04 华南理工大学 Repetitive motion planning method for redundant manipulator based on Taylor's type discrete periodic rhythm and pace of moving things neural network under periodic noise
CN109086557A (en) * 2018-09-26 2018-12-25 华南理工大学 A kind of repetitive motion planning method for redundant manipulator based on Euler's type discrete periodic rhythm and pace of moving things neural network
CN109086557B (en) * 2018-09-26 2022-05-24 华南理工大学 A Redundant Manipulator Repetitive Motion Planning Method Based on Euler Discrete Periodic Rhythm Neural Network
CN109227550A (en) * 2018-11-12 2019-01-18 吉林大学 A kind of Mechanical arm control method based on RBF neural
CN110014427B (en) * 2019-03-26 2021-11-02 华侨大学 A high-precision motion planning method for redundant manipulators based on pseudo-inverse
CN110014427A (en) * 2019-03-26 2019-07-16 华侨大学 A high-precision motion planning method for redundant manipulators based on pseudo-inverse
CN110076770A (en) * 2019-03-28 2019-08-02 陕西理工大学 A kind of autokinesis method for redundant mechanical arm
CN110682286A (en) * 2019-05-28 2020-01-14 广东省智能制造研究所 Real-time obstacle avoidance method for cooperative robot
CN110682286B (en) * 2019-05-28 2020-07-28 广东省智能制造研究所 Real-time obstacle avoidance method for cooperative robot
CN110103225A (en) * 2019-06-04 2019-08-09 兰州大学 A kind of the mechanical arm repeating motion control method and device of data-driven
CN110103225B (en) * 2019-06-04 2023-04-11 兰州大学 Data-driven method and device for controlling repeated motion of mechanical arm
CN110434854A (en) * 2019-08-20 2019-11-12 兰州大学 A kind of redundancy mechanical arm Visual servoing control method and apparatus based on data-driven
CN111309002A (en) * 2019-11-26 2020-06-19 华南理工大学 Wheel type mobile robot obstacle avoidance method and system based on vector
CN111037560A (en) * 2019-12-25 2020-04-21 广东省智能制造研究所 Cooperative robot compliance control method and system
CN111515945A (en) * 2020-04-10 2020-08-11 广州大学 Control method, system and device for mechanical arm visual positioning sorting and grabbing
CN111975768A (en) * 2020-07-08 2020-11-24 华南理工大学 A motion planning method for robotic arm based on solid parameter neural network
CN111975768B (en) * 2020-07-08 2022-03-25 华南理工大学 Mechanical arm motion planning method based on fixed parameter neural network
CN112605996A (en) * 2020-12-16 2021-04-06 中山大学 Model-free collision avoidance control method for redundant mechanical arm
US20230101489A1 (en) * 2021-09-27 2023-03-30 Ubtech Robotics Corp Ltd Redundant robot joint acceleration planning method, redundant robot using the same, and computer readable storage medium
US11992946B2 (en) * 2021-09-27 2024-05-28 Ubkang (Qingdao) Technology Co., Ltd. Redundant robot joint acceleration planning method, redundant robot using the same, and computer readable storage medium
CN114564009A (en) * 2022-01-21 2022-05-31 首都医科大学 Surgical robot path planning method and system
CN114700938A (en) * 2022-03-04 2022-07-05 华南理工大学 Redundant mechanical arm motion planning method based on jump gain integral neural network
CN114700938B (en) * 2022-03-04 2023-06-16 华南理工大学 Redundant mechanical arm motion planning method based on jump gain integral neural network
CN114643582B (en) * 2022-05-05 2022-12-27 中山大学 Model-free joint fault-tolerant control method and device for redundant mechanical arm
CN114643582A (en) * 2022-05-05 2022-06-21 中山大学 Model-free joint fault-tolerant control method and device for redundant mechanical arm
CN115026813A (en) * 2022-05-26 2022-09-09 中山大学 Visual Servo Control Method and System of Robot Arm Based on Cerebellum-like Model
CN115075313A (en) * 2022-08-04 2022-09-20 网易(杭州)网络有限公司 Control semaphore determination method, device, equipment and storage medium
CN115582826A (en) * 2022-10-14 2023-01-10 华南理工大学 A super-redundant modular manipulator based on wire drive
CN115582826B (en) * 2022-10-14 2024-03-19 华南理工大学 Super-redundancy modularized mechanical arm based on line driving

Also Published As

Publication number Publication date
CN101804627B (en) 2011-12-07

Similar Documents

Publication Publication Date Title
CN101804627B (en) Redundant manipulator motion planning method
CN106426164B (en) A multi-index coordinated motion planning method for redundant dual manipulators
CN102514008B (en) Method for optimizing performance indexes of different layers of redundancy mechanical arm simultaneously
CN104760041B (en) A kind of Obstacle avoidance motion planning method based on impact degree
CN103231381B (en) A kind of novel acceleration layer repetitive motion planning method of redundancy mechanical arm
CN104070525B (en) For the method for space manipulator continuous trajectory tracking
CN112894821B (en) Method, device and equipment for dragging and teaching control of collaborative robot based on current method
CN105538327A (en) Redundant manipulator repeated motion programming method based on abrupt acceleration
CN108015766B (en) A Nonlinear Constrained Primitive-Dual Neural Network Robot Action Planning Method
CN108326852A (en) A kind of space manipulator method for planning track of multiple-objection optimization
CN103235513A (en) Genetic-algorithm-based trajectory planning optimization method for mobile mechanical arm
CN108015765B (en) An Extended Solution Set Dual Neural Network Solution for Robot Motion Planning
CN111975768A (en) A motion planning method for robotic arm based on solid parameter neural network
CN105772917A (en) Trajectory tracking control method of three-joint spot welding robot
CN107966907A (en) A kind of Obstacle avoidance applied to redundancy mechanical arm solves method
CN106737670A (en) A kind of repetitive motion planning method for redundant manipulator with noiseproof feature
CN107351081A (en) Redundancy mechanical arm impact degree layer motion planning method with speed-optimization characteristic
CN104503229A (en) Wave integral bilateral teleoperation control method based on LS-SVM (least square support vector machine) delay predication
CN110103225A (en) A kind of the mechanical arm repeating motion control method and device of data-driven
CN106625680A (en) Redundant manipulator acceleration layer noise-tolerant control method
CN108555914A (en) A kind of DNN Neural Network Adaptive Control methods driving Dextrous Hand based on tendon
Yang et al. Neural network-based self-learning control for power transmission line deicing robot
CN109623827A (en) A kind of high-performance redundant degree mechanical arm repetitive motion planning method and device
Hu et al. Prescribed time tracking control without velocity measurement for dual-arm robots
CN106547989A (en) Position inner ring impedance control algorithm with flexibility of joint/armed lever flexible mechanical arm

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20111207

Termination date: 20140402