CN101804627A - Redundant manipulator motion planning method - Google Patents
Redundant manipulator motion planning method Download PDFInfo
- Publication number
- CN101804627A CN101804627A CN 201010144515 CN201010144515A CN101804627A CN 101804627 A CN101804627 A CN 101804627A CN 201010144515 CN201010144515 CN 201010144515 CN 201010144515 A CN201010144515 A CN 201010144515A CN 101804627 A CN101804627 A CN 101804627A
- Authority
- CN
- China
- Prior art keywords
- mtd
- msubsup
- mrow
- inequality
- msub
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 23
- 230000009977 dual effect Effects 0.000 claims abstract description 14
- 238000013528 artificial neural network Methods 0.000 claims abstract description 13
- 238000005457 optimization Methods 0.000 claims abstract description 11
- 239000011159 matrix material Substances 0.000 claims abstract description 6
- 230000003252 repetitive effect Effects 0.000 claims abstract description 6
- 238000004364 calculation method Methods 0.000 claims abstract description 5
- 239000013598 vector Substances 0.000 claims description 4
- 238000006073 displacement reaction Methods 0.000 claims description 2
- 230000007613 environmental effect Effects 0.000 claims description 2
- 238000004458 analytical method Methods 0.000 description 4
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 description 2
- 238000004422 calculation algorithm Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000001131 transforming effect Effects 0.000 description 2
- 238000009412 basement excavation Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000005183 dynamical system Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Landscapes
- Numerical Control (AREA)
Abstract
本发明提供了一种冗余度机械臂运动规划方法,包括如下步骤:1)通过上位机采用二次型优化在速度层上对机械臂的逆运动学解析,设计的最小性能指标可为速度范数、重复运动或动能,受约束于速度雅可比等式、不等式和关节角速度极限,该角速度极限是随关节角度变化的;2)将步骤1)的二次型优化转化为二次规划问题;3)将步骤2)的二次规划问题用线性变分不等式原对偶神经网络求解器或数值方法求解;4)将步骤3)的求解结果传递给下位机控制器驱动机械臂运动。本发明基于线性变分不等式的原对偶神经网络具有全局指数收敛性,且没有涉及到矩阵求逆等复杂运算,大大地提高了计算效率,同时实时性强且能适应关节角速度极限变化。
The invention provides a method for motion planning of a redundant manipulator, comprising the following steps: 1) through the host computer, adopting quadratic optimization to analyze the inverse kinematics of the manipulator on the velocity layer, the minimum performance index of the design can be the speed Norm, repetitive motion or kinetic energy, constrained by velocity Jacobian equation, inequality and joint angular velocity limit, which varies with joint angle; 2) Transform the quadratic optimization of step 1) into a quadratic programming problem ; 3) solving the quadratic programming problem in step 2) with a linear variational inequality primal dual neural network solver or a numerical method; 4) passing the solution result of step 3) to the lower computer controller to drive the mechanical arm to move. The original dual neural network based on the linear variational inequality of the present invention has global exponential convergence, and does not involve complex operations such as matrix inversion, greatly improves calculation efficiency, and has strong real-time performance and can adapt to limit changes of joint angular velocities.
Description
技术领域technical field
本发明属于冗余度机械臂运动规划方法,特别是涉及一种关节角速度变极限的冗余度机械臂运动规划方法。The invention belongs to a motion planning method of a redundant manipulator, in particular to a motion planning method of a redundant manipulator in which joint angular velocity changes to a limit.
背景技术Background technique
冗余度机械臂是一种自由度大于任务空间所需最少自由度的末端能动机械装置,其运动任务包括焊接、油漆、组装、挖掘和绘图等,广泛应用于装备制造、产品加工、机器作业等国民经济生产活动中。冗余度机械臂的逆运动学问题是指已知机械臂末端位姿,确定机械臂的关节角问题。传统的冗余度解析方法以及工业机械臂控制方法主要是基于伪逆的方法:即,把问题的解转化成求一个最小范数解加上一个同类解。次目标可以被指定到同类解上,去控制机械臂的自运动以躲避障碍物、关节极限、奇异点和优化其它目标函数。其缺点是在处理不等式约束上有困难,计算量大,实时性差,而且它会遇到奇异情况而生成不可行解,在实际机械臂的应用中受到很大的制约。The redundant manipulator is a terminal active mechanical device with a degree of freedom greater than the minimum degree of freedom required by the task space. Its motion tasks include welding, painting, assembly, excavation, and drawing, etc. It is widely used in equipment manufacturing, product processing, and machine operations. and other national economic production activities. The inverse kinematics problem of the redundant manipulator refers to the problem of determining the joint angle of the manipulator given the end pose of the manipulator. Traditional redundancy analysis methods and industrial manipulator control methods are mainly based on the pseudo-inverse method: that is, the solution of the problem is transformed into a minimum norm solution plus a similar solution. Secondary objectives can be assigned to homogeneous solutions to control the ego-motion of the manipulator to avoid obstacles, joint limits, singularities, and optimize other objective functions. Its disadvantages are that it is difficult to deal with inequality constraints, the amount of calculation is large, the real-time performance is poor, and it will encounter singular situations and generate infeasible solutions, which are greatly restricted in the application of actual manipulators.
发明内容Contents of the invention
本发明的目的在于克服现有技术的不足,提供一种计算量小、实时性强且能适应关节角速度极限变化的冗余度机械臂运动规划方法。The purpose of the present invention is to overcome the deficiencies of the prior art, and provide a redundant mechanical arm motion planning method with small calculation amount, strong real-time performance and adaptability to limit changes of joint angular velocities.
为了实现上述发明目的,采用的技术方案如下:In order to realize the above-mentioned purpose of the invention, the technical scheme adopted is as follows:
一种冗余度机械臂运动规划方法,包括如下步骤:A method for motion planning of a redundant mechanical arm, comprising the steps of:
1)通过上位机采用二次型优化在速度层上对机械臂的逆运动学解析,设计的最小性能指标可为速度范数、重复运动或动能,受约束于速度雅可比等式、不等式和关节角速度极限,该角速度极限是随关节角度变化的;1) The upper computer adopts quadratic optimization to analyze the inverse kinematics of the manipulator on the velocity layer. The minimum performance index designed can be the velocity norm, repetitive motion or kinetic energy, which is constrained by the velocity Jacobian equation, inequality and Joint angular velocity limit, the angular velocity limit changes with the joint angle;
2)将步骤1)的二次型优化转化为二次规划问题;2) converting the quadratic optimization of step 1) into a quadratic programming problem;
3)将步骤2)的二次规划问题用线性变分不等式原对偶神经网络求解器或数值方法求解;3) the quadratic programming problem of step 2) is solved with linear variational inequality original dual neural network solver or numerical method;
4)将步骤3)的求解结果传递给下位机控制器驱动机械臂运动。4) Pass the solution result of step 3) to the lower computer controller to drive the movement of the mechanical arm.
本发明基于线性变分不等式的原对偶神经网络具有全局指数收敛性,且没有涉及到矩阵求逆等复杂运算,大大地提高了计算效率,同时实时性强且能适应关节角速度极限变化。The original dual neural network based on the linear variational inequality of the present invention has global exponential convergence, and does not involve complex operations such as matrix inversion, greatly improves calculation efficiency, and has strong real-time performance and can adapt to limit changes of joint angular velocities.
附图说明Description of drawings
图1为本发明的流程图;Fig. 1 is a flowchart of the present invention;
图2为实现本发明的机械臂结构主视图;Fig. 2 is the front view of the mechanical arm structure realizing the present invention;
图3为实现本发明的机械臂结构俯视图;Fig. 3 is the top view of the mechanical arm structure realizing the present invention;
图4为机械臂局部示意图。Fig. 4 is a partial schematic diagram of the mechanical arm.
具体实施方式Detailed ways
下面结合附图对本发明做进一步的说明。The present invention will be further described below in conjunction with the accompanying drawings.
图1所示的冗余度机械臂运动规划方法主要由目标问题1、二次规划问题2、基于线性变分不等式原对偶神经网络求解器或二次规划数值算法3、下位机控制器4和机械臂5组成。先将逆运动学求解在速度层上设计为最小化且受约束于 θ-≤θ≤θ+,欲优化的性能指标可以是最小速度范数函数重复运动指标或最小动能函数将上述的各种冗余度解析方案转化为通用的二次型优化标准形式2,再使用基于线性变分不等式的原对偶神经网络或二次规划数值方法3求解,并将求解结果传递给下位机控制器4驱动机械臂5运动。The redundant manipulator motion planning method shown in Figure 1 mainly consists of the
图2和图3所示的机械臂由机械臂连杆1、推杆2、关节3、关节与推杆施力点连结部4和基座5组成。其中推杆2的存在使其不同于传统无推杆串联机械臂的角速度恒定极限方式,而是一种变极限机械臂。在实时计算机械臂的逆解时,这个角速度极限是角度的函数。因此,通过改变二次规划的约束条件从而实现变极限的控制。The mechanical arm shown in FIG. 2 and FIG. 3 is composed of a
图4所示机械臂局部示意图,在通常的设计中,认为机械的动力产生于内部电机力矩,即假设动力不是来自于推杆,或者认为4非常小,几乎可以忽略,这样1和2就会重合在一起。本发明涉及的机械臂设计中,推杆是存在的,即4不可能忽略。这样,由于推杆的存在使得原来的角速度极限在每时每刻都会变化,是角度的函数。假设1的长度为a,4的长度为b,2的长度为c。具体推导过程如下:The partial schematic diagram of the mechanical arm shown in Figure 4, in the usual design, it is considered that the mechanical power is generated by the internal motor torque, that is, it is assumed that the power does not come from the push rod, or that 4 is very small and can be ignored, so 1 and 2 will be overlap together. In the design of the mechanical arm involved in the present invention, the push rod exists, that is, 4 cannot be ignored. In this way, due to the existence of the push rod, the original angular velocity limit will change every moment, which is a function of the angle. Suppose 1 has length a, 4 has length b, and 2 has length c. The specific derivation process is as follows:
将上述公式对时间t求导,得Deriving the above formula with respect to time t, we get
其中,c=c0+v*Δt*Δc,c0为初始的c边长,v为步进电机的转速,Δc为电机转一圈对应的电推杆伸长量。进一步可得Among them, c=c 0 +v*Δt*Δc, c 0 is the initial side length of c, v is the speed of the stepping motor, and Δc is the elongation of the electric push rod corresponding to one revolution of the motor. further available
即
所以
因此可得关节速度的变极限为Therefore, the variable limit of the joint velocity can be obtained as
其中,v+和v-分别为相关关节步进电机的转速正极限和负极限。通过考虑角速度的极限为随角度变化的函数,在设计控制方法时,修改相应的约束条件,组成带有变极限参数的角速度极限条件,从而实现对变极限问题的解决。Among them, v + and v - are the positive limit and negative limit of the speed of the stepper motor of the relevant joint, respectively. Considering that the limit of angular velocity is a function that varies with the angle, when designing the control method, modify the corresponding constraint conditions to form the limit condition of angular velocity with variable limit parameters, so as to realize the solution to the variable limit problem.
基于前面的分析,机械臂的逆运动学求解在速度层上可设计为:Based on the previous analysis, the inverse kinematics solution of the manipulator can be designed at the velocity layer as:
θ-≤θ≤θ+, (10)θ − ≤ θ ≤ θ + , (10)
其中,代表欲优化的性能指标;等式约束表述机械臂末端运动轨迹;不等式约束可以用于环境障碍物的躲避或其它性能约束;θ-≤θ≤θ+、分别是关节角度极限、关节角速度极限。in, Represents the performance index to be optimized; equality constraints Express the motion trajectory of the end of the manipulator; inequality constraints Can be used for avoidance of environmental obstacles or other performance constraints; θ - ≤ θ ≤ θ + , They are joint angle limit and joint angular velocity limit respectively.
欲优化的性能指标可以设计为各种冗余度解析方案的优化判据。其可以是最小速度范数函数,即也可是重复运动指标,即其中z=λ(θ-θ(0)),λ>0是用来控制关节位移幅值的正设计参数;还可以是最小动能函数等。Performance indicators to be optimized It can be designed as an optimization criterion for various redundancy resolution schemes. It can be the minimum velocity norm function, namely It can also be a repetitive exercise index, that is, Where z=λ(θ-θ(0)), λ>0 is a positive design parameter used to control the amplitude of joint displacement; it can also be the minimum kinetic energy function wait.
如图1所示的步骤1,将上述问题转化为一个标准的二次规划问题去求解才能应用到机械臂的控制上去。该二次规划问题可写为如下通用形式:
minxTWx/2+qTx, (12)minx T Wx/2+q T x, (12)
s.t.Jx=d, (13)s.t.Jx=d, (13)
Ax≤b, (14)Ax≤b, (14)
x-≤x≤x+。 (15)x − ≤ x ≤ x + . (15)
其中,决策变量x可以被定义为W,q,J,d,A,b,x-,x+为已知的相对应的系数矩阵和向量,比如,在最小速度范数方案中,W为单位矩阵,q=0,J为雅可比矩阵,而A,b可以是障碍物躲避参数或者由优化指标转化得到的不等式约束,x-,x+由公式(10)、(11)通过变换获得。where the decision variable x can be defined as W, q, J, d, A, b, x - , x + are known corresponding coefficient matrices and vectors, for example, in the minimum speed norm scheme, W is the identity matrix, q=0, and J is Jacobian matrix, And A, b can be obstacle avoidance parameters or inequality constraints obtained by transforming the optimization index, x − , x + are obtained by transforming formulas (10) and (11).
下面说明关节物理极限的处理和变换过程,即如何由公式(10)、(11)转换得到公式(15)。在速度层上解析的时候,需要将(10)式转换为速度层上的表达形式:The following describes the processing and transformation process of joint physical limit, that is, how to convert formula (10) and (11) to get formula (15). When parsing on the speed layer, it is necessary to convert formula (10) into the speed layer The expression on the form:
其中系数μ>0是用来调节关节角速度的可行域,系数μ的选取应该使(16)式转换后的可行域比原来的关节角速度可行域在一般情况下略大。由此,双端约束公式(10)和(11)可以合并为一个统一的双端约束:x-≤x≤x+,其中x-和x+的第i个元素分别定义如下:Among them, the coefficient μ > 0 is used to adjust the feasible region of the joint angular velocity. The selection of the coefficient μ should make the feasible region transformed by (16) slightly larger than the original feasible region of the joint angular velocity under normal circumstances. Thus, the double-ended constraint formulas (10) and (11) can be combined into a unified double-ended constraint: x - ≤ x ≤ x + , where the i-th elements of x - and x + are defined as follows:
本发明用双端不等式来表述关节物理极限的躲避,以上相关参数μ的选择可以基于理论分析或基于经验。The present invention uses a double-terminal inequality to express the avoidance of the physical limit of the joint, and the selection of the above relevant parameter μ can be based on theoretical analysis or experience.
得到上述的二次规划问题(12)-(15)式后,本发明的求解方法是采用基于线性变分不等式的原对偶神经网络或二次规划数值算法来实时求解此二次规划问题。After obtaining the above-mentioned quadratic programming problem (12)-(15), the solution method of the present invention is to use the original dual neural network or quadratic programming numerical algorithm based on the linear variational inequality to solve the quadratic programming problem in real time.
以下就是基于线性变分不等式的原对偶神经网络来求解带约束的二次规划问题(12)-(15)的神经网络求解器的构造过程。The following is the construction process of the neural network solver for solving the constrained quadratic programming problems (12)-(15) based on the primal dual neural network of the linear variational inequality.
首先,将二次规划问题(12)-(15)式转化为一个线性变分不等式,即求一个原对偶变量使得 First, transform the quadratic programming problem (12)-(15) into a linear variational inequality, that is, find a primal dual variable make
(y-y*)T(My*+p)≥0, (19)(yy * ) T (My * +p) ≥ 0, (19)
其中,原对偶变量y及其上下限定义如下:Among them, the original dual variable y and its upper and lower limits are defined as follows:
对偶变量u和v分别与等式约束(13)和不等式约束(14)相对应;1v:=[1,...,1]T是元素都为1的相应维数向量;是足够大的常数,用于数值上替代无穷大+∞,而扩展矩阵M、p分别定义如下:The dual variables u and v correspond to the equality constraint (13) and the inequality constraint (14) respectively; 1 v :=[1,...,1] T is the corresponding dimension vector whose elements are all 1; is a constant large enough to numerically replace infinity + ∞, and the expansion matrices M and p are defined as follows:
由此可总结归纳为:至少存在一个最优解x*时,二次规划问题(12)-(15)可转化为线性变分不等式问题(19)。Therefore, it can be summarized as follows: when there is at least one optimal solution x * , quadratic programming problems (12)-(15) can be transformed into linear variational inequality problems (19).
其次,线性变分不等式问题(19)又等价于线性投影方程,即PΩ(y-(My+p))-y=0,其中PΩ(·)为空间Rdim(x)+dim(d)+dim(b)到集合Ω的分段线性投影算子,PΩ(y)的第i个计算单元定义为Secondly, the linear variational inequality problem (19) is equivalent to the linear projection equation, that is, P Ω (y-(My+p))-y=0, where P Ω ( ) is the space R dim(x)+dim The piecewise linear projection operator of (d)+dim(b) to the set Ω, the i-th computational unit of P Ω (y) is defined as
接着,用下面的动力学系统(作为基于线性变分不等式的原对偶神经网络的动力学描述形式,如图1的步骤3)来求解上述线性变分不等式问题及二次规划问题:Then, use the following dynamical system (as the dynamical description form of the original dual neural network based on linear variational inequality, as shown in
其中,设计参数γ>0用来调节网络的收敛性,γ越大该网络收敛得越快。此外,当(12)-(15)至少存在一个最优解x*时,从任何初始状态出发,线性变分不等式原对偶神经网络(20)的状态向量y(t)都将收敛至某平衡点y*,其前dim(x)个元素组成了二次规划问题(12)-(15)的最优解x*。如果存在一个常数ρ>0,使得||y-PΩ(y-(My+p))||2≥ρ||y-y*||2成立,则神经网络(20)全局指数收敛于平衡点y*和问题最优解x*(其收敛率正比于γρ)。将计算得到的角速度再传送给下位机控制器从而控制机械臂的运动,实现本发明的方法。Among them, the design parameter γ>0 is used to adjust the convergence of the network, and the larger the γ is, the faster the network converges. In addition, when (12)-(15) has at least one optimal solution x * , starting from any initial state, the state vector y(t) of the linear variational inequality original dual neural network (20) will converge to a certain equilibrium Point y * , whose first dim(x) elements constitute the optimal solution x * of the quadratic programming problem (12)-(15). If there is a constant ρ>0 such that ||yP Ω (y-(My+p))|| 2 ≥ ρ||yy * || 2 holds, then the global exponential of the neural network (20) converges to the equilibrium point y * and the optimal solution to the problem x * (its convergence rate is proportional to γρ). The calculated angular velocity is then transmitted to the lower computer controller to control the movement of the mechanical arm to realize the method of the present invention.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010101445150A CN101804627B (en) | 2010-04-02 | 2010-04-02 | Redundant manipulator motion planning method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010101445150A CN101804627B (en) | 2010-04-02 | 2010-04-02 | Redundant manipulator motion planning method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101804627A true CN101804627A (en) | 2010-08-18 |
CN101804627B CN101804627B (en) | 2011-12-07 |
Family
ID=42606659
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2010101445150A Expired - Fee Related CN101804627B (en) | 2010-04-02 | 2010-04-02 | Redundant manipulator motion planning method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101804627B (en) |
Cited By (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101927495A (en) * | 2010-08-25 | 2010-12-29 | 中山大学 | A repetitive motion planning method for a redundant manipulator |
CN102126219A (en) * | 2010-11-22 | 2011-07-20 | 中山大学 | Fault-tolerant type motion planning method of redundancy mechanical arm |
CN102289204A (en) * | 2011-06-03 | 2011-12-21 | 华南理工大学 | Mechanical arm general control method based on determined learning theory |
CN102514008A (en) * | 2011-11-21 | 2012-06-27 | 中山大学 | Method for optimizing performance indexes of different layers of redundancy mechanical arm simultaneously |
CN102663154A (en) * | 2012-03-08 | 2012-09-12 | 东南大学 | Simulation method for movement process of plane closed-loop linkage mechanism |
CN103231381A (en) * | 2013-05-03 | 2013-08-07 | 中山大学 | Novel acceleration layer repetitive motion planning method for redundant manipulator |
CN104760041A (en) * | 2015-03-19 | 2015-07-08 | 中山大学 | Barrier escaping motion planning method based on impact degree |
CN104908040A (en) * | 2015-06-23 | 2015-09-16 | 广东顺德中山大学卡内基梅隆大学国际联合研究院 | Fault-tolerant planning method for accelerated speed layer of redundancy mechanical arm |
CN105538325A (en) * | 2015-12-30 | 2016-05-04 | 哈尔滨理工大学 | Decoupling control method of single leg joint of hydraulic four-leg robot |
CN105598968A (en) * | 2016-01-26 | 2016-05-25 | 中山大学 | Motion planning and control method of parallel connection mechanical arm |
CN106155076A (en) * | 2016-08-23 | 2016-11-23 | 华南理工大学 | A kind of stabilized flight control method of many rotor unmanned aircrafts |
CN106426164A (en) * | 2016-09-27 | 2017-02-22 | 华南理工大学 | Redundancy dual-mechanical-arm multi-index coordinate exercise planning method |
CN106826828A (en) * | 2017-02-16 | 2017-06-13 | 香港理工大学深圳研究院 | A kind of cooperative control method and device of multi-redundant mechanical arm system |
WO2017132905A1 (en) * | 2016-02-03 | 2017-08-10 | 华为技术有限公司 | Method and apparatus for controlling motion system |
CN107066698A (en) * | 2017-03-18 | 2017-08-18 | 华南理工大学 | Repetitive motion planning method for redundant manipulator based on New Type of Numerical solver |
CN107378952A (en) * | 2017-08-16 | 2017-11-24 | 华南理工大学 | A kind of solution method that redundancy mechanical arm end effector posture is kept |
CN107966907A (en) * | 2017-11-30 | 2018-04-27 | 华南理工大学 | A kind of Obstacle avoidance applied to redundancy mechanical arm solves method |
CN107962566A (en) * | 2017-11-10 | 2018-04-27 | 浙江科技学院 | A kind of mobile mechanical arm repetitive motion planning method |
CN107984472A (en) * | 2017-11-13 | 2018-05-04 | 华南理工大学 | A kind of neural solver design method of change ginseng for redundant manipulator motion planning |
CN108015765A (en) * | 2017-11-22 | 2018-05-11 | 华南理工大学 | A kind of expansion disaggregation counter propagation neural network of robot motion planning solves method |
CN108015766A (en) * | 2017-11-22 | 2018-05-11 | 华南理工大学 | A kind of primal-dual neural network robot motion planing method of nonlinear restriction |
WO2018176854A1 (en) * | 2017-03-27 | 2018-10-04 | 华南理工大学 | Method for programming repeating motion of redundant robotic arm |
CN108714894A (en) * | 2018-05-03 | 2018-10-30 | 华南理工大学 | A kind of dynamic method for solving dual redundant mechanical arm and colliding with each other |
CN109086557A (en) * | 2018-09-26 | 2018-12-25 | 华南理工大学 | A kind of repetitive motion planning method for redundant manipulator based on Euler's type discrete periodic rhythm and pace of moving things neural network |
CN109129487A (en) * | 2018-09-26 | 2019-01-04 | 华南理工大学 | Repetitive motion planning method for redundant manipulator based on Taylor's type discrete periodic rhythm and pace of moving things neural network under periodic noise |
CN109227550A (en) * | 2018-11-12 | 2019-01-18 | 吉林大学 | A kind of Mechanical arm control method based on RBF neural |
CN110014427A (en) * | 2019-03-26 | 2019-07-16 | 华侨大学 | A high-precision motion planning method for redundant manipulators based on pseudo-inverse |
CN110076770A (en) * | 2019-03-28 | 2019-08-02 | 陕西理工大学 | A kind of autokinesis method for redundant mechanical arm |
CN110103225A (en) * | 2019-06-04 | 2019-08-09 | 兰州大学 | A kind of the mechanical arm repeating motion control method and device of data-driven |
CN110434854A (en) * | 2019-08-20 | 2019-11-12 | 兰州大学 | A kind of redundancy mechanical arm Visual servoing control method and apparatus based on data-driven |
CN110682286A (en) * | 2019-05-28 | 2020-01-14 | 广东省智能制造研究所 | Real-time obstacle avoidance method for cooperative robot |
CN111037560A (en) * | 2019-12-25 | 2020-04-21 | 广东省智能制造研究所 | Cooperative robot compliance control method and system |
CN111309002A (en) * | 2019-11-26 | 2020-06-19 | 华南理工大学 | Wheel type mobile robot obstacle avoidance method and system based on vector |
CN111515945A (en) * | 2020-04-10 | 2020-08-11 | 广州大学 | Control method, system and device for mechanical arm visual positioning sorting and grabbing |
CN111975768A (en) * | 2020-07-08 | 2020-11-24 | 华南理工大学 | A motion planning method for robotic arm based on solid parameter neural network |
CN112605996A (en) * | 2020-12-16 | 2021-04-06 | 中山大学 | Model-free collision avoidance control method for redundant mechanical arm |
CN114564009A (en) * | 2022-01-21 | 2022-05-31 | 首都医科大学 | Surgical robot path planning method and system |
CN114643582A (en) * | 2022-05-05 | 2022-06-21 | 中山大学 | Model-free joint fault-tolerant control method and device for redundant mechanical arm |
CN114700938A (en) * | 2022-03-04 | 2022-07-05 | 华南理工大学 | Redundant mechanical arm motion planning method based on jump gain integral neural network |
CN115026813A (en) * | 2022-05-26 | 2022-09-09 | 中山大学 | Visual Servo Control Method and System of Robot Arm Based on Cerebellum-like Model |
CN115075313A (en) * | 2022-08-04 | 2022-09-20 | 网易(杭州)网络有限公司 | Control semaphore determination method, device, equipment and storage medium |
CN115582826A (en) * | 2022-10-14 | 2023-01-10 | 华南理工大学 | A super-redundant modular manipulator based on wire drive |
US20230101489A1 (en) * | 2021-09-27 | 2023-03-30 | Ubtech Robotics Corp Ltd | Redundant robot joint acceleration planning method, redundant robot using the same, and computer readable storage medium |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105563490A (en) * | 2016-03-03 | 2016-05-11 | 吉首大学 | Fault tolerant motion planning method for obstacle avoidance of mobile manipulator |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1728600A1 (en) * | 2005-05-31 | 2006-12-06 | Honda Research Institute Europe GmbH | Controlling the trajectory of an effector |
JP2007136590A (en) * | 2005-11-16 | 2007-06-07 | Kawasaki Heavy Ind Ltd | Control device and control method for redundant robot having redundant joints |
CN101028712A (en) * | 2007-02-09 | 2007-09-05 | 北京航空航天大学 | Rope-driven redundancy mechanical arm |
CN101352854A (en) * | 2008-07-17 | 2009-01-28 | 上海交通大学 | Intelligent unit, system and method for autonomous obstacle avoidance of teleoperated planar redundant manipulator |
-
2010
- 2010-04-02 CN CN2010101445150A patent/CN101804627B/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1728600A1 (en) * | 2005-05-31 | 2006-12-06 | Honda Research Institute Europe GmbH | Controlling the trajectory of an effector |
JP2007136590A (en) * | 2005-11-16 | 2007-06-07 | Kawasaki Heavy Ind Ltd | Control device and control method for redundant robot having redundant joints |
CN101028712A (en) * | 2007-02-09 | 2007-09-05 | 北京航空航天大学 | Rope-driven redundancy mechanical arm |
CN101352854A (en) * | 2008-07-17 | 2009-01-28 | 上海交通大学 | Intelligent unit, system and method for autonomous obstacle avoidance of teleoperated planar redundant manipulator |
Non-Patent Citations (2)
Title |
---|
《控制理论与应用》 20050825 马宝离 冗余机器人的双向自运动路径规划 547-550 第22卷, 第4期 * |
《机器人》 20081115 张雨浓等 基于二次型规划的平面冗余机械臂的自运动 566-571 第30卷, 第6期 * |
Cited By (69)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101927495B (en) * | 2010-08-25 | 2013-04-17 | 中山大学 | Repetitive motion planning method for redundant manipulator |
CN101927495A (en) * | 2010-08-25 | 2010-12-29 | 中山大学 | A repetitive motion planning method for a redundant manipulator |
CN102126219A (en) * | 2010-11-22 | 2011-07-20 | 中山大学 | Fault-tolerant type motion planning method of redundancy mechanical arm |
CN102126219B (en) * | 2010-11-22 | 2012-11-07 | 中山大学 | Fault-tolerant type motion planning method of redundancy mechanical arm |
CN102289204A (en) * | 2011-06-03 | 2011-12-21 | 华南理工大学 | Mechanical arm general control method based on determined learning theory |
CN102514008A (en) * | 2011-11-21 | 2012-06-27 | 中山大学 | Method for optimizing performance indexes of different layers of redundancy mechanical arm simultaneously |
CN102514008B (en) * | 2011-11-21 | 2014-03-19 | 中山大学 | Method for optimizing performance indexes of different layers of redundancy mechanical arm simultaneously |
CN102663154A (en) * | 2012-03-08 | 2012-09-12 | 东南大学 | Simulation method for movement process of plane closed-loop linkage mechanism |
CN102663154B (en) * | 2012-03-08 | 2013-12-25 | 东南大学 | Simulation method for movement process of plane closed-loop linkage mechanism |
CN103231381B (en) * | 2013-05-03 | 2015-10-21 | 中山大学 | A kind of novel acceleration layer repetitive motion planning method of redundancy mechanical arm |
CN103231381A (en) * | 2013-05-03 | 2013-08-07 | 中山大学 | Novel acceleration layer repetitive motion planning method for redundant manipulator |
CN104760041A (en) * | 2015-03-19 | 2015-07-08 | 中山大学 | Barrier escaping motion planning method based on impact degree |
CN104760041B (en) * | 2015-03-19 | 2016-08-03 | 中山大学 | A kind of Obstacle avoidance motion planning method based on impact degree |
CN104908040A (en) * | 2015-06-23 | 2015-09-16 | 广东顺德中山大学卡内基梅隆大学国际联合研究院 | Fault-tolerant planning method for accelerated speed layer of redundancy mechanical arm |
CN104908040B (en) * | 2015-06-23 | 2017-06-20 | 广东顺德中山大学卡内基梅隆大学国际联合研究院 | A kind of fault-tolerant planing method of redundancy mechanical arm acceleration layer |
CN105538325A (en) * | 2015-12-30 | 2016-05-04 | 哈尔滨理工大学 | Decoupling control method of single leg joint of hydraulic four-leg robot |
CN105538325B (en) * | 2015-12-30 | 2018-10-30 | 哈尔滨理工大学 | A kind of hydraulic pressure quadruped robot list leg joint decoupling control method |
CN105598968A (en) * | 2016-01-26 | 2016-05-25 | 中山大学 | Motion planning and control method of parallel connection mechanical arm |
WO2017132905A1 (en) * | 2016-02-03 | 2017-08-10 | 华为技术有限公司 | Method and apparatus for controlling motion system |
CN106155076A (en) * | 2016-08-23 | 2016-11-23 | 华南理工大学 | A kind of stabilized flight control method of many rotor unmanned aircrafts |
CN106155076B (en) * | 2016-08-23 | 2019-04-09 | 华南理工大学 | A stable flight control method for a multi-rotor unmanned aerial vehicle |
CN106426164B (en) * | 2016-09-27 | 2019-04-09 | 华南理工大学 | A multi-index coordinated motion planning method for redundant dual manipulators |
CN106426164A (en) * | 2016-09-27 | 2017-02-22 | 华南理工大学 | Redundancy dual-mechanical-arm multi-index coordinate exercise planning method |
CN106826828B (en) * | 2017-02-16 | 2019-06-14 | 香港理工大学深圳研究院 | A collaborative control method and device for a multi-redundant robotic arm system |
CN106826828A (en) * | 2017-02-16 | 2017-06-13 | 香港理工大学深圳研究院 | A kind of cooperative control method and device of multi-redundant mechanical arm system |
CN107066698A (en) * | 2017-03-18 | 2017-08-18 | 华南理工大学 | Repetitive motion planning method for redundant manipulator based on New Type of Numerical solver |
US11409263B2 (en) | 2017-03-27 | 2022-08-09 | South China University Of Technology | Method for programming repeating motion of redundant robotic arm |
WO2018176854A1 (en) * | 2017-03-27 | 2018-10-04 | 华南理工大学 | Method for programming repeating motion of redundant robotic arm |
CN107378952A (en) * | 2017-08-16 | 2017-11-24 | 华南理工大学 | A kind of solution method that redundancy mechanical arm end effector posture is kept |
CN107378952B (en) * | 2017-08-16 | 2019-08-20 | 华南理工大学 | A Solution to Attitude Maintenance of Redundant Manipulator Arm End-effector |
CN107962566A (en) * | 2017-11-10 | 2018-04-27 | 浙江科技学院 | A kind of mobile mechanical arm repetitive motion planning method |
CN107984472A (en) * | 2017-11-13 | 2018-05-04 | 华南理工大学 | A kind of neural solver design method of change ginseng for redundant manipulator motion planning |
CN108015766A (en) * | 2017-11-22 | 2018-05-11 | 华南理工大学 | A kind of primal-dual neural network robot motion planing method of nonlinear restriction |
WO2019100891A1 (en) * | 2017-11-22 | 2019-05-31 | 华南理工大学 | Dual neural network solution method for extended solution set for robot motion planning |
CN108015766B (en) * | 2017-11-22 | 2020-05-22 | 华南理工大学 | A Nonlinear Constrained Primitive-Dual Neural Network Robot Action Planning Method |
CN108015765B (en) * | 2017-11-22 | 2019-06-18 | 华南理工大学 | An Extended Solution Set Dual Neural Network Solution for Robot Motion Planning |
CN108015765A (en) * | 2017-11-22 | 2018-05-11 | 华南理工大学 | A kind of expansion disaggregation counter propagation neural network of robot motion planning solves method |
CN107966907B (en) * | 2017-11-30 | 2020-09-22 | 华南理工大学 | An obstacle avoidance solution applied to redundant manipulators |
CN107966907A (en) * | 2017-11-30 | 2018-04-27 | 华南理工大学 | A kind of Obstacle avoidance applied to redundancy mechanical arm solves method |
CN108714894A (en) * | 2018-05-03 | 2018-10-30 | 华南理工大学 | A kind of dynamic method for solving dual redundant mechanical arm and colliding with each other |
CN109129487A (en) * | 2018-09-26 | 2019-01-04 | 华南理工大学 | Repetitive motion planning method for redundant manipulator based on Taylor's type discrete periodic rhythm and pace of moving things neural network under periodic noise |
CN109086557A (en) * | 2018-09-26 | 2018-12-25 | 华南理工大学 | A kind of repetitive motion planning method for redundant manipulator based on Euler's type discrete periodic rhythm and pace of moving things neural network |
CN109086557B (en) * | 2018-09-26 | 2022-05-24 | 华南理工大学 | A Redundant Manipulator Repetitive Motion Planning Method Based on Euler Discrete Periodic Rhythm Neural Network |
CN109227550A (en) * | 2018-11-12 | 2019-01-18 | 吉林大学 | A kind of Mechanical arm control method based on RBF neural |
CN110014427B (en) * | 2019-03-26 | 2021-11-02 | 华侨大学 | A high-precision motion planning method for redundant manipulators based on pseudo-inverse |
CN110014427A (en) * | 2019-03-26 | 2019-07-16 | 华侨大学 | A high-precision motion planning method for redundant manipulators based on pseudo-inverse |
CN110076770A (en) * | 2019-03-28 | 2019-08-02 | 陕西理工大学 | A kind of autokinesis method for redundant mechanical arm |
CN110682286A (en) * | 2019-05-28 | 2020-01-14 | 广东省智能制造研究所 | Real-time obstacle avoidance method for cooperative robot |
CN110682286B (en) * | 2019-05-28 | 2020-07-28 | 广东省智能制造研究所 | Real-time obstacle avoidance method for cooperative robot |
CN110103225A (en) * | 2019-06-04 | 2019-08-09 | 兰州大学 | A kind of the mechanical arm repeating motion control method and device of data-driven |
CN110103225B (en) * | 2019-06-04 | 2023-04-11 | 兰州大学 | Data-driven method and device for controlling repeated motion of mechanical arm |
CN110434854A (en) * | 2019-08-20 | 2019-11-12 | 兰州大学 | A kind of redundancy mechanical arm Visual servoing control method and apparatus based on data-driven |
CN111309002A (en) * | 2019-11-26 | 2020-06-19 | 华南理工大学 | Wheel type mobile robot obstacle avoidance method and system based on vector |
CN111037560A (en) * | 2019-12-25 | 2020-04-21 | 广东省智能制造研究所 | Cooperative robot compliance control method and system |
CN111515945A (en) * | 2020-04-10 | 2020-08-11 | 广州大学 | Control method, system and device for mechanical arm visual positioning sorting and grabbing |
CN111975768A (en) * | 2020-07-08 | 2020-11-24 | 华南理工大学 | A motion planning method for robotic arm based on solid parameter neural network |
CN111975768B (en) * | 2020-07-08 | 2022-03-25 | 华南理工大学 | Mechanical arm motion planning method based on fixed parameter neural network |
CN112605996A (en) * | 2020-12-16 | 2021-04-06 | 中山大学 | Model-free collision avoidance control method for redundant mechanical arm |
US20230101489A1 (en) * | 2021-09-27 | 2023-03-30 | Ubtech Robotics Corp Ltd | Redundant robot joint acceleration planning method, redundant robot using the same, and computer readable storage medium |
US11992946B2 (en) * | 2021-09-27 | 2024-05-28 | Ubkang (Qingdao) Technology Co., Ltd. | Redundant robot joint acceleration planning method, redundant robot using the same, and computer readable storage medium |
CN114564009A (en) * | 2022-01-21 | 2022-05-31 | 首都医科大学 | Surgical robot path planning method and system |
CN114700938A (en) * | 2022-03-04 | 2022-07-05 | 华南理工大学 | Redundant mechanical arm motion planning method based on jump gain integral neural network |
CN114700938B (en) * | 2022-03-04 | 2023-06-16 | 华南理工大学 | Redundant mechanical arm motion planning method based on jump gain integral neural network |
CN114643582B (en) * | 2022-05-05 | 2022-12-27 | 中山大学 | Model-free joint fault-tolerant control method and device for redundant mechanical arm |
CN114643582A (en) * | 2022-05-05 | 2022-06-21 | 中山大学 | Model-free joint fault-tolerant control method and device for redundant mechanical arm |
CN115026813A (en) * | 2022-05-26 | 2022-09-09 | 中山大学 | Visual Servo Control Method and System of Robot Arm Based on Cerebellum-like Model |
CN115075313A (en) * | 2022-08-04 | 2022-09-20 | 网易(杭州)网络有限公司 | Control semaphore determination method, device, equipment and storage medium |
CN115582826A (en) * | 2022-10-14 | 2023-01-10 | 华南理工大学 | A super-redundant modular manipulator based on wire drive |
CN115582826B (en) * | 2022-10-14 | 2024-03-19 | 华南理工大学 | Super-redundancy modularized mechanical arm based on line driving |
Also Published As
Publication number | Publication date |
---|---|
CN101804627B (en) | 2011-12-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101804627B (en) | Redundant manipulator motion planning method | |
CN106426164B (en) | A multi-index coordinated motion planning method for redundant dual manipulators | |
CN102514008B (en) | Method for optimizing performance indexes of different layers of redundancy mechanical arm simultaneously | |
CN104760041B (en) | A kind of Obstacle avoidance motion planning method based on impact degree | |
CN103231381B (en) | A kind of novel acceleration layer repetitive motion planning method of redundancy mechanical arm | |
CN104070525B (en) | For the method for space manipulator continuous trajectory tracking | |
CN112894821B (en) | Method, device and equipment for dragging and teaching control of collaborative robot based on current method | |
CN105538327A (en) | Redundant manipulator repeated motion programming method based on abrupt acceleration | |
CN108015766B (en) | A Nonlinear Constrained Primitive-Dual Neural Network Robot Action Planning Method | |
CN108326852A (en) | A kind of space manipulator method for planning track of multiple-objection optimization | |
CN103235513A (en) | Genetic-algorithm-based trajectory planning optimization method for mobile mechanical arm | |
CN108015765B (en) | An Extended Solution Set Dual Neural Network Solution for Robot Motion Planning | |
CN111975768A (en) | A motion planning method for robotic arm based on solid parameter neural network | |
CN105772917A (en) | Trajectory tracking control method of three-joint spot welding robot | |
CN107966907A (en) | A kind of Obstacle avoidance applied to redundancy mechanical arm solves method | |
CN106737670A (en) | A kind of repetitive motion planning method for redundant manipulator with noiseproof feature | |
CN107351081A (en) | Redundancy mechanical arm impact degree layer motion planning method with speed-optimization characteristic | |
CN104503229A (en) | Wave integral bilateral teleoperation control method based on LS-SVM (least square support vector machine) delay predication | |
CN110103225A (en) | A kind of the mechanical arm repeating motion control method and device of data-driven | |
CN106625680A (en) | Redundant manipulator acceleration layer noise-tolerant control method | |
CN108555914A (en) | A kind of DNN Neural Network Adaptive Control methods driving Dextrous Hand based on tendon | |
Yang et al. | Neural network-based self-learning control for power transmission line deicing robot | |
CN109623827A (en) | A kind of high-performance redundant degree mechanical arm repetitive motion planning method and device | |
Hu et al. | Prescribed time tracking control without velocity measurement for dual-arm robots | |
CN106547989A (en) | Position inner ring impedance control algorithm with flexibility of joint/armed lever flexible mechanical arm |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20111207 Termination date: 20140402 |