CN101736323A - Device for preparing boron-doped diamond composite coating on surface of cutter - Google Patents
Device for preparing boron-doped diamond composite coating on surface of cutter Download PDFInfo
- Publication number
- CN101736323A CN101736323A CN200910311897A CN200910311897A CN101736323A CN 101736323 A CN101736323 A CN 101736323A CN 200910311897 A CN200910311897 A CN 200910311897A CN 200910311897 A CN200910311897 A CN 200910311897A CN 101736323 A CN101736323 A CN 101736323A
- Authority
- CN
- China
- Prior art keywords
- temperature resistant
- resistant spring
- cutter
- doped diamond
- drilling bit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Cutting Tools, Boring Holders, And Turrets (AREA)
Abstract
The invention discloses a device for preparing a boron-doped diamond composite coating on the surface of a cutter, belonging to the technical field of cutters. The device comprises a reaction hood, an alloy drilling bit, a supporting table, a cooling device, a direct current voltage bias power supply, a heat wire power source, air pressure control device, a high-temperature resistant spring, a heat wire and a drilling bit bracket, wherein the alloy drilling bit and the high-temperature resistant spring are respectively and vertically arranged on the drilling bit bracket; two ends of the heat wire are respectively connected with the high-temperature resistant spring; the drilling bit bracket is fixed on the supporting table and the cooling device; the reaction device is fixed on the supporting table and the cooling device and the outer part of the drilling bit bracket is connected with the air pressure control device; the direct current voltage bias power source is respectively connected with the heat wire and the shell of the reaction hood; and the heat wire power source is respectively connected with the heat wire and the high-temperature resistant spring. The invention can ensure excellent adhesive strength between a diamond composite film and a matrix and can effectively improve the surface quality and the uniformity of the diamond film, thereby improving the service life and the cutting performance of the cutter with the diamond film coating.
Description
Technical field
What the present invention relates to is the device in a kind of cutter manufacturing technology field, specifically is a kind of cemented carbide with complicated shape device for preparing boron-doped diamond composite coating on surface of cutter that is used for.
Background technology
Diamond thin has many excellent properties near natural diamond; big as hardness height, Young's modulus; frictional coefficient is low, wear resistance is strong and surface chemistry stable performance etc.; therefore, diamond thin has broad application prospects at tool and mould and wear resistant appliance field as wear-resisting, antifriction or protective coating material.Chemical Vapor deposition process (Chemical VaporDeposition, abbreviation CVD method) the preparation diamond thin is not subjected to the restriction of base shape, can directly be deposited on the surface of complicated shape matrix, be suitable for very much preparing complicated shape diamond film coating layer cutter.Yet, the constructional feature of complex shaped cutter self and performance requriements make it to the deposition apparatus and the depositing operation of cutter matrix surface pretreatment technology, CVD diamond thin particular requirement be arranged all, and the bonding phase cobalt in the inserted tool has the graphitizing of urging to diamond thin, this CVD diamond thin and adhesion strength between the matrix that has caused being deposited on the cemented carbide with complicated shape tool surface is lower, film surface is of poor quality, and this has greatly restricted the industrialization of complicated shape diamond film coating layer cutter.
Through the retrieval of document is found, be the adhesion strength that improves between diamond thin and the hard alloy substrate, generally the pretreatment process of Cai Yonging comprise that acid etch, plasma arc etching, chemical reaction substitute, hot mechanical treatment and interpolation intermediate layer etc.Yet, though these pretreatment processs can improve the sticking power between diamond thin and the cemented carbide with complicated shape tool matrix to a certain extent, but along with the prolongation of deposition of diamond thin films process, these methods will weaken gradually for the restraining effect of cobalt, and effect is unsatisfactory.People such as F.X.Lu have proposed in " Diamond and Related Materials " the 15th phase in 2006 the 2039th page of " Novel pretreatment of hard metal substrate for betterperformance of diamond coated cutting tools " literary composition of delivering by the inserted tool matrix being carried out the adhesion strength of the pretreated method raising of boronising diamond thin.This method is in the cemented carbide substrate surfaces boronising, make the cobalt element generation chemical reaction on boron and matrix top layer generate stable boron cobalt compound, thereby stop the diffusion of cobalt element to the matrix top layer, suppressing its influence to the diamond thin quality, is a kind of novel pretreatment process that improves film base adhesion strength.Yet, this method is before diamond film growth, under the condition of static state tool matrix being carried out boronising handles, though it can suppress the cobalt element of tool matrix inside to a certain extent to surface diffusion, but should the static state boronising is pretreated need under hot conditions, carry out, complicated operating process not only, time consumption and energy consumption, and very easily change the material property of cutter.In addition, this method can't effectively suppress the inner cobalt element of hard alloy substrate equally to the matrix surface thermodiffusion in the process of long-time high temperature deposition diamond thin.
Summary of the invention
The present invention is directed to the prior art above shortcomings, a kind of device for preparing boron-doped diamond composite coating on surface of cutter is provided, can security deposit's hard rock laminated film and matrix between have good adhesion strength, and can effectively improve the surface quality and the homogeneity of diamond thin, thereby improve the work-ing life and the cutting ability of diamond film coating layer cutter.
The present invention is achieved by the following technical solutions,
The present invention includes: reaction hood, alloy bit, brace table and refrigerating unit, dc bias power, heater supply, Pneumatic controller, high temperature resistant spring, heated filament and drill bit support, wherein: alloy bit and high temperature resistant spring vertically are arranged on the drill bit support respectively, the two ends of heated filament are connected with high temperature resistant spring respectively, the drill bit support is fixedly set on brace table and the refrigerating unit, reaction unit is fixedly set in the outside of brace table and refrigerating unit and drill bit support and is connected with Pneumatic controller, dc bias power links to each other respectively at heated filament and reaction hood shell, the linking to each other with heated filament and high temperature resistant spring respectively of heater supply.
Totally two of described heated filaments, the same plane, both sides that these two heated filaments are positioned at alloy bit and become parallel equidistant arrangement, the two ends of two heated filaments are connected;
The Heating temperature of described heater supply is 2000-2400 ℃;
Described reaction hood is provided with gas inlet and viewing window, and wherein: the gas inlet is positioned at the top of reaction hood, and viewing window is positioned at the side of reaction hood.
The present invention is by utilizing the hot-wire chemical gas-phase deposition device, deposited the boron-doped diamond compounded film that the diamond thin by different boron-doping concentration is composited at the cemented carbide with complicated shape matrix surface.Boron-doped diamond compounded film had both had good adhesion strength, had uniform surface quality again.
The present invention vertically is put in the cemented carbide with complicated shape cutter in the middle of two heated filaments, makes it parallel with two heated filaments and keep equidistantly.In deposition process, the cemented carbide with complicated shape cutter under the drive of worktable around the rotation of himself axle center, can guarantee that like this each position, tool matrix surface has the consistent temperature field distribution, can guarantee the homogeneity of carbon source concentration and boron source concentration around the tool matrix again, thereby, guaranteed thickness, surface quality and the homogeneity of diamond thin for diamond thin provides good growing environment;
Adopt above-mentioned improved hot-wire chemical gas-phase deposition device then, mixture with hydrogen, acetone is a reactant gases, with the trimethyl borate that is dissolved in the acetone soln is the doped with boron source, deposits boron-doped diamond film on the cemented carbide with complicated shape tool matrix;
At last, reduce the concentration that is dissolved in the trimethyl borate in the acetone soln, continue in-situ deposition lower concentration boron-doped diamond film on high density boron-doped diamond film surface, thereby prepared the boron-doped diamond compounded film that is composited by the different concns boron-doped diamond film in cemented carbide substrate surfaces.
The present invention is simple to operate, it is convenient to use, be applicable at cemented carbide with complicated shape tool surface deposition adhesion strength height, the surface is diamond thin uniformly, help lend some impetus to the application of diamond thin, have bright industrialization prospect and remarkable economic efficiency in cemented carbide with complicated shape cutter field.
Description of drawings
Fig. 1 is a synoptic diagram of the present invention.
Embodiment
Below embodiments of the invention are elaborated, present embodiment is being to implement under the prerequisite with the technical solution of the present invention, provided detailed embodiment and concrete operating process, but protection scope of the present invention is not limited to following embodiment.
As shown in Figure 1, this enforcement comprises: reaction hood 1, alloy bit 2, brace table and refrigerating unit 3, dc bias power 4, heater supply 5, Pneumatic controller 6, high temperature resistant spring 7, heated filament 8 and drill bit support 9, wherein: alloy bit 2 and high temperature resistant spring 7 vertically are arranged on the drill bit support 9 respectively, the two ends of heated filament 8 are connected with high temperature resistant spring 7 respectively, drill bit support 9 is fixedly set on brace table and the refrigerating unit 3, reaction unit is fixedly set in the outside of brace table and refrigerating unit 3 and drill bit support 9 and is connected with Pneumatic controller 6, dc bias power 4 links to each other respectively at heated filament 8 and reaction hood 1 shell, the linking to each other with heated filament 8 and high temperature resistant spring 7 respectively of heater supply 5.
Totally two of described heated filaments 8, the same plane, both sides that these two heated filaments 8 are positioned at alloy bit 2 and become parallel equidistant arrangement, the two ends of two heated filaments 8 are connected;
The Heating temperature of described heater supply 5 is 2000-2400 ℃;
Described reaction hood 1 is provided with gas inlet 10 and viewing window 11, and wherein: gas inlet 10 is positioned at the top of reaction hood 1, and viewing window 11 is positioned at the side of reaction hood 1.
Present embodiment adopts the soda acid two-step approach that the carbide drill head surface is carried out pre-treatment earlier.At first, inserted drill is immersed in carries out ultrasonic cleaning in 30 minutes in the Murakami solution, this makes that wolfram varbide (WC) particle on Wimet top layer is cracked, thereby causes the substrate surface alligatoring.The composition of Murakami solution is potassium hydroxide (KOH), the Tripotassium iron hexacyanide (K
3(Fe (CN)
6)) and water (H
2O), its quality proportioning is KOH: K
3(Fe (CN)
6): H
2O=1: 1: 10.Subsequently, inserted drill is immersed in the etching of carrying out 1 minute in the Caro mixed acid solution to remove the cobalt element (Co) of underlayer surface.The composition of Caro mixed acid solution is the vitriol oil (H
2SO
4) and hydrogen peroxide (H
2O
2), its volume proportion is H
2SO
4: H
2O
2=1: 10.
Then, the carbide drill head erect is placed on the circular graphite block, the graphite block center is drilled with circular port with fixed drill bit, and just graphite block places on the sample support frame again.Arrange according to heated filament shown in Figure 1, with two diameters is that the f0.6mm tantalum wire is vertically placed, and it is stretching fixing with high temperature resistant spring, keep the axle center of two heated filaments in same plane, to become parallel equidistant arrangement with the axle center of drill bit, apart from about 3-4mm, the heated filament top is higher than drill bit 5-8mm to heated filament apart from bit face.
Then, adopting hot filament CVD, is reactant gases with the mixture of hydrogen, acetone, is the doped with boron source with the trimethyl borate that is dissolved in the acetone soln, deposition high density boron-doped diamond film on the cemented carbide with complicated shape tool matrix.Deposition process parameters is: pressure 3-5KPa, and reactant gases total flux 250 ml/min, acetone/hydrogen volume is 2% than (carbon source concentration), acetone soln mesoboric acid methyl esters concentration is 0.5%, hot-wire temperature 2200+/-50 ℃, substrate temperature 800+/-50 ℃, bias current is 1A.After 2 hours deposition, can obtain the about 4 microns high density boron-doped diamond film of thickness in cemented carbide with complicated shape bit matrix surface preparation.
At last, continue in-situ deposition lower concentration boron-doped diamond film on high density boron-doped diamond film surface.The concentration of acetone soln mesoboric acid trimethyl is reduced to 0.1%, all the other deposition parameters remain unchanged, proceed 3 hours deposition, can deposit the boron-doped diamond film of the about 6 microns lower concentration of a layer thickness, thereby prepare boron-doped diamond compounded film in cemented carbide substrate surfaces.
The boron-doped diamond compounded film for preparing in this example, not only and have good adhesion strength between the cemented carbide with complicated shape matrix, and roughness of film is low, and frictional coefficient is little, and unrelieved stress further reduces.
Claims (4)
1. device for preparing boron-doped diamond composite coating on surface of cutter, comprise: reaction hood, alloy bit, brace table and refrigerating unit, dc bias power, heater supply, Pneumatic controller, high temperature resistant spring, heated filament and drill bit support, it is characterized in that: alloy bit and high temperature resistant spring vertically are arranged on the drill bit support respectively, the two ends of heated filament are connected with high temperature resistant spring respectively, the drill bit support is fixedly set on brace table and the refrigerating unit, reaction unit is fixedly set in the outside of brace table and refrigerating unit and drill bit support and is connected with Pneumatic controller, dc bias power links to each other respectively at heated filament and reaction hood shell, the linking to each other with heated filament and high temperature resistant spring respectively of heater supply.
2. device for preparing boron-doped diamond composite coating on surface of cutter according to claim 1, it is characterized in that, totally two of described heated filaments, the same plane, both sides that these two heated filaments are positioned at alloy bit and become parallel equidistant arrangement, the two ends of two heated filaments are connected.
3. device for preparing boron-doped diamond composite coating on surface of cutter according to claim 1 is characterized in that, the Heating temperature of described heater supply is 2000-2400 ℃.
4. device for preparing boron-doped diamond composite coating on surface of cutter according to claim 1 is characterized in that described reaction hood is provided with gas inlet and viewing window, and wherein: the gas inlet is positioned at the top of reaction hood, and viewing window is positioned at the side of reaction hood.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009103118979A CN101736323B (en) | 2009-12-21 | 2009-12-21 | Device for preparing boron-doped diamond composite coating on surface of cutter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009103118979A CN101736323B (en) | 2009-12-21 | 2009-12-21 | Device for preparing boron-doped diamond composite coating on surface of cutter |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101736323A true CN101736323A (en) | 2010-06-16 |
CN101736323B CN101736323B (en) | 2012-01-04 |
Family
ID=42460344
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2009103118979A Active CN101736323B (en) | 2009-12-21 | 2009-12-21 | Device for preparing boron-doped diamond composite coating on surface of cutter |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101736323B (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102586762A (en) * | 2012-03-27 | 2012-07-18 | 上海交通大学 | Method for preparing diamond film through multiple-doped hot filament chemical vapor deposition |
CN103628036A (en) * | 2013-12-12 | 2014-03-12 | 南京航空航天大学 | Preparation method of cubic boron nitride-coated cutting tool |
CN105200391A (en) * | 2014-05-29 | 2015-12-30 | 上海交友钻石涂层有限公司 | Preparation method of diamond-coated drawing mold for water lubrication |
CN106119808A (en) * | 2016-08-24 | 2016-11-16 | 张家港合升进出口有限公司 | Cutter diamond coatings preparation facilities |
CN107513696A (en) * | 2017-09-12 | 2017-12-26 | 张家港市微纳新材料科技有限公司 | The method of diamond coatings brill/milling cutter grinding pretreatment |
CN108559970A (en) * | 2017-12-06 | 2018-09-21 | 上海交通大学 | The HFCVD batch preparations of complicated shape diamond-coated tools |
CN108642562A (en) * | 2018-04-10 | 2018-10-12 | 东莞领杰金属精密制造科技有限公司 | A kind of high-accuracy processing method of graphite cutter |
WO2020119510A1 (en) * | 2018-12-11 | 2020-06-18 | 深圳先进技术研究院 | Superhydrophobic diamond-like composite layer structure and preparation method therefor |
-
2009
- 2009-12-21 CN CN2009103118979A patent/CN101736323B/en active Active
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102586762A (en) * | 2012-03-27 | 2012-07-18 | 上海交通大学 | Method for preparing diamond film through multiple-doped hot filament chemical vapor deposition |
CN102586762B (en) * | 2012-03-27 | 2015-08-19 | 上海交通大学 | The method of preparing diamond film through multiple-doped hot filament chemical vapor deposition |
CN103628036A (en) * | 2013-12-12 | 2014-03-12 | 南京航空航天大学 | Preparation method of cubic boron nitride-coated cutting tool |
CN103628036B (en) * | 2013-12-12 | 2016-02-03 | 南京航空航天大学 | The preparation method of cubic boron nitride coated cutting tool |
CN105200391A (en) * | 2014-05-29 | 2015-12-30 | 上海交友钻石涂层有限公司 | Preparation method of diamond-coated drawing mold for water lubrication |
CN105200391B (en) * | 2014-05-29 | 2018-12-18 | 上海交友钻石涂层有限公司 | Diamond coatings drawing mould preparation method suitable for water lubrication |
CN106119808A (en) * | 2016-08-24 | 2016-11-16 | 张家港合升进出口有限公司 | Cutter diamond coatings preparation facilities |
CN107513696A (en) * | 2017-09-12 | 2017-12-26 | 张家港市微纳新材料科技有限公司 | The method of diamond coatings brill/milling cutter grinding pretreatment |
CN108559970A (en) * | 2017-12-06 | 2018-09-21 | 上海交通大学 | The HFCVD batch preparations of complicated shape diamond-coated tools |
CN108642562A (en) * | 2018-04-10 | 2018-10-12 | 东莞领杰金属精密制造科技有限公司 | A kind of high-accuracy processing method of graphite cutter |
WO2020119510A1 (en) * | 2018-12-11 | 2020-06-18 | 深圳先进技术研究院 | Superhydrophobic diamond-like composite layer structure and preparation method therefor |
Also Published As
Publication number | Publication date |
---|---|
CN101736323B (en) | 2012-01-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101736323B (en) | Device for preparing boron-doped diamond composite coating on surface of cutter | |
CN102061453B (en) | Hot-filament chemical vapor deposition batch preparation method of complicated-shape diamond coated cutting tool | |
May | CVD diamond: a new technology for the future? | |
US6258237B1 (en) | Electrophoretic diamond coating and compositions for effecting same | |
CN102650053B (en) | Manufacturing method for CVD (Chemical Vapor Deposition) diamond/diamond-like composite coating tool with complex shape | |
CN102586762B (en) | The method of preparing diamond film through multiple-doped hot filament chemical vapor deposition | |
CN103436855B (en) | A kind of preparation method of mini milling cutter diamond composite coating | |
CN102352512B (en) | Method for preparing high-adhesion diamond coating with pulse laser | |
CN110106483B (en) | Graphite-like particle composite diamond-like coating and preparation method and application thereof | |
CN105543803B (en) | A kind of the diamond/carbon boron composite coating and preparation method of cemented carbide substrate | |
CN104674186B (en) | A kind of method for preparing noncrystalline silicon carbide ceramics-diamond composite coating | |
CN109811298B (en) | Method and device for pretreating hard alloy cutter before diamond coating deposition | |
CN104495829A (en) | Method for preparing graphene film on low-temperature substrate | |
CN102337515B (en) | Preparation method for high-temperature high-differential pressure valve of diamond coating | |
CN108220916B (en) | A kind of preparation method of the GNCD-cBN nanocomposite laminated coating cutter with toughening mechanisms | |
CN111647875B (en) | Method for preparing high-finish-degree complex-shape ultra-nano diamond coating cutter in batches | |
CN108559970A (en) | The HFCVD batch preparations of complicated shape diamond-coated tools | |
CN105439126B (en) | A kind of grade single crystal graphene preparation method | |
CN110885968B (en) | Preparation method of diamond coating, diamond coating prepared by preparation method and cutting tool | |
CN108103468A (en) | A kind of diamond coatings blade and preparation method thereof | |
CN102383113B (en) | Method and device for improving efficiency of preparing diamond coating on tool surface and coating evenness | |
CN102409291A (en) | Method and device for preparing diamond film doped with ultrafine nano-structural metal particles | |
CN1060537C (en) | Diamond-coated wire-drawing die | |
CN104419927B (en) | Hard alloy cutter and film coating method thereof | |
TWI353391B (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |